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Chapter 1

Introduction

Equilibrium problem is a crucial topic for nonlinear analysis. An equilibrium problem for
a bifunction 5 :  ×  → ℝ is defined by to find a point H ∈  such that for all G ∈  , an
inequality 5 (H, G ) ≥ 0 holds. This problem was proposed by Blum and Oettli [1] in 1994, and
this includes various crucial nonlinear problems such as convex minimization problem, fixed
point problem, minimax problem, variational inequality problem, saddle point problem, Nash
equilibria, and so on.
Various researchers have studied the equilibrium problem on complete CAT(^) spaces. A

CAT(^) space is a metric space which has a unique geodesic for each pair of two points and
has a curvature bounded above by ^ . We know that the class of complete CAT(^) spaces
includes the class of Hilbert spaces.
In 2005, Combettes and Hirstoaga [3] studied the equilibrium problem on Hilbert spaces.

They found that an operator ' 5 defined by 5 , which is called a resolvent operator, plays an
important role to solve the equilibrium problem. They show that the set of all solutions to
the equilibrium problem for 5 coincides with the set of all fixed points of ' 5 . Therefore, that
equilibrium problem can be reduces to the fixed point problem. Note that they consider that
5 satisfies the following basic conditions to well-define a resolvent ' 5 .

(E1) 5 (H, H) = 0 for all H ∈  ;
(E2) 5 (H, G ) + 5 (G , H) ≤ 0 for all H, G ∈  ;
(E3) 5 (H, ·) :  → ℝ is lower semicontinuous and convex for all H ∈  ;
(E4+) 5 (·, G ) :  → ℝ is upper hemicontinuous for all G ∈  .

We often call the mapping which serves to reduce a problem to a fixed point problem a
resolvent of that problem.
In recent years, some researchers showed that resolvent operators for the equilibrium

problem can be defined in complete CAT(0) spaces [12], complete CAT(1) spaces [11], and
complete CAT(−1) spaces [20]. For instance, Kimura and Kishi [12] define a resolvent ' 5 by a
formula

' 5 F =

{
H ∈  

���� infG ∈ 

(
5 (H, G ) + 123 (F, G )

2 − 123 (F, H)
2
)
≥ 0

}
,

where 3 is a metric. This formula has the form of adding a perturbation 32/2 to the set of all
solutions to the equilibrium problem for 5 :

Equil 5 =

{
H ∈  

���� infG ∈ 
5 (H, G ) ≥ 0

}
=

{
H ∈  

��� for all G ∈  , 5 (H, G ) ≥ 0}.
They also show the following result.
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Theorem 1.1 (Kimura and Kishi [12]). Let - be a complete CAT(0) space and suppose that
- has the convex hull finite property. Let  be a nonempty closed convex subset of - , and
5 :  ×  → ℝ be a bifunction satisfying (E1)–(E4+). Define a resolvent ' 5 : - →  by

' 5 F =

{
H ∈  

���� infG ∈ 

(
5 (H, G ) + 123 (F, G )

2 − 123 (F, H)
2
)
≥ 0

}
for F ∈ - . Then ' 5 is well-defined as a single-valued mapping. Moreover, � (' 5 ) = Equil 5 , where
� (' 5 ) stands for the set of all fixed points of ' 5 .

In 2021, Kimura [11] showed that a resolvent ( 5 defined by

( 5 F =

{
H ∈  

���� infG ∈ 
( 5 (H, G ) − log cos3 (F, G ) + log cos3 (F, H)) ≥ 0

}
is well-defined as a single-valued mapping, and this satisfies � (( 5 ) = Equil 5 on admissible
complete CAT(1) spaces. They also proved a Δ-convergence theorem as follows.

Theorem 1.2 (Kimura [11]). Let - be an admissible complete CAT(1) space, and suppose that
- has the convex hull finite property and supC,D∈- 3 (C,D ) < c/2. Let  be a nonempty closed
convex subset of - , and 5 :  ×  → ℝ satisfies (E1)–(E4) as follows:

(E1) 5 (H, H) = 0 for all H ∈  ;
(E2) 5 (H, G ) + 5 (G , H) ≤ 0 for all H, G ∈  ;
(E3) 5 (H, ·) :  → ℝ is lower semicontinuous and convex for all H ∈  ;
(E4) lim supB ←0 5 (B G ⊕ (1 − B )H, G ) ≤ 5 (H, G ) for all H, G ∈  .

Let F be an arbitrary point on - and ( 5 a resolvent defined in above. Then a sequence {(<
5
F}

Δ-converges to some element in Equil 5 .

Later, Kimura and Ogihara [20] proved a well-definedness of a resolvent )5 defined by

)5 F =

{
H ∈  

���� infG ∈ 
( 5 (H, G ) + cosh3 (F, G ) − cosh3 (F, H)) ≥ 0

}
on complete CAT(−1) spaces in 2023.
Resolvents ' 5 , ( 5 and )5 use perturbation functions 32/2, − log (cos3) and cosh3 , respec-

tively. We know that we cannot use a perturbation − log (cos3) to define a resolvent on
CAT(−1) spaces generally. Similarly, we cannot use cosh3 as a perturbation function to de-
fine a resolvent on CAT(1) spaces. This means that available perturbations depend on the
curvature of the space.
In admissible complete CAT(1) spaces, we know that we can use perturbations other

than − log (cos3), such as tan3 sin3 , which will be shown in this thesis. By choos-
ing an appropriate perturbation Φ, we can ' 5 : - → 2 defined by ' 5 F = {H ∈  |
infG ∈ ( 5 (H, G ) +Φ(3 (F, G )) −Φ(3 (F, H))) ≥ 0} for each F ∈ - to be a single-valued mapping
from - into  , and � (' 5 ) can be identical to Equil 5 .
In this thesis, we show that we can use another perturbations such as tan3 sin3 in admis-

sible complete CAT(1) spaces, tanh3 sinh3 and log cosh3 in complete CAT(−1) spaces, and
others. We also give sufficient conditions for perturbations to well-define the resolvent in
general admissible complete CAT(^) spaces.
We know that not all resolvents have exactly the same properties. In fact, the properties of

resolvents depend on perturbations. For instance, a resolvent defined by using a perturba-
tion − log (cos3) has a property named spherically nonspreading of sum type, and a resolvent
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defined by using a perturbation tan3 sin3 has a property named firmly spherically nonspread-
ing ; these two nonspreadingness are independent. This implies that there exists a different
behavior of an approximation sequence to a fixed point of a resolvent for each perturbation.
In this thesis, we prove an approximation theorem of a solution to the equilibrium problem
using a resolvent defined by generalized perturbations by focusing on the characteristics that
resolvents have in common. We also consider a resolvent of convex functions.
In addition, we consider a special type of convex functions.
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Chapter 2

Preliminaries

Let - be a nonempty set and ) a mapping from - into itself. Then � () ) denotes a set of all
fixed points of ) . Let 5 be a real function on a set - . Then we define an epigraph of 5 by
epi 5 = {(F, G ) ∈ - ×ℝ | G ≥ 5 (F)}. We write argmaxF∈- 5 (F) for the set of all maximizers of 5 .
Similarly, argminF∈- 5 (F) stands for the set of all minimizers of 5 . In addition, if a maximizer
(resp. minimizer) of 5 is unique, then argmaxF∈- 5 (F) (resp. argminF∈- 5 (F)) directly denotes
such a unique maximizer (resp. minimizer). Two sets argmaxF∈- 5 (F) and argminF∈- 5 (F) are
often abbreviated to argmax 5 and argmin 5 , respectively.
Let - , . be nonempty sets and � a subset of - . For a function 6 from - into . , we write

6 |� : �→ . for the restriction of 6 to �.
Let (- , 3) be a metric space and 5 a mapping from - into ]−∞,∞]. Let us denote an effective

domain of 5 by dom( 5 ) = {F ∈ - | 5 (F) \=∞}. A function 5 is said to be proper if dom( 5 ) \= ∅.
Let (- , 3) be a metric space and ) a mapping from - into itself. Then ) is said to

be asymptotically regular if lim<→∞ 3 () <+1F,) <F) = 0 for every F ∈ - . We say that ) is
quasinonexpansive if � () ) \= ∅ and 3 () F,>) ≤ 3 (F,>) for any F ∈ - and > ∈ � () ).
Let (- , 3) be a metric space and {F<} a bounded sequence on - . A point H ∈ - is called

an asymptotic center of {F<} if H is a minimizer of a function lim sup<→∞ 3 (F< , ·) on - . {F<} is
said to Δ-converge to a point H ∈ - if H is the unique asymptotic center of any subsequence of
{F<}. We call such a point H a Δ-limit of {F<}. A mapping ) : - → - is said to be Δ-demiclosed
if a Δ-limit of any Δ-convergent sequences {F<} on - satisfying lim<→∞ 3 (F< ,) F<) = 0 belongs
to � () ).

2.1 Geodesic spaces
Let (- , 3) be a metric space. For two points F, G ∈ - , a mapping WF,G : [0, 1] → - is called a
geodesic joining F and G if WF,G (0) = G , WF,G (1) = F , and 3 (WF,G (A ),WF,G (B )) = |A − B |3 (F, G ) hold for
any A , B ∈ [0, 1]. For � ∈ ]0,∞], a metric space (- , 3) is called a uniquely �-geodesic space if
for any two points F, G ∈ - with 3 (F, G ) < � , there exists a unique geodesic joining F and G . In
particular, a uniquely ∞-geodesic space is simply called a uniquely geodesic space.
Let (- , 3) be a uniquely�-geodesic space. Let F, G ∈ - such that 3 (F, G ) <� and WF,G a unique

geodesic joining F and G . Then we write a point WF,G (B ) by B F ⊕ (1 − B )G for every B ∈ [0, 1]. We
call this point a convex combination of F and G . It follows that 3 (F, B F ⊕ (1− B )G ) = (1− B )3 (F, G )
and 3 (G , B F ⊕ (1 − B )G ) = B3 (F, G ). Furthermore, we can show that B F ⊕ (1 − B )G = (1 − B )G ⊕ B F
for all B ∈ [0, 1]. Put [F, G ] = [G , F] = WF,G ( [0, 1]) = {B F ⊕ (1 − B )G | B ∈ [0, 1]}. We call it a
geodesic segment joining F and G . Moreover, define partial segments ]F, G [, [F, G [, and ]F, G ] by
WF,G (]0, 1[), WF,G (]0, 1]), and WF,G ( [0, 1[), respectively.
Let - be a uniquely �-geodesic space and � a subset of - such that 3 (C,D ) < � for every
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C,D ∈ � . Then � is said to be convex if [F, G ] ⊂ � for every F, G ∈ � . It is equivalent to
B F ⊕ (1 − B )G ∈ � for every F, G ∈ � and B ∈ ]0, 1[.
Let - be a uniquely �-geodesic space and � a subset of - such that 3 (C,D ) < � for every

C,D ∈ � . Then a convex hull of � , which is written by co� , is defined by ⋃∞
<=1�< , where �1 = �

and �<+1 = {B F ⊕ (1 − B )G | F, G ∈ �< , B ∈ [0, 1]} for every < ∈ ℕ. We know that co� is convex.
Moreover, cl� denotes a closure of � .
Let - be a uniquely�-geodesic space and 5 a function from - into ]−∞,∞]. Then 5 is said to

be convex if for any F, G ∈ - such that 3 (F, G ) <� and B ∈ ]0, 1[, 5 (B F⊕ (1−B )G ) ≤ B 5 (F)+ (1−B ) 5 (G )
holds. Note that the inequality 5 (B F ⊕ (1 − B )G ) ≤ B 5 (F) + (1 − B ) 5 (G ) always holds if F \∈ dom( 5 )
or G \∈ dom( 5 ). 5 is said to be upper hemicontinuous if lim supB ←0 5 (B F ⊕ (1 − B )G ) ≤ 5 (G ) for
any F, G ∈ - such that 3 (F, G ) < � .
Let "^ be a 2-dimensional model space with a metric d and a constant curvature ^ ∈ ℝ

defined by

"^ =



1√
^
S2 (if ^ > 0);

ℝ2 (if ^ = 0);
1√
−^

ℍ2 (if ^ < 0),

where S2 is the 2-dimensional unit sphere, ℝ2 is the 2-dimensional Euclidean space, and ℍ2 is
the 2-dimensional hyperbolic space. Let us denote a diameter of "^ by �^ , which coincides
with

�^ =


∞ (if ^ ≤ 0);
c√
^
(if ^ > 0).

Then "^ is a complete uniquely �^-geodesic space.
Let - be a metric space and 5 a function from - into ]−∞,∞]. For � ∈ ]0,∞], 5 is said to be

�-coercive if 5 (G ) → ∞ whenever 3 (F, G ) →� for some F ∈ - . We call a ∞-coercive function
simply a coercive function.
Let ^ ∈ ℝ and - a uniquely �^-geodesic space. For F, G , H ∈ - such that 3 (F, G ) + 3 (G , H) +

3 (H, F) < 2�^ , define a geodesic triangle with vertices F , G and H by 4(F, G , H) = [F, G ] ∪ [G , H] ∪
[H, F]. Then for each geodesic triangle 4(F, G , H) on - , there exists F, G , H ∈ "^ such that
3 (F, G ) = d (F, G ), 3 (G , H) = d (G , H), and 3 (H, F) = d (H, F). Thus we define a comparison triangle
4(F, G , H) of 4(F, G , H) by [F, G ] ∪ [G , H] ∪ [H, F]. For an arbitrary point > ∈ 4(F, G , H), there exists a
corresponding point > ∈ 4(F, G , H) to > such that the distances from two adjacent vertices are
identical. We call such a point > a comparison point of > .
For ^ ∈ ℝ, let (- , 3) be a uniquely �^-geodesic space and ("^ , d) a model space. We call

- a CAT(^) space if for any 4 B 4(F, G , H), 4 B 4(F, G , H), and for any two points >, ? ∈ 4 and
these comparison points >, ? ∈ 4, an inequality 3 (>, ?) ≤ d (>, ?) always holds. The inequality
3 (>, ?) ≤ d (>, ?) is called a CAT(^) inequality. We remark that every CAT(^) space is also a
CAT(^ ′) space if ^ < ^ ′, see [2].
A Hilbert space is an example of the complete CAT(0) space, and therefore is a complete

CAT(^) space for any ^ ≥ 0. It yields that the class of the complete CAT(0) spaces includes
Hilbert spaces, but not Banach spaces in general. Moreover, a model space "^ is a complete
CAT(^) space.
A CAT(^) space - is said to be admissible if 3 (F, G ) <�^/2 for every F, G ∈ - . The admissibility

of CAT(^) spaces only makes sense when ^ > 0, because �^ =∞ for all ^ ≤ 0.
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Lemma 2.1 (Mayer [24]). Let - be a complete CAT(0) space and 5 a lower semicontinuous
convex function from - into ℝ. Then there exists ! ∈ ]−∞, 0] such that for any C ∈ - ,

lim inf
3 (C,H )→∞

5 (H)
3 (C, H) ≥ !.

Lemma 2.2 (Kimura and Kohsaka [13]). For ^ > 0, let - be an admissible complete CAT(^)
space and 5 a proper lower semicontinuous convex function from - into ]−∞,∞]. Then 5 is
bounded below.

A sequence {F<} on a CAT(^) space - is said to be ^-bounded if an inequality

lim sup
<→∞

3 (F< , C) <
�^

2

holds for some C ∈ - .
Let - be a complete CAT(^) space. If {F<} ⊂ - is ^-bounded, then an asymptotic center

of {F<} is always unique, see [4, 5]. In this thesis, �� ({F<}) denotes the unique asymptotic
center of a ^-bounded sequence {F<}. Moreover, the Δ-limit of any Δ-convergent sequence
{F<} on - is also unique, and therefore we write Δ-lim<→∞ F< for such a point. We also use
a notation F< ⇀

�
F if {F<} Δ-converges to F . In addition, if {F<} is convergent, then we get

lim<→∞ F< = Δ-lim<→∞ F< .

Theorem 2.3 ([4, 5]). Let - be a complete CAT(^) space and {F<} a ^-bounded sequence on - .
Then there exists a Δ-convergent subsequence of {F<}.

Let - be a complete CAT(^) space. A subset � ⊂ - is said to be Δ-compact if every sequence
{F<} on � has a Δ-convergent subsequence to a point in � . A subset � ⊂ - is said to be
Δ-closed if a Δ-limit of every Δ-convergent sequence on � belongs to � .

Lemma 2.4 (Kirk and Panyanak [21]). Let - be a complete CAT(0) space and " a bounded
closed convex subset of - . Then " is Δ-compact.

Lemma 2.5 (Kirk and Panyanak [21]). Let - be a complete CAT(0) space and " a closed convex
subset of - . Then " is Δ-closed.

For the sake of completeness, we give the proof of Lemma 2.5 at Section 2.3.

Lemma 2.6 (He, Fang, Lopez and Li [6]). Let - be a complete CAT(^) space and {F<} a ^-
bounded sequence on - such that F< ⇀

�
H ∈ - . Then for any C ∈ - with lim sup<→∞ 3 (C, F<) <

�^/2,
3 (C, H) ≤ lim inf

<→∞
3 (C, F<).

Corollary 2.7. Let - be an admissible complete CAT(^) space and {F<} a ^-bounded sequence
on - such that F< ⇀

�
H ∈ - . Let C ∈ - and suppose that there exists a limit lim<→∞ 3 (C, F<).

Then
3 (C, H) ≤ lim

<→∞
3 (C, F<).

Proof. If lim<→∞ 3 (C, F<) < �^/2, then we have the conclusion from Lemma 2.6. We may
consider the case where lim<→∞ 3 (C, F<) = �^/2. Since {F<} is ^-bounded, there exists > ∈ -
such that sup<∈ℕ 3 (F< , >) < �^/2. Assume that ^ ≤ 0. Then 3 (C, F<) → ∞ and therefore
3 (F< , >) ≥ |3 (C, F<) − 3 (C,>) | → ∞, which is a contradiction. Hence we have ^ > 0. It follows
from the admissibility of - that 3 (C, H) < �^/2 = lim<→∞ 3 (C, F<). This is the desired result. �
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A complete CAT(^) space - is said to have the convex hull finite property if for any nonempty
finite subset � of - and every continuous mapping ) from cl co� into itself, ) has a fixed
point. The convex hull finite property is defined by [28] for CAT(0) spaces originally. Notice
that all Hilbert spaces have the convex hull finite property.
Let - be a CAT(^) space and let B ∈ [0, 1]. Then, the following inequalities hold for any

F, G , H ∈ - with 3 (F, G ) + 3 (G , H) + 3 (H, F) < 2�^ :

• If ^ < 0,

cosh(
√
−^3 (B F ⊕ (1 − B )G , H)) sinh(

√
−^�)

≤ cosh(
√
−^3 (F, H)) sinh(B

√
−^�) + cosh(

√
−^3 (G , H)) sinh((1 − B )

√
−^�);

• if ^ = 0,

3 (B F ⊕ (1 − B )G , H)2 ≤ B3 (F, H)2 + (1 − B )3 (G , H)2 − B (1 − B )3 (F, G )2;

• if ^ > 0,

cos(
√
^3 (B F ⊕ (1 − B )G , H)) sin(

√
^�)

≥ cos(
√
^3 (F, H)) sin(B

√
^�) + cos(

√
^3 (G , H)) sin((1 − B )

√
^�),

where � = 3 (F, G ). These hold as an equation if CAT(^) space - is just a model space "^ .
Therefore, we call these inequalities Stewart’s theorem on CAT(^) spaces.
The following are easily obtained by Stewart’s theorem on a CAT(^) space - :

• If ^ < 0,

cosh(
√
−^3 (B F ⊕ (1 − B )G , H)) ≤ B cosh(

√
−^3 (F, H)) + (1 − B ) cosh(

√
−^3 (G , H));

• if ^ = 0,
3 (B F ⊕ (1 − B )G , H)2 ≤ B3 (F, H)2 + (1 − B )3 (G , H)2;

• if ^ > 0,

cos(
√
^3 (B F ⊕ (1 − B )G , H)) ≥ B cos(

√
^3 (F, H)) + (1 − B ) cos(

√
^3 (G , H))

for any B ∈ [0, 1] and F, G , H ∈ - with 3 (F, H) < �^/2, 3 (G , H) < �^/2, and 3 (F, G ) < �^ . In this
thesis, we call these inequalities the corollaries of Stewart’s theorem on CAT(^) spaces.

2.2 A function 2^
For ^ ∈ ℝ, define a function 2^ : ]−∞,∞] → ]−∞,∞] by

2^ (3) =
∞∑
<=1

^<−1(−1)<−132<
(2<)! =



1
−^ (cosh(

√
−^3) − 1) = 2

−^ sinh2
√
−^3
2 (if ^ < 0);

1
23

2 (if ^ = 0);

1
^
(1 − cos(

√
^3)) = 2

^
sin2
√
^3

2 (if ^ > 0)
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for 3 ∈ ℝ and 2^ (∞) = ∞, where ^0 B 1 if ^ = 0. The function 2^ is infinitely differentiable on
ℝ. The first and second derivative 2 ′^ and 2 ′′^ are represented as

2 ′^ (3) =
∞∑
<=1

^<−1(−1)<−132<−1
(2< − 1)! =



1√
−^

sinh(
√
−^3) (if ^ < 0);

3 (if ^ = 0);
1√
^
sin(
√
^3) (if ^ > 0)

and

2 ′′^ (3) =
∞∑
<=0

^< (−1)<32<
(2<)! = 1 −^2^ (3) =


cosh(

√
−^3) (if ^ < 0);

1 (if ^ = 0);
cos(
√
^3) (if ^ > 0)

for 3 ∈ ℝ, respectively. Furthermore, for any ^ ∈ ℝ, we get the following:

• 2^ (0) = 0, and 2^ (3) > 0 for any 3 ∈ ]0, �^ ];
• 2 ′^ (0) = 0, and 2 ′^ (3) > 0 for any 3 ∈ ]0, �^ [;
• 2 ′′^ (0) = 1, and 2 ′′^ (3) > 0 for any 3 ∈ ]0, �^/2[;
• if ^ > 0, then 2 ′′^ (3) ≤ 0 for any 3 ∈ [�^/2, �^ [;
• 2^ is an odd function, and 2 ′′^ is an even function;
• 2^ is strictly increasing on [0, �^ ];
• 2^ is convex on [0, �^/2];
• 2 ′′^ (3)2 +^2 ′^ (3)2 = 1 for any 3 ∈ ℝ;
• 2 ′^ (31 + 32) = 2 ′^ (31)2 ′′^ (32) + 2 ′′^ (31)2 ′^ (32) for any 31, 32 ∈ ℝ;
• 2 ′′^ (31 + 32) = 2 ′′^ (31)2 ′′^ (32) −^2 ′^ (31)2 ′^ (32) for any 31, 32 ∈ ℝ;
• 2 ′′^ (31)2 ′′^ (32) = (2 ′′^ (31 + 32) + 2 ′′^ (31 − 32))/2 for any 31, 32 ∈ ℝ.

Notice that lim3→∞ 2^ (3)/3 =∞ if ^ ≤ 0. Moreover, we have

2^

(
�^

2

)
=


∞ (if 3 ≤ 0);
1
^

(if 3 > 0).

The following figure describes the graphs of 2^ for ^ < 0, ^ = 0, and ^ > 0.

3

G

O

(i) (ii)

(iii)

(i) G = 2^ (3) (^ < 0);
(ii) G = 2^ (3) (^ = 0);
(iii) G = 2^ (3) (^ > 0).
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For every B ∈ [0, 1], 3 ∈ [0, �^ [, and ^ ∈ ℝ, put

(B )^3 =


2 ′^ (B3)
2 ′^ (3)

(if 3 \= 0);

B (if 3 = 0).

Then we have

(B )^3 =


sinh(B

√
−^3)/sinh(

√
−^3) (if ^ < 0);

B (if ^ = 0);
sin(B

√
^3)/sin(

√
^3) (if ^ > 0)

if 3 \= 0. Kimura and Sudo [19] discovered that we can write all Stewart’s theorems on CAT(^)
spaces in the same formula as follows:

2^ (3 (B F ⊕ (1 − B )G , H)) ≤ (B )^� (2^ (3 (F, H)) − 2^ ((1 − B )�)) + (1 − B )
^
� (2^ (3 (G , H)) − 2^ (B�))

for any B ∈ [0, 1] and F, G , H ∈ - with 3 (F, G ) +3 (G , H) +3 (H, F) < 2�^ , where � = 3 (F, G ). Similarly,
the corollaries of Stewart’s theorem on a CAT(^) space - can be expressed by

2^ (3 (B F ⊕ (1 − B )G , H)) ≤ B 2^ (3 (F, H)) + (1 − B )2^ (3 (G , H))

for any B ∈ [0, 1] and F, G , H ∈ - with 3 (F, H) < �^/2, 3 (G , H) < �^/2, and 3 (F, G ) < �^ .
Now we show several natures of functions 2^ , 2 ′^ , and 2 ′′^ .

Lemma 2.8. For any ^ ∈ ℝ and 31, 32 ∈ ℝ, an equation

2^ (31) + 2 ′′^ (31)2^ (32) = 2^ (32) + 2 ′′^ (32)2^ (31)

holds. In addition, these are equal to 1 − 2 ′′^ (31)2 ′′^ (32)
^

if ^ \= 0.

Proof. For any ^ ∈ ℝ and 31, 32 ∈ ℝ, we get

2^ (31) + 2 ′′^ (31)2^ (32) = 2^ (31) + (1 −^2^ (31))2^ (32)
= 2^ (32) + (1 −^2^ (32))2^ (31)
= 2^ (32) + 2 ′′^ (32)2^ (31).

Moreover, if ^ \= 0, then

2^ (31) + 2 ′′^ (31)2^ (32) =
1 − 2 ′′^ (31)

^
+ 2
′′
^ (31) (1 − 2 ′′^ (32))

^
=
1 − 2 ′′^ (31)2 ′′^ (32)

^
.

Thus we get the conclusion. �

Lemma 2.9. Let - be a CAT(^) space. Then an inequality

2^

(1
23 (F, G )

)
+ 2 ′′^

(1
23 (F, G )

)
2^

(
3
(1
2F ⊕

1
2G , H

))
≤ 1
22^ (3 (F, H)) +

1
22^ (3 (G , H))

holds for any F, G , H ∈ - such that 3 (F, G ) + 3 (G , H) + 3 (H, F) < 2�^ .
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Proof. It holds as an equation if F = G , thus we suppose that F \= G . Put � = 3 (F, G ). Then we
obtain 0 <� <�^ since 3 (F, G ) < 2�^ − (3 (G , H) +3 (H, F)) ≤ 2�^ −3 (F, G ). Therefore, by Stewart’s
theorem on CAT(^) spaces, we get

2^

(
3
(1
2F ⊕

1
2G , H

))
≤

(1
2

)^
�

(
2^ (3 (F, H)) − 2^

(
�
2

))
+

(1
2

)^
�

(
2^ (3 (G , H)) − 2^

(
�
2

))
=
2 ′^ (�/2)
2 ′^ (�)

(
2^ (3 (F, H)) + 2^ (3 (G , H)) − 22^

(
�
2

))
.

Since 2 ′^ (�) = 22 ′^ (�/2)2 ′′^ (�/2) and 2 ′′^ (3) > 0 for every 3 ∈ ]0, �^/2[, we obtain

2 ′′^

(
�
2

)
2^

(
3
(1
2F ⊕

1
2G , H

))
≤ 1
2

(
2^ (3 (F, H)) + 2^ (3 (G , H)) − 22^

(
�
2

))
.

This is the conclusion. �

Lemma 2.10. Let - be a CAT(^) space and ) : - → - a quasinonexpansive mapping. Then
� () ) is closed. Moreover, if 3 (H1, H2) < �^ for every H1, H2 ∈ � () ), then � () ) is convex.

Proof. Let {H<} be a sequence on � () ) converging to H0 ∈ - . Then for < ∈ ℕ, we get
0 ≤ 3 (H0,) H0) ≤ 3 (H0, H<) +3 (H< ,) H0) ≤ 23 (H0, H<) → 0 as <→∞. This means that H0 ∈ � () ), and
hence � () ) is closed.
Suppose that 3 (H1, H2) < �^ for every H1, H2 ∈ � () ). Let F, G ∈ � () ) and B ∈ ]0, 1[. Then we can

take a point C = B F ⊕ (1 − B )G . Put � = 3 (F, G ) < �^ . Then since 2^ is increasing on [0, �^ ], we
obtain 2^ (3 (F,)C)) ≤ 2^ (3 (F,C)) and 2^ (3 (G ,)C)) ≤ 2^ (3 (G ,C)). Therefore, since

3 (F, G ) + 3 (G ,)C) + 3 ()C, F) ≤ 3 (F, G ) + 3 (G ,C) + 3 (C, F) = � + B� + (1 − B )� = 2� < 2�^ ,

we obtain

0 ≤ 2^ (3 (C,)C)) = 2^ (3 (B F ⊕ (1 − B )G ,)C))
≤ (B )^�

(
2^ (3 (F,)C)) − 2^ ((1 − B )�)

)
+ (1 − B )^�

(
2^ (3 (G ,)C)) − 2^ (B�)

)
= (B )^�

(
2^ (3 (F,)C)) − 2^ (3 (F,C))

)
+ (1 − B )^�

(
2^ (3 (G ,)C)) − 2^ (3 (G ,C))

)
≤ 0.

This means that C =)C , and hence � () ) is convex. �

2.3 A metric projection
Let - be an admissible complete CAT(^) space and  a nonempty closed convex subset of - .
Then for each F ∈ - , there exists a unique point >F such that >F ∈  and 3 (F,>F ) = infG ∈ 3 (F, G ).
It derives a mapping % from - onto  by F ↦−→ >F for every F ∈ - . Such a mapping % is
called a metric projection onto  . Then we obtain � (% ) =  .

Lemma 2.11. Let - be an admissible complete CAT(^) space and  a nonempty closed convex
subset of - . Then inequalities

2^ (3 (F, % F))2 ′′^ (3 (% F, H)) ≤ 2^ (3 (F, H)) − 2^ (3 (% F, H)) (i)

and
2^ (3 (% F, H))2 ′′^ (3 (F, % F)) ≤ 2^ (3 (F, H)) − 2^ (3 (F, % F)) (ii)

hold for any F ∈ - and H ∈  .
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Proof. Put C = % F and � = 3 (C, H). Then since B H ⊕ (1 − B )C ∈  , we get

2^ (3 (F,C)) ≤ 2^ (3 (F, B H ⊕ (1 − B )C))
≤ (B )^� (2^ (3 (F, H)) − 2^ ((1 − B )�)) + (1 − B )

^
� (2^ (3 (F,C)) − 2^ (B�))

for any B ∈ ]0, 1[. Hence we have
1 − (1 − B )^

�

(B )^
�

2^ (3 (F,C)) ≤ 2^ (3 (F, H)) − 2^ ((1 − B )�) −
(1 − B )^

�

(B )^
�

2^ (B�)

≤ 2^ (3 (F, H)) − 2^ ((1 − B )�)

for any B ∈ ]0, 1[. Letting B → 0, we obtain (i). Indeed, we get

lim
B→0

1 − (1 − B )^
�

(B )^
�

= 2 ′′^ (�).

Furthermore, using (i) and Lemma 2.8, we have (ii). �

Corollary 2.12. Let - be an admissible complete CAT(^) space and  a nonempty closed convex
subset of - . Then the metric projection % is quasinonexpansive.

Proof. From Lemma 2.11 (i), we obtain 0 ≤ 2^ (3 (F, H)) − 2^ (3 (% F, H)) for any F ∈ - and H ∈  ,
which implies the conclusion. �

Using Corollary 2.12, we can proof Lemma 2.5.

Proof of Lemma 2.5. Let {F<} be a sequence on " such that F< ⇀
�
F0 ∈ - . Then F0 is the

unique asymptotic center of {F<}. Assume that F0 \∈" , and let %" be a metric projection from
- onto " . Then since %" is quasinonexpansive, we obtain

lim sup
<→∞

3 (F< , F0) < lim sup
<→∞

3 (F< , %" F0) ≤ lim sup
<→∞

3 (F< , F0),

which is a contradiction. This follows the conclusion. �

2.4 Equilibrium problems
Let - be a uniquely �-geodesic space and  a nonempty closed convex subset of - . The
equilibrium problem for a bifunction 5 :  2 → ℝ is a problem to find a point H ∈  satisfying
infG ∈ 5 (H, G ) ≥ 0. Then let us denote the set of all solutions to the equilibrium problem by
Equil 5 . That is, Equil 5 = {H ∈  | infG ∈ 5 (H, G ) ≥ 0}.
In this thesis, we always assume that 5 satisfies the following conditions (E1)–(E4):

(E1) 5 (H, H) = 0 for all H ∈  ;
(E2) 5 (H, G ) + 5 (G , H) ≤ 0 for all H, G ∈  ;
(E3) 5 (H, ·) :  → ℝ is lower semicontinuous and convex for all H ∈  ;
(E4) lim supB ←0 5 (B G ⊕ (1 − B )H, G ) ≤ 5 (H, G ) for all H, G ∈  .

The condition (E4) is true when (E4+) is true, see Chapter 1. These conditions are required to
define resolvent operators of equilibrium problems.
As described in Chapter 1, certain convex minimization problems can be attributed to an

equilibrium problem. Let - be a uniquely �-geodesic space,  a nonempty closed convex
subset of - , and 6 a lower semicontinuous convex function from  into ℝ. Define 5 :  2→ ℝ

by 5 (H, G ) = 6 (G ) − 6 (H) for each G , H ∈  . Then 5 satisfies conditions (E1)–(E4), and we have
Equil 5 = {H ∈  | infG ∈ (6 (G ) − 6 (H)) ≥ 0} = {H ∈  | infG ∈ 6 (G ) = 6 (H)} = argmin 6 .
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2.5 Other lemmas
Let tanh−1 : ]−1, 1[ → ℝ be the inverse of the hyperbolic tangent function. Similarly, let
tan−1 : ℝ ∪ {±∞} → [0, c [ be the extended inverse of the extended trigonometric tangent
function tan: [0, c [ → ℝ ∪ {±∞}, where we set tan−1(±∞) = c/2.
For ^ ∈ ℝ and � ∈ [0, �^ [, define a function Z^

�
: [0, 1] → [0, 1] by

Z^� (B ) =


2 ′^ (B�)
2 ′^ (B�) + 2 ′^ ((1 − B )�)

(if � > 0);

B (if � = 0)

for B ∈ [0, 1]. Then we know that lim�→0 Z
^
�
(B ) = B for any ^ ∈ ℝ and B ∈ [0, 1].

Lemma 2.13. For ^ ∈ ℝ and � ∈ [0, �^ [, the function Z^
�
: [0, 1] → [0, 1] is continuous, strictly

increasing, and bijective. Moreover, the following hold:

• Z^
�
(0) = 0, Z^

�
(1/2) = 1/2, and Z^

�
(1) = 1;

• Z^
�
(B ) + Z^

�
(1 − B ) = 1 for any B ∈ [0, 1];

• (Z^
�
)′′(1/2) = 0, where (Z^

�
)′′ is the second derivative of Z^

�
.

In addition, the following hold if � > 0:

• If ^ > 0, then (Z^
�
)′′ (B ) < 0 for any B ∈ ]0, 1/2[;

• if ^ > 0, then (Z^
�
)′′(B ) > 0 for any B ∈ ]1/2, 1[;

• if ^ < 0, then (Z^
�
)′′(B ) > 0 for any B ∈ ]0, 1/2[;

• if ^ < 0, then (Z^
�
)′′(B ) < 0 for any B ∈ ]1/2, 1[.

Let ^ ∈ ℝ and � ∈ [0, �^ [. Since Z^� is bijective, there exists the inverse of Z^
�
. It is obvious

that (Z^0 )
−1(U) = U for any U ∈ [0, 1]. We also have the following facts.

Lemma 2.14. For ^ ∈ ℝ and � ∈ ]0, �^ [, the inverse of Z^� is expressed by

(Z^� )
−1(U)

=



1√
−^�

tanh−1
U sinh

(√
−^�

)
1 − U + U cosh

(√
−^�

) =
1√
−^�

tanh−1
√
−^U2 ′^ (�)

1 − U + U2 ′′^ (�)
(if ^ < 0);

U (if ^ = 0);
1√
^�

tan−1
U sin

(√
^�

)
1 − U + U cos

(√
^�

) =
1√
^�

tan−1
√
^U2 ′^ (�)

1 − U + U2 ′′^ (�)
(if ^ > 0)

= 1 −



1√
−^�

tanh−1
(1 − U) sinh

(√
−^�

)
U + (1 − U) cosh

(√
−^�

) =
1√
−^�

tanh−1
√
−^ (1 − U)2 ′^ (�)
U + (1 − U)2 ′′^ (�)

(if ^ < 0);

1 − U (if ^ = 0);
1√
^�

tan−1
(1 − U) sin

(√
^�

)
U + (1 − U) cos

(√
^�

) =
1√
^�

tan−1
√
^ (1 − U)2 ′^ (�)

U + (1 − U)2 ′′^ (�)
(if ^ > 0)

for U ∈ [0, 1]. If � = 0, then (Z^
�
)−1(U) = U for every U ∈ [0, 1]. Therefore, the following hold for

any ^ ∈ ℝ and � ∈ [0, �^ [:
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• (Z^
�
)−1 : [0, 1] → [0, 1] is continuous and strictly increasing;

• (Z^
�
)−1(0) = 0, (Z^

�
)−1(1/2) = 1/2, and (Z^

�
)−1(1) = 1;

• (Z^
�
)−1(U) + (Z^

�
)−1(1 − U) = 1 for any U ∈ [0, 1].

Moreover, the following hold if � > 0:

• If ^ > 0, then ((Z^
�
)−1)′′(U) > 0 for any U ∈ ]0, 1/2[;

• if ^ > 0, then ((Z^
�
)−1)′′(U) < 0 for any U ∈ ]1/2, 1[;

• if ^ < 0, then ((Z^
�
)−1)′′(U) < 0 for any U ∈ ]0, 1/2[;

• if ^ < 0, then ((Z^
�
)−1)′′(U) > 0 for any U ∈ ]1/2, 1[.

The reason we set the codomain of tan−1 as [0, c [ instead of ]−c/2, c/2[ is to ensure
consistency of Lemma 2.14 when �^/2 ≤ � < �^ .

Corollary 2.15. For ^ > 0 and � ∈ ]0, �^ [, the following hold.

• Z^� (B ) > B for any B ∈ ]0, 1/2[;
• Z^� (B ) < B for any B ∈ ]1/2, 1[;
• (Z^� )

−1(U) < U for any U ∈ ]0, 1/2[;
• (Z^� )

−1(U) > U for any U ∈ ]1/2, 1[.

Corollary 2.16. For ^ < 0 and � ∈ ]0,∞[, the following hold.

• Z^� (B ) < B for any B ∈ ]0, 1/2[;
• Z^� (B ) > B for any B ∈ ]1/2, 1[;
• (Z^� )

−1(U) > U for any U ∈ ]0, 1/2[;
• (Z^� )

−1(U) < U for any U ∈ ]1/2, 1[.

For � > 0, the first derivative of Z^
�
is expressed by

(Z^� )
′(B ) = �2 ′^ (�)

(2 ′^ (B�) + 2 ′^ ((1 − B )�))2

for B ∈ ]0, 1[. Then there exist limits limB→0(Z^� )
′(B ) and limB→1(Z^� )

′(B ). Thus we have

lim
B→0
(Z^� )

′(B ) = lim
B→1
(Z^� )

′(B ) = �

2 ′^ (�)
.

By noting Lemma 2.13, we also get (Z^
�
)′(B ) = (Z^

�
)′(1 − B ) for all B ∈ ]0, 1[. Therefore, we obtain

the following facts.

Lemma 2.17. For ^ > 0 and � ∈ ]0, �^ [, the following hold.

• 1
2 B < Z^� (B ) <

�

2 ′^ (�)
B for any B ∈ ]0, 1];

• 1
2 (1 − B ) < 1 − Z^� (B ) <

�

2 ′^ (�)
(1 − B ) for any B ∈ [0, 1[;

•
2 ′^ (�)
�

U < (Z^� )
−1(U) < 2U for any U ∈ ]0, 1];

•
2 ′^ (�)
�
(1 − U) < 1 − (Z^� )

−1(U) < 2(1 − U) for any U ∈ [0, 1[.
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Lemma 2.18. For ^ < 0 and � ∈ ]0,∞[, the following hold.

• �

2 ′^ (�)
B < Z^� (B ) < 2B for any B ∈ ]0, 1];

• �

2 ′^ (�)
(1 − B ) < 1 − Z^� (B ) < 2(1 − B ) for any B ∈ [0, 1[;

• 1
2U < (Z^� )

−1(U) < 2 ′^ (�)
�

U for any U ∈ ]0, 1];

• 1
2 (1 − U) < 1 − (Z^� )

−1(U) < 2 ′^ (�)
�
(1 − U) for any U ∈ [0, 1[.

The following are graphs of the function Z^
�
for some � > 0.

B

U

0
0

U = Z^
�
(B )

1

1

1/2

1/2

^ > 0

B

U

0
0

U = Z^
�
(B )

1

1

^ = 0

B

U

0
0

U = Z^
�
(B )

1

1

1/2

1/2

^ < 0

For ^ ∈ ℝ and B ∈ [0, 1], define a function [^B : [0, �^ [ → [0, 1] by

[^B (�) = Z^� (B ) =


2 ′^ (B�)
2 ′^ (B�) + 2 ′^ ((1 − B )�)

(if � > 0);

B (if � = 0)

for � ∈ [0, �^ [. Furthermore, for ^ ∈ ℝ and U ∈ [0, 1], define a function [^U : [0, �^ [ → [0, 1] by

[^U (�) = (Z^� )
−1(U)

for � ∈ [0, �^ [. Then we have [0B (�) = B , [ 0U (�) = U, [^U (0) = U, [^B (�) + [^1−B (�) = 1, and
[^U (�) +[

^
1−U (�) = 1 for every ^ ∈ ℝ, B ∈ [0, 1], U ∈ [0, 1], and � ∈ [0, �^ [.

Lemma 2.19. For ^ > 0 and B ∈ ]0, 1[, the following hold:

(i) lim3→0[
^
B (3) = B ;

(ii) lim3→�^ [
^
B (3) = 1/2;

(iii) if B < 1/2, then [^B is strictly increasing;
(iv) if B > 1/2, then [^B is strictly decreasing.

Lemma 2.20. For ^ < 0 and B ∈ ]0, 1[, the following hold:

(i) lim3→0[
^
B (3) = B ;

(ii) if B < 1/2, then lim3→∞[^B (3) = 0;
(iii) if B > 1/2, then lim3→∞[^B (3) = 1;
(iv) if B < 1/2, then [^B is strictly decreasing;
(v) if B > 1/2, then [^B is strictly increasing.
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The following figures show graphs of [^B for several B .

�

[

0
0

B

B

[ = [^B (� ) (0 < B < 1/2)
[ = [^1/2 (� )

[ = [^B (� ) (1/2 < B < 1)
1

1/2

�^

^ > 0

�

[

0
0

B

B

[ = [^B (� ) (0 < B < 1/2)

[ = [^1/2 (� )

[ = [^B (� ) (1/2 < B < 1)
1

1/2

^ < 0

We give several natures of the function [^U in Section 3.1.
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Chapter 3

Convex combinations

3.1 ^-convex combination on geodesic spaces
As described in the Preliminaries, on a uniquely �-geodesic space, a convex combination
B F ⊕ (1 − B )G stands for the unique point on the geodesic segment [F, G ] such that 3 (F, H) :
3 (H, G ) = (1 − B ) : B . Now we introduce the following fact.

Fact 3.1. Let - be a uniquely �-geodesic space and take F, G ∈ - such that 3 (F, G ) < � . Then
for any B ∈ [0, 1], B F ⊕ (1 − B )G = argminH∈-

(
B3 (F, H)2 + (1 − B )3 (G , H)2

)
.

For the sake of completeness, we show this. We prepare a lemma to prove the above fact.

Lemma 3.2. Let - be a uniquely �-geodesic space. Take F, G ∈ - such that 3 (F, G ) < � . For a
given B ∈ [0, 1] and a strictly increasing function � : [0,∞[ → [0,∞[, define 6 : - → [0,∞[ by

6 (·) = B� (3 (F, ·)) + (1 − B )� (3 (G , ·)).

Assume that there exists a unique minimizer H0 of 6 | [F,G ] : [F, G ] → [0,∞[. Then H0 is a unique
minimizer of 6 .

Proof of Lemma 3.2. If F = G , then we obtain H0 = F = argminH∈- � (3 (F, H)) = argminH∈- 6 (H),
which is the conclusion. Suppose that F \= G and take E ∈ - \ {H0} arbitrarily. From the
assumption, we obtain 6 (H0) < 6 (E ) if E ∈ [F, G ]. In what follows, assume that E \∈ [F, G ].
Put f = 3 (G ,E )/(3 (F,E ) + 3 (G ,E )) and H1 = fF ⊕ (1 − f)G . Then we have f ∈ ]0, 1[ and
3 (F, H1) : 3 (G , H1) = 3 (F,E ) : 3 (G ,E ). Moreover, we obtain 6 (H0) ≤ 6 (H1), especially we get
6 (H0) < 6 (H1) if H0 \= H1.
Suppose that H0 = H1. Then we get E \= H1 and hence E \∈ [F, G ]. Thus we have 3 (F, H1) +

3 (G , H1) = 3 (F, G ) < 3 (F,E ) + 3 (G ,E ). It implies that 3 (F, H1) < 3 (F,E ) and 3 (G , H1) < 3 (G ,E ).
Therefore we get 6 (H1) < 6 (E ), and this follows 6 (H0) < 6 (E ).
Next we assume H0 \= H1. Then we obtain 3 (F, H1) ≤ 3 (F,E ) and 3 (G , H1) ≤ 3 (G ,E ), and hence

6 (H1) ≤ 6 (E ). It implies 6 (H0) < 6 (E ) and thus we get the conclusion. �

Proof of Fact 3.1. Define a function 6 : - → [0,∞[ by 6 (·) = B3 (F, ·)2 + (1 − B )3 (G , ·)2. Then for
any U ∈ [0, 1], we have

6 (UF ⊕ (1 − U)G ) = B3 (F, UF ⊕ (1 − U)G )2 + (1 − B )3 (G , UF ⊕ (1 − U)G )2

= B ((1 − U)3 (F, G ))2 + (1 − B ) (U3 (F, G ))2

=
(
B (1 − U)2 + (1 − B )U2

)
3 (F, G )2

=
(
(U − B )2 + B (1 − B )

)
3 (F, G )2.
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This follows that a restriction 6 | [F,G ] has the unique minimizer H0 = B F ⊕ (1 − B )G . Therefore,
from Lemma 3.2, H0 is also the unique minimizer of 6 . �

Next, we consider a different type of internally dividing points of geodesic segments named
^-convex combination. We hereinafter assume that Z^

�
, [^B , and [^U are functions defined in

Section 2.5.

Lemma 3.3. Let ^ ∈ ℝ, � ∈ ]0, �^ [, and U ∈ [0, 1]. Define a function 5 : ℝ→ ℝ by

5 (_) = U2^ ((1 − _)�) + (1 − U)2^ (_�)

for _ ∈ ℝ. Then a set argmin_∈[0,1] 5 (_) consists exactly one point B0, and it satisfies 5 ′(B0) = 0.

Proof. First, we consider the case where U = 0. Then we have 5 (_) = 2^ (_�) for every _ ∈ [0, 1]
and hence argmin_∈[0,1] 5 (_) = {0}. Similarly, we get argmin_∈[0,1] 5 (_) = {1} if U = 1. We can
verify easily that 5 ′(argmin_∈[0,1] 5 (_)) = 0 holds.
Next, assume that U ∈ ]0, 1[. Then we obtain

5 ′(_)/� = −U2 ′^ ((1 − _)�) + (1 − U)2 ′^ (_�)
= −U (2 ′^ (�)2 ′′^ (_�) − 2 ′′^ (�)2 ′^ (_�)) + (1 − U)2 ′^ (_�)
= −U2 ′^ (�)2 ′′^ (_�) + (1 − U + U2 ′′^ (�))2 ′^ (_�)

and
5 ′′(_)/�2 = U2 ′′^ ((1 − _)�) + (1 − U)2 ′′^ (_�)

for any _ ∈ [0, 1]. It follows that 5 ′(0)/� = −U2 ′^ (�) < 0 and 5 ′(1)/� = (1 − U)2 ′^ (�) > 0. Thus
there exists B ∈ [0, 1] such that 5 ′(B ) = 0.
If � < �^/2, then 5 ′′(_)/�2 > 0 holds for every _ ∈ [0, 1]. Hence the set argmin_∈[0,1] 5 (_)

consists exactly one point if � < �^/2.
Consider the case where �^/2 ≤ � < �^ . Then we get ^ > 0 by the definition of �^ , and thus

there exists \0 ∈ ℝ such that
√
^ 5 ′(_)/� = −U sin(

√
^�) cos(

√
^_�) + (1 − U + U cos(

√
^�)) sin(

√
^_�)

=

√
U2 + 2U (1 − U) cos(

√
^�) + (1 − U)2 sin(

√
^_� + \0).

This shows that the zeros of a function _ ↦→ 5 ′(_) appear exactly c/(
√
^�) apart. Therefore,

since c/(
√
^�) > c/(

√
^�^ ) = 1, there exists a unique B0 ∈ [0, 1] such that 5 ′(B0) = 0, which is

the unique element of the set argmin_∈[0,1] 5 (_). �

Let ^ ∈ ℝ and - a uniquely �^-geodesic space. Define a function 2^ : [0,∞[ → [0,∞[ by

2^ (3) =


2^ (3) (if ^ ≤ 0);
2^ (3) (if ^ > 0 and 3 ≤ �^ );
2√
^c

3 (if ^ > 0 and 3 > �^ )

for 3 ∈ [0,∞[. Then 2^ is strictly increasing on [0,∞[. Fix F, G ∈ - such that 3 (F, G ) < �^ , and
define a function 6 : - → ℝ by

6 (·) = U2^ (3 (F, ·)) + (1 − U)2^ (3 (G , ·)).

17



We show that 6 has the unique minimizer H0. It is clearly concluded if F = G . Assume that
F \= G , and define a function 6W : [0, 1] → ℝ by

6W (_) = 6 (_F ⊕ (1 − _)G )
= U2^ ((1 − _)3 (F, G )) + (1 − U)2^ (_3 (F, G ))

for _ ∈ [0, 1]. Then a set argmin_∈[0,1] 6W (_) consists exactly one point B0 from Lemma 3.3. This
means that a restriction 6 | [F,G ] has the unique minimizer H0 = B0F ⊕ (1 − B0)G ∈ [F, G ]. We also
have 6 has the same unique minimizer H0 form Lemma 3.2. Then we give such a point H0 a
specific notation as follows:

Definition 3.4 ([17], [18], [19]). Let - be a uniquely �^-geodesic space and take F, G ∈ - such
that 3 (F, G ) < �^ . Then we say that the unique minimizer of a function 6 : - → [0,∞[ defined
by

6 (·) = U2^ (3 (F, ·)) + (1 − U)2^ (3 (G , ·))

is ^-convex combination of F and G with the ratio U ∈ [0, 1], and write it by UF
^
⊕ (1 − U)G .

Then we can get the following easily.

• UF
^
⊕ (1 − U)G ∈ [F, G ];

• UF
^
⊕ (1−U)G = B F ⊕ (1−B )G , where B = argmin_∈[0,1]

(
U2^ ((1−_)3 (F, G )) + (1−U)2^ (_3 (F, G ))

)
;

• 1F
^
⊕ 0G = F , 0F

^
⊕ 1G = G ;

• UF
^
⊕ (1 − U)F = F for every U ∈ [0, 1];

• UF
0
⊕ (1 − U)G = UF ⊕ (1 − U)G ;

• UF
^
⊕ (1 − U)G = (1 − U)G

^
⊕ UF .

Note that papers [17], [18] and [19] define a ^-convex combination only when 3 (F, G ) <�^/2.
But actually, as shown above, the definition can be extended to include the cases where
�^/2 ≤ 3 (F, G ) < �^ .

Lemma 3.5. Let ^ ∈ ℝ,� ∈ ]0, �^ [, and U ∈ [0, 1]. Then the following conditions are equivalent:

(a) B = argmin_∈[0,1]
(
U2^ ((1 − _)�) + (1 − U)2^ (_�)

)
;

(b) (1 − U + U2 ′′^ (�))2 ′^ (B�) = U2 ′^ (�)2 ′′^ (B�);
(c) U = Z^� (B );
(d) B = (Z^� )

−1(U).

Proof. Define a function 5 : ℝ→ ℝ by 5 (_) = U2^ ((1 − _)�) + (1 − U)2^ (_�) for _ ∈ ℝ. Then we
obtain from Lemma 3.3 that there exists a unique minimizer B ∈ [0, 1] of 5 | [0,1] , and it satisfies
5 ′(B ) = 0. Since

5 ′(B )/� = −U2 ′^ (�)2 ′′^ (B�) + (1 − U + U2 ′′^ (�))2 ′^ (B�),
we obtain that (a) is equivalent to (b). Moreover, the condition (b) is equivalent to

2 ′^ (B�) + (−2 ′^ (B�) + 2 ′′^ (�)2 ′^ (B�))U = 2 ′^ (�)2 ′′^ (B�)U,

which is also equivalent to

U =
2 ′^ (B�)

2 ′^ (B�) + 2 ′^ (�)2 ′′^ (B�) − 2 ′′^ (�)2 ′^ (B�)
=

2 ′^ (B�)
2 ′^ (B�) + 2 ′^ ((1 − B )�)

= Z^� (B ).

18



Thus (b) and (c) are equivalent. Since conditions (c) and (d) are equivalent obviously, we get
the conclusion. �

Lemma 3.5 (a) and (d) follow that, for any ^ ∈ ℝ, U ∈ [0, 1], and � ∈ ]0, �^ [,

(Z^� )
−1(U) = argmin

_∈[0,1]

(
U2^ ((1 − _)�) + (1 − U)2^ (_�)

)
.

We can describe a relationship between ^-convex combinations and usual convex combi-
nations as follows.

Lemma 3.6. For ^ ∈ ℝ, let - be a uniquely �^-geodesic space and take F, G ∈ - such that
0 < 3 (F, G ) <�^ . Let U ∈ [0, 1], and take a unique B ∈ [0, 1] such that UF

^
⊕ (1−U)G = B F ⊕ (1−B )G .

Then the following hold, where � = 3 (F, G ).

(i) (1 − U + U2 ′′^ (�))2 ′^ (B�) = U2 ′^ (�)2 ′′^ (B�);
(ii) U = Z^� (B );
(iii) B = (Z^

�
)−1(U).

Proof. We get B = argmin_∈[0,1]
(
U2^ ((1 − _)�) + (1 − U)2^ (_�)

)
by the definition of ^-convex

combination. Therefore, from Lemma 3.5, we get the conclusion. �

For every F, G ∈ - such that 0 ≤ � = 3 (F, G ) < �^ , we get from Lemma 3.6 that UF
^
⊕ (1− U)G =

(Z^
�
)−1(U)F ⊕ (Z^

�
)−1(1 − U)G for any U ∈ [0, 1] and B F ⊕ (1 − B )G = Z^

�
(B )F

^
⊕ Z^

�
(1 − B )G for any

B ∈ [0, 1].

Corollary 3.7. For ^ ∈ ℝ, let - be a uniquely �^-geodesic space and take F, G ∈ - such that
3 (F, G ) < �^ . Then

1
2F ⊕

1
2G =

1
2F

^
⊕ 12G .

Conversely, if F \= G , U ∈ ]0, 1[ and UF ⊕ (1 − U)G = UF
^
⊕ (1 − U)G , then U = 1/2.

Proof. An equation 1
2F ⊕

1
2G =

1
2F

^
⊕ 1
2G is clear if F = G . Suppose that F \= G . By Lemma 3.6, we

get
1
2F ⊕

1
2G =

(
2 ′^ (�/2)

2 ′^ (�/2) + 2 ′^ (�/2)

)
F
^
⊕

(
2 ′^ (�/2)

2 ′^ (�/2) + 2 ′^ (�/2)

)
G =

1
2F

^
⊕ 12G .

Next, assume that UF ⊕ (1 − U)G = UF
^
⊕ (1 − U)G . Then U = Z^

�
(U), and this implies U = 1/2 by

Lemma 2.13. �

The ^-convex combination has basic properties that make it worthy of the name convex
combination as follows. From Lemma 3.6, we have UF

^
⊕ (1 − U)G = (Z^

�
)−1(U)F ⊕ (Z^

�
)−1(1 − U)G

for any U ∈ [0, 1]. Since (Z^
�
)−1 : [0, 1] → [0, 1] is surjective and strictly increasing, we get the

following three lemmas.

Lemma 3.8. For ^ ∈ ℝ, let - be a uniquely �^-geodesic space and take F, G ∈ - such that
0 < 3 (F, G ) < �^ . Then for any B ∈ [0, 1], there exists a unique U ∈ [0, 1] such that B F ⊕ (1 − B )G =

UF
^
⊕ (1 − U)G , and then U = Z^

�
(B ).

Lemma 3.9. For ^ ∈ ℝ, let - be a uniquely �^-geodesic space and take F, G ∈ - such that
3 (F, G ) < �^ . Then {UF

^
⊕ (1 − U)G | U ∈ [0, 1] } = {B F ⊕ (1 − B )G | B ∈ [0, 1] } = [F, G ].
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Lemma 3.10. For ^ ∈ ℝ, let - be a uniquely �^-geodesic space and take F, G ∈ - such that
0 < 3 (F, G ) < �^ . Then 3 (G , B1F

^
⊕ (1 − B1)G ) < 3 (G , B2F

^
⊕ (1 − B2)G ) holds if 0 ≤ B1 < B2 ≤ 1.

Now we will introduce a difference between two points UF
^
⊕ (1 − U)G and UF ⊕ (1 − U)G with

respect to the distance from the midpoint (1/2)F ⊕ (1/2)G .

Lemma 3.11. For ^ ∈ ℝ, let - be a uniquely �^-geodesic space and take F, G ∈ - such that
0 < 3 (F, G ) < �^ . Take U ∈ ]0, 1[ \ {1/2} and put ; = (1/2)F ⊕ (1/2)G , C^ = UF

^
⊕ (1 − U)G , and

C0 = UF ⊕ (1 − U)G . Then the following hold.

• If ^ > 0, then a point C^ is farther from the midpoint ; than C0.
• If ^ < 0, then a point C^ is closer to the midpoint ; than C0.

Proof. Put � = 3 (F, G ). Then Lemma 3.6 deduces that 3 (C0,;) = |U − 1/2| and

3 (C^ ,;) = 3 ((Z^� )
−1(U)F ⊕ (Z^� )

−1(1 − U)G ,;) = | (Z^� )
−1(U) − 1/2|.

Therefore, Lemma 2.13 implies the conclusion. �

Lemma 3.12. For ^ ∈ ℝ, let - be a uniquely �^-geodesic space and take F, G ∈ - such that
0 < 3 (F, G ) < �^ . Take U, B ∈ [0, 1] and suppose that UF

^
⊕ (1 − U)G = B F ⊕ (1 − B )G . Then

2 ′^ (�)
2 ′^ (B�) + 2 ′^ ((1 − B )�)

=

√
U2 + 2U (1 − U)2 ′′^ (�) + (1 − U)2,

where � = 3 (F, G ).

Proof. By Lemma 3.6, we have U = 2 ′^ (B�)/(2 ′^ (B�) + 2 ′^ ((1 − B )�)). Thus we obtain√
U2 + 2U (1 − U)2 ′′^ (�) + (1 − U)2 =

√
2 ′^ (B�)2 + 22 ′^ (B�)2 ′^ ((1 − B )�)2 ′′^ (�) + 2 ′^ ((1 − B )�)2

2 ′^ (B�) + 2 ′^ ((1 − B )�)
.

Since 1 −^2 ′^ (3)2 = 2 ′′^ (3)2 for any 3 ∈ ℝ, we get

2 ′^ (B�)2 + 22 ′^ (B�)2 ′^ ((1 − B )�)2 ′′^ (�) + 2 ′^ ((1 − B )�)2

= 2 ′^ (B�)2 + 22 ′^ (B�)2 ′^ ((1 − B )�)2 ′′^ (B� + (1 − B )�) + 2 ′^ ((1 − B )�)2

= 2 ′^ (B�)2 + 22 ′^ (B�)2 ′^ ((1 − B )�)2 ′′^ (B�)2 ′′^ ((1 − B )�)
−^22 ′^ (B�)22 ′^ ((1 − B )�)2 + 2 ′^ ((1 − B )�)2

= 2 ′^ (B�)2 + 22 ′^ (B�)2 ′^ ((1 − B )�)2 ′′^ (B�)2 ′′^ ((1 − B )�)
+ (1 −^22 ′^ (B�)2)2 ′^ ((1 − B )�)2

= 2 ′^ (B�)2 + 22 ′^ (B�)2 ′^ ((1 − B )�)2 ′′^ (B�)2 ′′^ ((1 − B )�)
+ (2 ′′^ (B�)2 −^2 ′^ (B�)2)2 ′^ ((1 − B )�)2

= (1 −^2 ′^ ((1 − B )�)2)2 ′^ (B�)2 + 22 ′^ (B�)2 ′^ ((1 − B )�)2 ′′^ (B�)2 ′′^ ((1 − B )�)
+ 2 ′′^ (B�)22 ′^ ((1 − B )�)2

= 2 ′′^ ((1 − B )�)22 ′^ (B�)2 + 22 ′^ (B�)2 ′^ ((1 − B )�)2 ′′^ (B�)2 ′′^ ((1 − B )�)
+ 2 ′′^ (B�)22 ′^ ((1 − B )�)2

=
(
2 ′′^ ((1 − B )�)2 ′^ (B�) + 2 ′′^ (B�)2 ′^ ((1 − B )�)

)2
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= 2 ′^ (B� + (1 − B )�)2

= 2 ′^ (�)2.

Since 2 ′^ (�) > 0, we get the desired result. �

Lemma 3.13. For ^ ∈ ℝ, let - be a uniquely �^-geodesic space and take F, G ∈ - such that
0 < 3 (F, G ) < �^ . Take U, B ∈ [0, 1] and suppose that UF

^
⊕ (1 − U)G = B F ⊕ (1 − B )G . Then two

equations

(B )^� =
U√

U2 + 2U (1 − U)2 ′′^ (�) + (1 − U)2
and (1 − B )^� =

1 − U√
U2 + 2U (1 − U)2 ′′^ (�) + (1 − U)2

hold, where � = 3 (F, G ).

Proof. From Lemma 3.6 (ii) and Lemma 3.12, we obtain the first equation by

(B )^� =
2 ′^ (B�)
2 ′^ (�)

= U · 2
′
^ (B�) + 2 ′^ ((1 − B )�)

2 ′^ (�)
=

U√
U2 + 2U (1 − U)2 ′′^ (�) + (1 − U)2

.

Similarly, we can get the other by

(1 − B )^� =
2 ′^ ((1 − B )�)

2 ′^ (�)
= (1 − U) · 2

′
^ (B�) + 2 ′^ ((1 − B )�)

2 ′^ (�)
=

1 − U√
U2 + 2U (1 − U)2 ′′^ (�) + (1 − U)2

.

This is the conclusion. �

Theorem 3.14 (Stewart’s theorem for
^
⊕). For ^ \= 0, let - be a CAT(^) space and take F, G , H ∈ -

such that 3 (F, G ) + 3 (G , H) + 3 (H, F) < 2�^ . Then

1
^
2 ′′^ (3 (UF

^
⊕ (1 − U)G , H)) ≥ 1

^
· U2 ′′^ (3 (F, H)) + (1 − U)2 ′′^ (3 (G , H))√

U2 + 2U (1 − U)2 ′′^ (3 (F, G )) + (1 − U)2

for any U ∈ [0, 1].

Proof. Fix U ∈ [0, 1] and put � = 3 (F, G ). It is enough to show the case where � \= 0. Take
B ∈ [0, 1] such that B F ⊕ (1 − B )G = UF

^
⊕ (1 − U)G , and put ( =

√
U2 + 2U (1 − U)2 ′′^ (�) + (1 − U)2.

Then we have (B )^
�
= U/( and (1 − B )^

�
= (1 − U)/( from Lemma 3.13, and therefore

1
^

(
1 − 2 ′′^ (3 (UF

^
⊕ (1 − U)G , H))

)
= 2^ (3 (UF

^
⊕ (1 − U)G , H))

= 2^ (3 (B F ⊕ (1 − B )G , H))
≤ (B )^�

(
2^ (3 (F, H)) − 2^ ((1 − B )�)

)
+ (1 − B )^�

(
2^ (3 (G , H)) − 2^ (B�)

)
= (B )^� ·

1
^

(
2 ′′^ ((1 − B )�) − 2 ′′^ (3 (F, H))

)
+ (1 − B )^� ·

1
^

(
2 ′′^ (B�) − 2 ′′^ (3 (G , H))

)
=
(B )^

�
2 ′′^ ((1 − B )�) + (1 − B )^� 2

′′
^ (B�)

^
−
(B )^

�
2 ′′^ (3 (F, H)) + (1 − B )^�2

′′
^ (3 (G , H))

^

=
U2 ′′^ ((1 − B )�) + (1 − U)2 ′′^ (B�)

^(
− U2

′′
^ (3 (F, H)) + (1 − U)2 ′′^ (3 (G , H))

^(
.
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Using Lemma 3.6 (ii) and Lemma 3.12, we get

U2 ′′^ ((1 − B )�) + (1 − U)2 ′′^ (B�) =
2 ′^ (B�)2 ′′^ ((1 − B )�) + 2 ′^ ((1 − B )�)2 ′′^ (B�)

2 ′^ (B�) + 2 ′^ ((1 − B )�)

=
2 ′^ (B� + (1 − B )�)

2 ′^ (B�) + 2 ′^ ((1 − B )�)

=
2 ′^ (�)

2 ′^ (B�) + 2 ′^ ((1 − B )�)
= (.

This follows that
1
^
2 ′′^ (3 (UF

^
⊕ (1 − U)G , H)) ≥ 1

^
· U2

′′
^ (3 (F, H)) + (1 − U)2 ′′^ (3 (G , H))

(
,

which is the conclusion. �

If a CAT(^) space - coincides with "^ , then the inequality in Theorem 3.14 holds as an
equation.

Theorem 3.15. For ^ ∈ ℝ, let - be a CAT(^) space and take F, G , H ∈ - such that 3 (F, G ) +
3 (G , H) + 3 (H, F) < 2�^ . Then

2^ (3 (UF
^
⊕ (1 − U)G , H)) ≤ U2^ (3 (F, H)) + (1 − U)2^ (3 (G , H))

− 2U (1 − U)2^ (3 (F, G ))1 + ( · U2
′′
^ (3 (F, H)) + (1 − U)2 ′′^ (3 (G , H))

(

for any U ∈ [0, 1], where ( =
√
U2 + 2U (1 − U)2 ′′^ (3 (F, G )) + (1 − U)2.

Proof. Fix U ∈ [0, 1]. First, we suppose that ^ = 0. Then we have ( = 1 and thus

2U (1 − U)2^ (3 (F, G ))
1 + ( · U2

′′
^ (3 (F, H)) + (1 − U)2 ′′^ (3 (G , H))

(
= U (1 − U)3 (F, G )2.

Therefore, since UF
0
⊕ (1−U)G = UF ⊕ (1−U)G , we obtain the conclusion from Stewart’s theorem

on CAT(0) spaces. Next, we consider the case where ^ \= 0. Then we get

2^ (3 (UF
^
⊕ (1 − U)G , H)) −

(
U2^ (3 (F, H)) + (1 − U)2^ (3 (G , H))

)
=
1
^

(
1 − 2 ′′^ (3 (UF

^
⊕ (1 − U)G , H))

)
−

(
U2^ (3 (F, H)) + (1 − U)2^ (3 (G , H))

)
≤ 1
^

(
1 − U2

′′
^ (3 (F, H)) + (1 − U)2 ′′^ (3 (G , H))

(

)
−

(
U2^ (3 (F, H)) + (1 − U)2^ (3 (G , H))

)
=
1
^

(
1 −

1 −^
(
U2^ (3 (F, H)) + (1 − U)2^ (3 (G , H))

)
(

)
−

(
U2^ (3 (F, H)) + (1 − U)2^ (3 (G , H))

)
=

( 1
^
−

(
U2^ (3 (F, H)) + (1 − U)2^ (3 (G , H))

) ) (
1 − 1

(

)
=

( 1
^
−

(
U2^ (3 (F, H)) + (1 − U)2^ (3 (G , H))

) )
· −2U (1 − U) (1 − 2

′′
^ (3 (F, G )))

( (1 + ()

= − 2U (1 − U)2^ (3 (F, G ))1 + ( ·
1 −^

(
U2^ (3 (F, H)) + (1 − U)2^ (3 (G , H))

)
(

= − 2U (1 − U)2^ (3 (F, G ))1 + ( · U2
′′
^ (3 (F, H)) + (1 − U)2 ′′^ (3 (G , H))

(
,
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which is the desired result. �

Corollary 3.16. For ^ ∈ ℝ, let - be a CAT(^) space. Take F, G , H ∈ - and U ∈ [0, 1] such that
3 (F, G ) + 3 (G , H) + 3 (H, F) < 2�^ and U2 ′′^ (3 (F, H)) + (1 − U)2 ′′^ (3 (G , H)) ≥ 0. Then

2^ (3 (UF
^
⊕ (1 − U)G , H)) ≤ U2^ (3 (F, H)) + (1 − U)2^ (3 (G , H)).

Proof. By the assumption, we get 3 (F, G ) < �^ and hence 2^ (3 (F, G )) ≥ 0. Thus we get the
conclusion by Theorem 3.15. �

If 3 (F, H), 3 (G , H) ∈ [0, �^/2], then a condition

U2 ′′^ (3 (F, H)) + (1 − U)2 ′′^ (3 (G , H)) ≥ 0 (∗)

is always true. It means that, if ^ ≤ 0, then (∗) always holds. However, in the case where ^ > 0,
if 3 (F, H) >�^/2 and 3 (G , H) ≤ �^/2, then (∗) does not always hold. Indeed, (∗) is true only when
0 ≤ U ≤ 2 ′′^ (3 (G , H))/(2 ′′^ (3 (G , H)) − 2 ′′^ (3 (F, H))). Similarly, if 3 (F, H) ≤ �^/2 and 3 (G , H) > �^/2,
then (∗) if and only if 1 ≥ U ≥ 2 ′′^ (3 (G , H))/(2 ′′^ (3 (G , H)) − 2 ′′^ (3 (F, H))). Moreover, if 3 (F, H) and
3 (G , H) are both greater than �^/2, then (∗) is false for all U ∈ [0, 1].
If a CAT(^) space - is admissible, then (∗) is true for any F, G , H ∈ - and U ∈ [0, 1]. That is,

the following holds.

Corollary 3.17 (Sudo [29]). For ^ ∈ ℝ, let - be an admissible CAT(^) space. Take F, G , H ∈ - and
U ∈ [0, 1] arbitrarily. Then

2^ (3 (UF
^
⊕ (1 − U)G , H)) ≤ U2^ (3 (F, H)) + (1 − U)2^ (3 (G , H)).

Next, we consider natures of the function [^U .

Lemma 3.18. Let 9 ∈ ]0, 1[ and define 5 : ]0, c [ → ℝ by 5 (F) = (sin9F)/sin F for F ∈ ]0, c [. Then
5 is strictly increasing.

Lemma 3.19. For ^ > 0 and U ∈ ]0, 1[, the following hold:

(i) lim3→0[
^
U (3) = U;

(ii) if U < 1/2, then lim3→�^ [
^
U (3) = 0;

(iii) if U > 1/2, then lim3→�^ [
^
U (3) = 1;

(iv) if U < 1/2, then [^U is strictly decreasing;
(v) if U > 1/2, then [^U is strictly increasing.

Proof. It suffices to show the case where ^ = 1. Hence we hereinafter assume that ^ = 1.
Let tan−1 : ℝ∪{±∞} → [0, c [ be the inverse of tan: [0, c [ →ℝ∪{±∞}, see Section 2.5. Define

a function 6 : ]−c,c [ → ]−c,c [ by

6 (3) =


tan−1 U sin3

1 − U + U cos3 (if 3 ≥ 0);

−c + tan−1 U sin3
1 − U + U cos3 (if 3 < 0)

for 3 ∈ ]−c,c [. Then 6 is differentiable on ]−c,c [, and we get [^U (3) = 6 (3)/3 and

6 ′(3) = U (U + (1 − U) cos3)
U2 + 2U (1 − U) cos3 + (1 − U)2
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for every 3 ∈ ]−c,c [. Therefore, the limit (i) is obtained by

lim
3→0

[^U (3) = lim
3 ←0

6 (3)
3

= lim
3 ←0

6 (3) − 6 (0)
3 − 0 = 6 ′(0) = U.

Next, we show (ii) and (iii). We know that

lim
3 →c

U sin3
1 − U + U cos3 = 0.

for every U ∈ ]0, 1[ \ {1/2}.
Assume that U < 1/2. Then since 1 − U + U cos3 > 0 for every 3 ∈ ]0, c [, we obtain

lim
3 →c

6 (3) = lim
3 →c

tan−1 U sin3
1 − U + U cos3 = 0.

This means that lim3→c [
^
U (3) = 0, therefore we get (ii).

To show (iii), assume that U > 1/2. Let cos−1 : [−1, 1] → [0, c] be the inverse of the
trigonometric cosine function. Then, 1 − U + U cos3 < 0 for every 3 ∈ ]cos−1(−(1 − U)/U), c [.
Therefore we have

lim
3 →c

6 (3) = lim
3 →c

tan−1 U sin3
1 − U + U cos3 = c.

Hence lim3→c [
^
U (3) = 1, which concludes that (iii) holds.

We show (iv). Let ^ = 1, U ∈ ]0, 1/2[, 31, 32 ∈ ]0, c [ and suppose 31 < 32. Put f1 = [^U (31) and
f2 = [^U (32). Then we get f1, f2 ∈ ]0, 1/2[ by Lemma 2.14. Furthermore, we obtain from the
definition of [^U that

U = Z^32(f2) =
sin(f232)

sin(f232) + sin((1 − f2)32)
. (∗∗)

Define a strictly concave function 6 : [0, 1] → ℝ by

6 (B ) = U cos((1 − B )31) + (1 − U) cos(B31)

for B ∈ [0, 1]. Then f1 is a unique maximizer of 6 by Lemma 3.5. We also have

6 (B ) = sin(f232) cos((1 − B )31) + sin((1 − f2)32) cos(B31)
sin(f232) + sin((1 − f2)32)

for any B ∈ [0, 1] from the formula (∗∗). Hence

6 ′(B ) =
31

(
sin(f232) sin((1 − B )31) − sin((1 − f2)32) sin(B31)

)
sin(f232) + sin((1 − f2)32)

for any B ∈ ]0, 1[. Put � = 31/(sin(f232) + sin((1 − f2)32)). Then we obtain � > 0 and

1
�
6 ′(f2) = sin(f232) sin((1 − f2)31) − sin((1 − f2)32) sin(f231).

Put > = (31 + 32)/2, ? = (32 − 31)/2, and 9 = 1 − 2f2. Then, since

sin((0 + 1) (2 − 3)) sin((0 − 1) (2 + 3)) − sin((0 + 1) (2 + 3)) sin((0 − 1) (2 − 3))
= − sin 202 sin 213 + sin 203 sin 212
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for any 0,1, 2 , 3 ∈ ℝ, we get

1
�
6 ′(f2) = sin

(
(> + ?)

(1
2 −

1
29

))
sin

(
(> − ?)

(1
2 +

1
29

))
− sin

(
(> + ?)

(1
2 +

1
29

))
sin

(
(> − ?)

(1
2 −

1
29

))
= − sin9> sin? + sin9? sin>

= sin> sin?
(
sin9?
sin? −

sin9>
sin>

)
.

Since 0 < ? < > < c and 0 < 9 < 1, we have 6 ′(f2) > 0 from Lemma 3.18. Therefore we obtain
f1 > f2. This implies [^U (31) > [^U (32), and hence we get (iv). Furthermore, from (iv) and
[^U (3) +[

^
1−U (3) = 1 for every 3 ∈ [0, c [, we also have (v). �

For ^ > 0, Lemma 3.19 implies that the greater the distance between two points F and G ,
the farther the point UF

^
⊕ (1 − U)G is from the midpoint of F and G as a ratio than the point

UF ⊕ (1 − U)G . In the same fashion, we get natures of [^U for ^ < 0 as follows.

Lemma 3.20. For ^ < 0 and U ∈ ]0, 1[, the following hold:

(i) lim3→0[
^
U (3) = U;

(ii) lim3→∞[
^
U (3) = 1/2;

(iii) if U < 1/2, then [^U is strictly increasing;
(iv) if U > 1/2, then [^U is strictly decreasing.

This implies the following fact: For ^ < 0, the greater the distance between two points F and
G , the closer the point UF

^
⊕ (1 − U)G is from the midpoint of F and G as a ratio than the point

UF ⊕ (1 − U)G .
The following figures show graphs of [^U for several U.

0
�

[

[ = [^U (� ) (0 < U < 1/2)
[ = [^1/2 (� )

[ = [^U (� ) (1/2 < U < 1)

0

1/2

1

�^

^ > 0

0
�

[

[ = [^U (� ) (0 < U < 1/2)
[ = [^1/2 (� )

[ = [^U (� ) (1/2 < U < 1)

0

1/2

1

^ < 0
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Lemma 3.21. Let - be a uniquely �^-geodesic space and take F, G ∈ - such that 3 (F, G ) < �^ .
Then limU→0(UF

^
⊕ (1 − U)G ) = G . Similarly, limU→1(UF

^
⊕ (1 − U)G ) = F .

Proof. It is obvious if F = G , thus suppose that F \= G . By symmetry, it suffices to show that
limU→0(UF

^
⊕ (1 − U)G ) = G . We assume that ^ \= 0 since the case where ^ = 0 is obvious. Put

� = 3 (F, G ). Then for every U ∈ ]0, 1[, we have UF
^
⊕ (1 − U)G = (Z^

�
)−1(U)F ⊕ (Z^

�
)−1(1 − U)G .

Therefore we obtain

3 (UF
^
⊕ (1 − U)G , G ) = 3 ((Z^� )

−1(U)F ⊕ (Z^� )
−1(1 − U)G , G ) = (Z^� )

−1(U)�

for every U ∈ ]0, 1[. If ^ < 0, then we obtain from Lemma 2.18 that

(Z^� )
−1(U) < 2 ′^ (�)

�
U → 0

as U → 0. Otherwise, if ^ > 0, then we have (Z^
�
)−1(U) < U for any U ∈ ]0, 1/2[ by Corollary 2.15,

and hence (Z^
�
)−1(U) → 0 as U → 0. Thus we get the conclusion. �

Lemma 3.22. Let - be a uniquely �^-geodesic space and F, G ∈ - such that 0 < 3 (F, G ) < �^ .
Take {U<} ⊂ [0, 1] and define a sequence {G<} on - by G< = U<F

^
⊕ (1−U<)G for every < ∈ ℕ. Then

G< → G if and only if U< → 0.

Proof. The if part is immediately obtained by Lemma 3.21, thus we show the only if part.
Suppose that G< → G . Put � = 3 (F, G ) and V< = (Z^

�
)−1(U<) for every < ∈ ℕ. Then we have

G< = V<F ⊕ (1 − V<)G for every < ∈ ℕ. Since G< → G , we get V< = 3 (G< , G )/3 (F, G ) → 0 as < → ∞.
This implies U< = Z^

�
(V<) → Z^

�
(0) = 0. �

Lemma 3.23. Let - be a uniquely �^-geodesic space and F, G ∈ - such that F \= G . Take
{U<} ⊂ [0, 1]. Suppose that a sequence {G<} on - satisfies 3 (F, G<) < �^ for all < ∈ ℕ,
lim sup<→∞ 3 (F, G<) < �^ , and G = U<F

^
⊕ (1 − U<)G< for all < ∈ ℕ. Then G< → G if and only if

U< → 0.

Proof. It is obvious if ^ = 0; hence we assume that ^ \= 0. Put 3< = 3 (F, G<) and V< =
(
Z^
3<

)−1(U<)
for every < ∈ ℕ. Then G = V<F ⊕ (1 − V<)G< for any < ∈ ℕ. Note that 0 < 3 (F, G ) ≤ 3 (F, G<) and
3 (G , G<) = 3 (F, G<)V< hold for all < ∈ ℕ. Thus G< → G if and only if V< → 0. Therefore, we prove
V< → 0 if and only if U< → 0.
First, we consider the case where ^ > 0. Assume that U< → 0. Then there exists <0 ∈ ℕ such

that sup<≥<0 U< < 1/2. Hence, we obtain from Corollary 2.15 that 0 ≤ V< ≤ U< for < ≥ <0, which
implies V< → 0.
Conversely, suppose that V< → 0. Then, since lim sup<→∞ 3< < �^ , we get

0 ≤ U< = Z^3<(V<) ≤
3<

2 ′^ (3<)
V< =

√
^3<

sin(
√
^3<)

V< → 0

by Lemma 2.17.
Next, we consider the case where ^ < 0. Suppose that U< → 0. Then, from Lemma 2.18 and

lim sup<→∞ 3< <∞, we have

0 ≤ V< =
(
Z^3<

)−1(U<) < 2 ′^ (3<)
3<

U< =
sinh(

√
−^3<)√
−^3<

U< → 0,

which implies V< → 0. Conversely, assume that V< → 0. Then there exists <0 ∈ ℕ such that
sup<≥<0 V< < 1/2. It implies from Corollary 2.16 that 0 ≤ U< = Z^

3<
(V<) ≤ V< for any < ≥ <0, which

is the conclusion. �
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Lemma 3.24. Let - be a uniquely �^-geodesic space and {F<}, {G<} sequences on - such
that 3 (F< , G<) < �^ for all < ∈ ℕ. In addition, suppose that lim sup<→∞ 3 (F< , G<) < �^ . Take
{U<} ⊂ [0, 1] such that lim<→∞ U< = 0. Then lim<→∞(U<F<

^
⊕ (1 − U<)G<) = G if G< → G ∈ - .

Similarly, lim<→∞(U<F<
^
⊕ (1 − U<)G<) = F if F< → F ∈ - .

Proof. Suppose that G< → G . Then

3 (U<F<
^
⊕ (1 − U<)G< , G ) ≤ 3 (U<F<

^
⊕ (1 − U<)G< , G<) + 3 (G< , G )

=
(
Z^3 (F< ,G< )

)−1(U<)3 (F< , G<) + 3 (G< , G )
for any < ∈ ℕ. Put ( = lim sup<→∞ 3 (F< , G<) < �^ .
First, consider the case where ^ > 0. Then there exists Y > 0 and <0 ∈ ℕ such that

sup<≥<0 U< < 1/2 and sup<≥<0 3 (F< , G<) < ( + Y < �^ . Thus we get
(
Z^
3 (F< ,G< )

)−1(U<) ≤ U< for any
< ≥ <0 by Corollary 2.15. It deduces

lim sup
<→∞

( (
Z^3 (F< ,G< )

)−1(U<)3 (F< , G<) + 3 (G< , G )) ≤ lim
<→∞

(
U<3 (F< , G<) + 3 (G< , G )

)
= 0,

which implies lim<→∞ 3 (U<F<
^
⊕ (1 − U<)G< , G ) = 0.

Next, we assume that ^ ≤ 0. Then there exists <0 ∈ ℕ such that sup<≥<0 U< < 1/2 and
sup<≥<0 3 (F< , G<) < ∞. Put " = sup<≥<0 3 (F< , G<) < ∞. We divide into the following cases: (i)
^ = 0; (ii) ^ < 0.
(i) If ^ = 0, then we have

lim sup
<→∞

( (
Z^3 (F< ,G< )

)−1(U<)3 (F< , G<) + 3 (G< , G )) = lim
<→∞

(
U<3 (F< , G<) + 3 (G< , G )

)
= 0

and hence we get lim<→∞ 3 (U<F<
^
⊕ (1 − U<)G< , G ) = 0.

(ii) Let ^ < 0. From Lemma 3.20 (iii), we get(
Z^3 (F< ,G< )

)−1(U<) = [^U<(3 (F< , G<)) ≤ [^U<(" ) = (Z^" )−1(U<)
for any < ≥ <0. We also obtain (Z^" )

−1(U<) → (Z^" )
−1(0) = 0 as < → ∞ by Lemma 2.14. Hence

we have
(
Z^
3 (F< ,G< )

)−1(U<) → 0 as < →∞. Therefore,

0 ≤ lim sup
<→∞

3 (U<F<
^
⊕ (1 − U<)G< , G ) ≤ lim sup

<→∞

(
(Z^" )

−1(U<)" + 3 (G< , G )
)
= 0.

This implies the conclusion. �

The next lemma and its corollary are used so as to prove a Mann type fixed point approxi-
mation theorem.

Lemma 3.25. For ^ ∈ ℝ, let {3<} be a nonnegative real sequence such that " = sup<∈ℕ 3< < �^ .
Let {U<} be a real sequence on [0, 1], and put V< = Z^3<(U<) for every < ∈ ℕ. Then lim inf<→∞ U< > 0
if and only if lim inf<→∞ V< > 0.

Proof. Assume that " > 0 since it is clear if " = 0. If ^ = 0, then we have V< = U< for all < ∈ ℕ
and thus we assume ^ \= 0.
First, we consider the case where ^ < 0. Put Y = lim inf<→∞ U< ∈ ]0, 1]. Then there exists

<0 ∈ ℕ such that U< ≥ Y/2 for all < ≥ <0. We also have [^U<(3) ≥ 1/2 if and only if U< ≥ 1/2 for
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each 3 ∈ ]0, �^ [. Hence

V< = [^U<(3<) ≥ min
{
U< , [^U<(3<),

1
2

}
≥ min

{
U< , [^U<(" ),

1
2

}
=min

{
U< , Z^" (U<),

1
2

}
≥ min

{
Y
2, Z

^
"

(
Y
2

)}
> 0

for any < ≥ <0 from Lemma 2.20 (iv) and the strict increasingness of Z^
"
. Thus lim inf<→∞ V< > 0

holds.
Conversely, suppose that Y′ B lim inf<→∞ V< > 0. Then there exists <0 ∈ ℕ such that V< ≥ Y′/2

for all < ≥ <0. It implies

U< =
(
Z^3<

)−1(V<) ≥ min
{
V< , 12 ,

(
Z^3<

)−1(V<)} =min
{
V< , 12

}
≥ Y′

2 > 0

for any < ≥ <0 by using Lemma 3.20 (iii) and hence lim inf<→∞ U< > 0 holds.
Next, we consider the case where ^ > 0. Suppose that Y B lim inf<→∞ U< > 0. Then there

exists <0 ∈ ℕ such that U< ≥ Y/2 for all < ≥ <0. It follows that

V< ≥ min
{
U< , Z^3<(U<),

1
2

}
≥ min

{
U< , 12

}
≥ Y
2 > 0

for any < ∈ ℕ by Corollary 2.15. This concludes lim inf<→∞ V< > 0.
Finally, we suppose Y′ B lim inf<→∞ V< > 0. Then there exists <0 ∈ ℕ such that V< ≥ Y/2 for

all < ≥ <0. Thus, using Lemma 2.17, we obtain

U< =
(
Z^3<

)−1(V<) ≥ 
V< (if 3< = 0);
2 ′^ (3<)
3<

V< (if 3< \= 0)

≥ 2
′
^ (" )
"

V< ≥
2 ′^ (" )
2" Y > 0

for any < ≥ <0 since 2 ′^ (3)/3 = sin(
√
^3)/(

√
^3) > 0 for 3 ∈ ]0, �^ [. Therefore we get

lim inf<→∞ U< > 0, which is the desired result. �

Corollary 3.26. For ^ ∈ ℝ, let {3<} be a nonnegative real sequence such that " = sup<∈ℕ 3< <

�^ . Let {U<} be a real sequence on [0, 1], and put V< = Z^
3<
(U<) for every < ∈ ℕ. Then

lim inf<→∞ U< (1 − U<) > 0 if and only if lim inf<→∞ V< (1 − V<) > 0.

Proof. We obtain that lim inf<→∞ U< (1 − U<) > 0 is equivalent to the conjunction of
lim inf<→∞ U< > 0 and lim inf<→∞(1− U<) > 0, and so is {V<}. Therefore, by Lemma 3.25, we get
the conclusion. �

3.2 ^-convex combination on model spaces
In this section, we consider a behavior of the ^-convex combination on geodesic spaces with
a constant curvature 1 or −1.

3.2.1 1-convex combination on the unit sphere in Hilbert spaces
We observe the nature of the 1-convex combination on a unit sphere of a Hilbert space to
know a relation between ⊕ and

1
⊕.
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Let (H be a unit sphere embedded in a real Hilbert space H , that is, (H = {F ∈ H | ‖F ‖ = 1}.
Define 3 : (H → [0, c] by 3 (F, G ) = cos−1〈F, G 〉 for each F, G ∈ (H, where cos−1 : [−1, 1] → [0, c].
Then ((H , 3) is a metric space. Moreover, for any two points F, G ∈ (H such that 3 (F, G ) < c ,
there exists a unique geodesic joining F and G . Indeed, for F, G ∈ (H such that 3 (F, G ) < c , a
function WF,G : [0, 1] → (H defined by

WF,G (B ) = (B )13 (F,G )F + (1 − B )
1
3 (F,G )G =


sin(B3 (F, G ))
sin3 (F, G ) F + sin((1 − B )3 (F, G ))sin3 (F, G ) G (if F \= G );

F (if F = G )

for B ∈ [0, 1] is a unique geodesic joining F and G . Thus ((H , 3) is a uniquely c-geodesic space.
We also know that (H is a complete CAT(1) space. If H = ℝ3, then (H represents a model of

the unit sphere S2, which has a constant curvature 1.
In what follows, a symbol ⊕ denotes a convex combination on (H, [F, G ] denotes a geodesic

segment on (H joining F, G ∈ (H, and [F, G ]H denotes a geodesic segment onH joining F, G ∈ H .
That is, [F, G ] = {B F ⊕ (1 − B )G ∈ (H | B ∈ [0, 1]}, and [F, G ]H = {B F + (1 − B )G ∈ H | B ∈ [0, 1]}.
Furthermore, 0H stands for the origin of H .
Now we consider the 1-convex combination on (H. Suppose that UF

1
⊕ (1−U)G = B F ⊕ (1− B )G

for some F, G ∈ (H, B ∈ [0, 1], and U ∈ [0, 1]. Then from Lemma 3.13, we get

UF
1
⊕ (1 − U)G = (B )1� F + (1 − B )

1
� G

=
UF + (1 − U)G√

U2 + 2U (1 − U) cos� + (1 − U)2
,

where � = 3 (F, G ). We also have

‖UF + (1 − U)G ‖2 = U2‖F ‖2 + 2U (1 − U)〈F, G 〉 + (1 − U)2‖G ‖2

= U2 + 2U (1 − U) cos� + (1 − U)2.

Therefore, we get the following.

Theorem 3.27. Let F, G ∈ (H such that 3 (F, G ) < c . Then for any U ∈ [0, 1],

UF
1
⊕ (1 − U)G =

UF + (1 − U)G
‖UF + (1 − U)G ‖ .

Actually, it is also verified by the definition of 1-convex combination (Definition 3.4). Indeed,
putting > = B F + (1 − B )G and E = >/‖> ‖, we have

〈B F + (1 − B )G ,E〉 = ‖> ‖ ≥ 〈>, H〉 = 〈B F + (1 − B )G , H〉

for any H ∈ (H, and hence

UF
1
⊕ (1 − U)G = argmax

H ∈(H

(
B cos3 (F, H) + (1 − B ) cos3 (G , H)

)
= argmax

H ∈(H
〈B F + (1 − B )G , H〉 =E.

Corollary 3.28. Take F, G ∈ (H such that 3 (F, G ) < c . For U ∈ [0, 1], let C = UF + (1−U)G ∈ H and
D = UF

1
⊕ (1 − U)G ∈ [F, G ]. Then three points C , D , and 0H are on a straight line.

Theorem 3.27 implies that a point UF
1
⊕ (1−U)G ∈ (H is a projection of UF + (1−U)G ∈ H onto

the unit sphere (H.
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Lemma 3.29. Take F, G ∈ (H such that 3 (F, G ) < c . Let 9, : ∈ ]0, 1] and put F ′ = 9F , G ′ = :G . Then
the geodesic segment [F, G ] ⊂ (H is expressed by

[F, G ] =
{
B F ′ + (1 − B )G ′
‖B F ′ + (1 − B )G ′‖

���� B ∈ [0, 1]} =

{
>

‖> ‖

���� > ∈ [F ′, G ′]H} .
Proof. Take C ∈ [F, G ] arbitrarily. Then there exists B ∈ [0, 1] such that C = B F

1
⊕ (1 − B )G by

Lemma 3.9. Thus, putting B ′ = B :/(B : + (1 − B )9 ), we get

C =
B F + (1 − B )G
‖B F + (1 − B )G ‖ =

B ′F ′ + (1 − B ′)G ′
‖B ′F ′ + (1 − B ′)G ′‖ .

On the other hand, take A ∈ [0, 1] and let C ′ = (AF ′ + (1 − A )G ′)/‖AF ′ + (1 − A )G ′‖. Then putting
A ′ = A9/(A9 + (1 − A ): ), we obtain

C ′ =
AF ′ + (1 − A )G ′
‖AF ′ + (1 − A )G ′‖ =

A ′F + (1 − A ′)G
‖A ′F + (1 − A ′)G ‖ = A

′F
1
⊕ (1 − A ′)G ∈ [F, G ],

which implies the conclusion. �

Corollary 3.30. Take F, G ∈ (H such that 3 (F, G ) < c . Let 9, : ∈ ]0, 1] and put F ′ = 9F , G ′ = :G .
Then D/‖D ‖ ∈ [F, G ] for any D ∈ [F ′, G ′]H.

Using the 1-convex combination and the fact above, we can get a result which can be said
to be Ceva’s theorem on the unit sphere.

Theorem 3.31. Let ( be a nonempty convex subspace of (H such that 3 (C,D ) < c for any
C,D ∈ ( . Let 4(F, G , H) be a geodesic triangle on ( such that [F, G ] ∩ [G , H] ∩ [H, F] = ∅. For
U, V,W ∈ ]0, 1[, take > = (1−U)F

1
⊕ UG , ? = (1− V)G

1
⊕ VH , and @ = (1−W )H

1
⊕WF . Then the following

are equivalent:

• [F, ?] ∩ [G , @ ] ∩ [H,>] \= ∅;
• UVW/((1 − U) (1 − V) (1 −W )) = 1.

To prove this theorem, we prepare some lemmas.

Lemma 3.32. Let ( be a nonempty convex subspace of (H such that 3 (C,D ) < c for any
C,D ∈ ( . Let F, G , H ∈ ( . Suppose that there exist 91, 92, 93 ∈ ℝ such that 91F + 92G + 93H = 0 and
(91, 92, 93) \= (0, 0, 0). Then [F, G ] ∩ [G , H] ∩ [H, F] \= ∅.
Proof. Assume that 91 = 0. Then we have 92G = −93H . Since ‖G ‖ = ‖H ‖ = 1, we obtain |92 | = |93 |.
If 92 = 93, then we have G = −H . It follows 3 (G , H) = cos−1〈G , H〉 = c , which is a contradiction.
Therefore we get 92 = −93. Thus we obtain G = H , which implies G ∈ [F, G ] ∩ [G , H] ∩ [H, F].
In the same way, we have F ∈ [F, G ] ∩ [G , H] ∩ [H, F] in the case where 92 = 0 or 93 = 0.
Next, we assume that 91, 92, 93 > 0. Then we have H = −(91/93)F − (92/93)G . Since ‖H ‖ = 1, we

get ‖(91/93)F + (92/93)G ‖ = 1. Hence we obtain

H = − (91/93)F + (92/93)G‖(91/93)F + (92/93)G ‖
= − _F + (1 − _)G
‖_F + (1 − _)G ‖ = −(_F

1
⊕ (1 − _)G ),

where _ = 91/(91 + 92). It means that 3 (_F
1
⊕ (1 − _)G , H) = cos−1〈−H, H〉 = c . This implies a

contradiction since _F
1
⊕ (1 − _)G ∈ ( . Similarly, we also get a contradiction if 91, 92, 93 < 0.

Finally, suppose that there exists 7 , 8 ∈ {1, 2, 3} such that 97 > 0 and 9 8 < 0. Without loss of
generality, we may assume that 91 = 1 and 92 < 0. We divide into the following cases:
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(i) 93 < 0;
(ii) 93 > 0.

Assume that (i) holds. Put :2 B −92, and :3 B −93. Then we have :2, :3 > 0, F = :2G + :3H , and
‖:2G + :3H ‖ = 1. Put ` = :2/(:2 + :3). Then we obtain

F =
:2G + :3H
‖:2G + :3H ‖

=
`G + (1 − `)H
‖`G + (1 − `)H ‖ = `G

1
⊕ (1 − `)H

and thus F ∈ [F, G ] ∩ [G , H] ∩ [H, F]. Next, we consider the case where (ii) holds. Put :2 B −92.
Then we have :2 > 0 and G = (1/:2)F + (93/:2)H . Therefore, putting a = 1/(1 + 93), we get

G =

1
:2
F + 93

:2
H



 1:2F + 93:2 H




 =

aF + (1 −a)H
‖aF + (1 −a)H ‖ = aF

1
⊕ (1 −a)H.

This implies G ∈ [F, G ] ∩ [G , H] ∩ [H, F].
Consequently, we obtain the conclusion. �

Corollary 3.33. Let ( be a nonempty convex subspace of (H such that 3 (C,D ) < c for any
C,D ∈ ( . Let 4(F, G , H) be a geodesic triangle on ( such that [F, G ] ∩ [G , H] ∩ [H, F] = ∅. Suppose
that there exist 91, 92, 93 ∈ ℝ such that 91F + 92G + 93H = 0. Then (91, 92, 93) = (0, 0, 0).

Fact 3.34 (Ceva’s theorem in plane geometry). Let + be a real vector space and F, G , H ∈ + .
For U, V,W ∈ ]0, 1[, take > = (1 − U)F + UG , ? = (1 − V)G + VH and @ = (1 − W )H + WF . Put
[C,D ]+ = {BC + (1 − B )D | B ∈ [0, 1]} for each C,D ∈ + . Suppose that [F, G ]+ ∩ [G , H]+ ∩ [H, F]+ = ∅.
Then the following are equivalent:

• [F, ?]+ ∩ [G , @ ]+ ∩ [H,>]+ \= ∅;
• [F, ?]+ ∩ [G , @ ]+ ∩ [H,>]+ is a singleton;
• UVW/((1 − U) (1 − V) (1 −W )) = 1.

Now we show Theorem 3.31.

Proof of Theorem 3.31. Let 4H(F, G , H) = [F, G ]H ∪ [G , H]H ∪ [H, F]H be a geodesic triangle on H .
Take three points > = (1− U)F + UG , ? = (1− V)G + VH , and @ = (1−W )H +WF . From Theorem 3.27,
these points satisfy > = >/‖> ‖, ? = ?/‖? ‖, @ = @/‖@ ‖, and >, ?, @ ∈ 4H(F, G , H). Then, the following
are equivalent by Fact 3.34:

• [F, ?]H ∩ [G , @ ]H ∩ [H,>]H \= ∅;
• UVW/((1 − U) (1 − V) (1 −W )) = 1.

Thus, it is sufficient to show that (i) and (ii):

(i) If [F, ?]H ∩ [G , @ ]H ∩ [H,>]H \= ∅, then [F, ?] ∩ [G , @ ] ∩ [H,>] \= ∅;
(ii) if [F, ?] ∩ [G , @ ] ∩ [H,>] \= ∅, then UVW/((1 − U) (1 − V) (1 −W )) = 1.
First, assume that C ∈ [F, ?]H ∩ [G , @ ]H ∩ [H,>]H. Then there exist X , Y, Z ∈ [0, 1] such that

C = XF + (1 − X )? = YG + (1 − Y)@ = Z H + (1 − Z )>
= XF + (1 − X )‖? ‖? = YG + (1 − Y)‖@ ‖@ = Z H + (1 − Z )‖> ‖>

Therefore, from Corollary 3.30, we get C/‖C ‖ ∈ [F, ?] ∩ [G , @ ] ∩ [H,>]. Hence (i) holds.
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Next, suppose that D ∈ [F, ?] ∩ [G , @ ] ∩ [H,>]. Then there exist [, \ , ] ∈ [0, 1] such that

D = [F
1
⊕ (1 −[)? = \G

1
⊕ (1 − \ )@ = ]H

1
⊕ (1 − ])>

=
[F + (1 −[)?
‖[F + (1 −[)? ‖ =

\G + (1 − \ )@
‖\G + (1 − \ )@ ‖ =

]H + (1 − ])>
‖]H + (1 − ])> ‖

=
[ ‖? ‖F + (1 −[)?

[ ‖? ‖F + (1 −[)?

 =

\ ‖@ ‖G + (1 − \ )@

\ ‖@ ‖G + (1 − \ )@ 

 =
]‖> ‖H + (1 − ])>

]‖> ‖H + (1 − ])>



=
[ ‖? ‖F + (1 −[) (1 − V)G + (1 −[)VH

[ ‖? ‖F + (1 −[) (1 − V)G + (1 −[)VH



=
(1 − \ )WF + \ ‖@ ‖G + (1 − \ ) (1 −W )H

(1 − \ )WF + \ ‖@ ‖G + (1 − \ ) (1 −W )H



=
(1 − ]) (1 − U)F + (1 − ])UG + ]‖> ‖H

(1 − ]) (1 − U)F + (1 − ])UG + ]‖> ‖H

 .

It follows that

[ ‖? ‖ : (1 −[) (1 − V) : (1 −[)V
= (1 − \ )W : \ ‖@ ‖ : (1 − \ ) (1 −W )
= (1 − ]) (1 − U) : (1 − ])U : ]‖> ‖

by Corollary 3.33. Therefore we have

U
1 − U ·

W

1 −W =
(1 − ])U

(1 − ]) (1 − U) ·
(1 − \ )W

(1 − \ ) (1 −W ) =
[ ‖? ‖

(1 −[) (1 − V) ·
(1 −[)V
[ ‖? ‖ =

1 − V
V

,

which is the desired result. �

Remark 3.35. In (H, if we use a usual convex combination instead of 1-convex combination,
then we cannot obtain the result like Ceva’s theorem. We introduce an counterexample. We
consider the case where H = ℝ3, and put ( = {(F, G , H) ∈ ℝ3 | F, G , H ≥ 0}. Let F, G , H ∈ ( such
that F = (1, 0, 0), G = (1/2,

√
3/2, 0), H = (1/2, 0,

√
3/2). Then 3 (F, G ) = 3 (F, H) = c/3, and 3 (G , H) =

cos−1(1/4) ≈ 1.318. Let U = 2/5, V = 3/8, W = 5/7, which satisfy UVW/((1 − U) (1 − V) (1 −W )) = 1.
Take > = UF ⊕ (1 − U)G , ? = VG ⊕ (1 − V)H and @ = WH ⊕ (1 −W )F . Then geodesic segments [F, ?]
and [G , @ ] intersect at exactly one point C . However, the point C is not on [H,>].

Let F1, F2, . . . , F; ∈ H and U1, U2, . . . , U; ∈ [0, 1] such that
∑;
7=1 U7 = 1. Then we have

;∑
7=1

U7F7 = argmin
H ∈H

;∑
7=1

U7 ‖F7 − H ‖2.

Indeed, it is obtained by

;∑
7=1

U7 ‖F7 − H ‖2 =




H − ;∑

7=1
U7F7





2 + ;∑
7=1

U7 ‖F7 ‖2 −




 ;∑
7=1

U7F7





2
for H ∈ H . Based on this fact, we generalize the 1-convex combination to be defined for a
finite number of points. Let ( be a nonempty convex subspace of (H such that 3 (C,D ) < c for
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any C,D ∈ ( . For F1, F2, . . . , F; ∈ ( and U1, U2, . . . , U; ∈ [0,∞[ such that
∑;
7=1 U7 > 0, we define a

point � (F1, F2, . . . , F; ; U1, U2 . . . , U;) on ( by

� (F1, F2, . . . , F; ; U1, U2 . . . , U;) = argmax
H ∈(

;∑
7=1

U7 cos3 (F7 , H).

We hereinafter write � ({F7 }, {U7 }) for this point simply. We call the point � ({F7 }, {U7 }) a
balanced 1-convex combination of F1, F2, . . . , F; on ( . The 1-convex combination is the case
where; = 2 and U1 +U2 = 1 for the balanced 1-convex combination. Namely, for each F1, F2 ∈ (
and U ∈ [0, 1],

UF1
1
⊕ (1 − U)F2 = � (F1, F2; U, 1 − U).

Theorem 3.36. Let ( be a nonempty convex subspace of (H such that 3 (C,D ) < c for any C,D ∈ ( .
Take F1, F2, . . . , F; ∈ ( and let U1, U2, . . . , U; ∈ [0,∞[ such that

∑;
7=1 U7 > 0. Then a balanced

1-convex combination � ({F7 }, {U7 }) ∈ ( is well-defined, and

� ({F7 }, {U7 }) =
;∑
7=1

U7F7

/ 




 ;∑
7=1

U7F7






 .
Proof. By the definition of � ({F7 }, {U7 }), we have

� ({F7 }, {U7 }) = argmax
H ∈(

;∑
7=1

U7 cos3 (F7 , H) = argmax
H ∈(

〈
;∑
7=1

U7F7 , H

〉
.

Then putting > =
∑;
7=1 U7F7 and E = >/‖> ‖ ∈ ( , we obtain〈

;∑
7=1

U7F7 , E

〉
= ‖> ‖ > 〈>, H〉 =

〈
;∑
7=1

U7F7 , H

〉
for any H ∈ ( \ {>}. This is the conclusion. �

Theorem 3.36 is a generalization of Theorem 3.27.

Theorem 3.37. Let ( be a nonempty convex subspace of (H such that 3 (C,D ) < c for any C,D ∈ ( ,
and let 4(F, G , H) be a geodesic triangle on ( . Take U1, U2, U3 ∈ ]0,∞[ and put V = U2/(U2 + U3).
Let C = � (F, G , H ; U1, U2, U3) and E = VG

1
⊕ (1 − V)H . Then C ∈ [F,E ].

Proof. Put > = VG + (1 − V)H and ? = U1F + U2G + U3H . Then, from Theorems 3.27 and 3.36, we
obtain E = >/‖> ‖ and C = ?/‖? ‖. Since 1 − U1 = U2 + U3, we also have ? = U1F + (1 − U1)> . Thus,
putting W = U1/(U1 + (1 − U1)‖> ‖), we get ? = (U1 + (1 − U1)‖> ‖)(WF + (1 −W )E ). It implies

C =
?

‖? ‖ =
WF + (1 −W )E
‖WF + (1 −W )E ‖ = WF

1
⊕ (1 −W )E ∈ [F,E ]

from Lemma 3.9. �

We consider that Theorem 3.37 is a crucial result that shows the suitability of the 1-convex
combination on the unit sphere. Indeed, if we only use the usual convex combination ⊕, then
we do not obtain a simple result such as Theorem 3.37.
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3.2.2 (−1)-convex combination on the hyperbolic plane
Next, we consider natures of the (−1)-convex combination on the hyperbolic plane. We
consider the hyperboloid model of the hyperbolic plane. Define a function � : ℝ3 × ℝ3 → ℝ

by � (C,D ) = H1H2 − F1F2 − G1G2 for each C = (H1, F1, G1) ∈ ℝ3 and D = (H2, F2, G2) ∈ ℝ3, and define
& : ℝ3 → ℝ by & (C) = � (C,C) = H2 − F2 − G 2 for C = (H, F, G ) ∈ ℝ3. Let � = {(H, F, G ) ∈ ℝ3 |
H2 − F2 − G 2 = 1, H > 0} and 3 : � × � → [0,∞[ by 3 (C,D ) = cosh−1 � (C,D ) for C,D ∈ � . Then
(� ,3) is a metric space, and it behaves as a two-dimensional hyperbolic space. (� ,3) is also
a uniquely geodesic space. Indeed, for every C,D ∈ � , a mapping WC,D : [0, 1] → � defined by

W (B ) = (B )−13 (C,D )C + (1 − B )
−1
3 (C,D )D =


sinh(B3 (C,D ))
sinh3 (C,D ) C + sinh((1 − B )3 (C,D ))sinh3 (C,D ) D (if C \= D);

C (if C = D)

for B ∈ [0, 1] is a unique geodesic joining C and D . This means that a convex combination
BC ⊕ (1 − B )D on � is expressed by

BC ⊕ (1 − B )D = (B )−13 (C,D )C + (1 − B )
−1
3 (C,D )D

for any C,D ∈ � and B ∈ [0, 1].
Functions � and & are called the Minkowski bilinear form, and the Minkowski quadratic

form, respectively. We know that these have the following properties.

• � (C,D ) = � (D,C) for any C,D ∈ ℝ3;
• � (AC + BD ,E ) = A� (C,E ) + B� (D,E ) for any C,D,E ∈ ℝ3 and A , B ∈ ℝ;
• & (AC + BD ) = A2& (C) + 2AB� (C,D ) + B 2& (D ) for any C,D ∈ ℝ3 and A , B ∈ ℝ;
• & (C) = 1 for any C ∈ � .

For F, G ∈ � , B ∈ [0, 1] and U ∈ [0, 1], let UF
−1
⊕ (1 − U)G = B F ⊕ (1 − B )G . Then we have

UF
−1
⊕ (1 − U)G =

UF + (1 − U)G√
U2 + 2U (1 − U) cosh3 (F, G ) + (1 − U)2

by Lemma 3.13. We also obtain

& (UF + (1 − U)G ) = U2& (F) + 2U (1 − U)� (F, G ) + (1 − U)2& (G )
= U2 + 2U (1 − U) cosh3 (F, G ) + (1 − U)2.

Consequently, we get an explicit expression of the (−1)-convex combination on � as follows.

Theorem 3.38. Let F, G ∈ � . Then for any U ∈ [0, 1],

UF
−1
⊕ (1 − U)G =

UF + (1 − U)G√
& (UF + (1 − U)G )

.
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Chapter 4

Fixed point problems

Int this chapter, we consider a fixed point problem for a quasinonexpansive mapping.

4.1 Natures of vicinal mappings
The notion of vicinal mappings is first proposed by Kohsaka [22]. Motivated by this study,
Kajimura and Kimura [9] proposed the notion of vicinal mappings with k .

Definition 4.1 (Kajimura and Kimura [9]). Let - be an admissible CAT(^) space and suppose
k : [0, �^/2[ → ]0,∞[ is right continuous at 0. A mapping ) : - → - is said to be vicinal with
k if(
k (3 (F,) F)) +k (3 (G ,) G ))

)
2^ (3 () F,) G )) ≤ k (3 (F,) F))2^ (3 (F,) G )) +k (3 (G ,) G ))2^ (3 (G ,) F))

for any F, G ∈ - . A mapping ) : - → - is said to be firmly vicinal with k if(
k (3 (F,) F))2^ (3 (F,) F)) +k (3 (G ,) G ))2^ (3 (G ,) G ))

)
2 ′′^ (3 () F,) G ))

+
(
k (3 (F,) F)) +k (3 (G ,) G ))

)
2^ (3 () F,) G ))

≤ k (3 (F,) F))2^ (3 (F,) G )) +k (3 (G ,) G ))2^ (3 (G ,) F))

for any F, G ∈ - .

It can be easily obtained that every firmly vicinal mapping with k is vicinal with k .

Lemma 4.2 (Kajimura and Kimura [9]). Let - be an admissible CAT(^) space. Suppose that
) : - → - is vicinal with k . Then ) is Δ-demiclosed. Moreover, if � () ) is nonempty, then ) is
quasinonexpansive.

Lemma 4.3. Let - be an admissible CAT(^) space and let k : [0, �^/2[ → ]0,∞[ such that k is
right continuous at 0. Then for a mapping ) : - → - , the following are equivalent:

(i) ) is firmly vicinal with k ;
(ii) for any F, G ∈ - ,(

k (3 (F,) F))2 ′′^ (3 (F,) F)) +k (3 (G ,) G ))2 ′′^ (3 (G ,) G ))
)
2^ (3 () F,) G ))

≤ k (3 (F,) F))
(
2^ (3 (F,) G )) − 2^ (3 (F,) F))

)
+k (3 (G ,) G ))

(
2^ (3 (G ,) F)) − 2^ (3 (G ,) G ))

)
;
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(iii) for any F, G ∈ - ,

1
^

(
k (3 (F,) F))2 ′′^ (3 (F,) F)) +k (3 (G ,) G ))2 ′′^ (3 (G ,) G ))

)
2 ′′^ (3 () F,) G ))

≥ 1
^

(
k (3 (F,) F))2 ′′^ (3 (F,) G )) +k (3 (G ,) G ))2 ′′^ (3 (G ,) F))

)
,

where (iii) is considered only when ^ \= 0.

Proof. Using Lemma 2.8, we get

) is firmly vicinal with k
⇐⇒ k (3 (F,) F))

(
2^ (3 (F,) F))2 ′′^ (3 () F,) G )) + 2^ (3 () F,) G ))

)
+k (3 (G ,) G ))

(
2^ (3 (G ,) G ))2 ′′^ (3 () F,) G )) + 2^ (3 () F,) G ))

)
≤ k (3 (F,) F))2^ (3 (F,) G )) +k (3 (G ,) G ))2^ (3 (G ,) F))

⇐⇒ k (3 (F,) F))
(
2^ (3 () F,) G ))2 ′′^ (3 (F,) F)) + 2^ (3 (F,) F))

)
+k (3 (G ,) G ))

(
2^ (3 () F,) G ))2 ′′^ (3 (G ,) G )) + 2^ (3 (G ,) G ))

)
≤ k (3 (F,) F))2^ (3 (F,) G )) +k (3 (G ,) G ))2^ (3 (G ,) F))

⇐⇒
(
k (3 (F,) F))2 ′′^ (3 (F,) F)) +k (3 (G ,) G ))2 ′′^ (3 (G ,) G ))

)
2^ (3 () F,) G ))

≤ k (3 (F,) F)) (2^ (3 (F,) G )) − 2^ (3 (F,) F)))
+k (3 (G ,) G )) (2^ (3 (G ,) F)) − 2^ (3 (G ,) G )))

for F, G ∈ - and thus (i) and (ii) are equivalent. In addition, if ^ \= 0, then (ii) is equivalent to

(
k (3 (F,) F))2 ′′^ (3 (F,) F)) +k (3 (G ,) G ))2 ′′^ (3 (G ,) G ))

)
· 1 − 2

′′
^ (3 () F,) G ))

^

≤ k (3 (F,) F))
(
1 − 2 ′′^ (3 (F,) G ))

^
− 1 − 2

′′
^ (3 (F,) F))
^

)
+k (3 (G ,) G ))

(
1 − 2 ′′^ (3 (G ,) F))

^
− 1 − 2

′′
^ (3 (G ,) G ))
^

)
and so is

1
^

(
k (3 (F,) F))2 ′′^ (3 (F,) F)) +k (3 (G ,) G ))2 ′′^ (3 (G ,) G ))

)
2 ′′^ (3 () F,) G ))

≥ 1
^

(
k (3 (F,) F))2 ′′^ (3 (F,) G )) +k (3 (G ,) G ))2 ′′^ (3 (G ,) F))

)
for F, G ∈ - . Hence we get (ii) and (iii) are equivalent if ^ \= 0. �

Lemma 4.4. For ^ \= 0, let - be an admissible CAT(^) space and let k : [0, �^/2[ → ]0,∞[ such
that k is right continuous at 0. Then for a mapping ) : - → - , the following are equivalent:

(i) ) is vicinal with k ;
(ii) for any F, G ∈ - ,

1
^
(k (3 (F,) F)) +k (3 (G ,) G )))2 ′′^ (3 () F,) G ))

≥ 1
^

(
k (3 (F,) F))2 ′′^ (3 (F,) G )) +k (3 (G ,) G ))2 ′′^ (3 (G ,) F))

)
.
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Proof. We obtain the conclusion easily by using an equation 2^ (3) = (1−2 ′′^ (3))/^ for 3 ∈ ℝ. �
The notion of firm vicinity with k unifies a definition of some type of nonspreading map-

pings as follows. Let - be a CAT(0) space and ) a mapping from - into itself. ) is said to be
firmly metrically nonspreading [23] if

23 () F,) G )2 ≤ 3 (F,) G )2 − 3 (F,) F)2 + 3 (G ,) F)2 − 3 (G ,) G )2

for every F, G ∈ - . It is equivalent to the firm vicinity of ) with k : [0,∞[ 3 B ↦→ 1.
Let - be an admissible CAT(1) space and ) a mapping from - into itself. ) is said to be

spherically nonspreading of sum type [10] if

2 cos3 () F,) G ) ≥ cos3 (F,) G ) + cos3 (G ,) F)

for every F, G ∈ - . It is equivalent to the firm vicinity of ) with k : [0, c/2[ 3 B ↦→ 1.

4.2 Tightly quasinonexpansive mappings
In this section, we define a new notion of a special quasinonexpansive mapping.

Definition 4.5. Let - be an admissible CAT(^) space and ) : - → - a mapping such that
� () ) \= ∅. Then we call ) a tightly quasinonexpansive mapping for ^ if for any F ∈ - and
H ∈ � () ), an inequality

2^ (3 (F,) F))2 ′′^ (3 () F, H)) ≤ 2^ (3 (F, H)) − 2^ (3 () F, H)) (∗1)

holds. Or equivalently from Lemma 2.8, for any F ∈ - and H ∈ � () ),

2^ (3 () F, H))2 ′′^ (3 (F,) F)) ≤ 2^ (3 (F, H)) − 2^ (3 (F,) F)) (∗2)

holds.

Note that inequalities (∗1) and (∗2) always hold if F ∈ � () ). Therefore, we obtain that ) is
tightly quasinonexpansive if and only if (∗1) or (∗2) holds for any F ∈ - \ � () ) and H ∈ � () ).
From Lemma 2.8, ) is tightly quasinonexpansive for ^ \= 0 if and only if

1
^
2 ′′^ (3 (F,) F))2 ′′^ (3 () F, H)) ≥

1
^
2 ′′^ (3 (F, H))

for any F ∈ - \ � () ) and H ∈ � () ); ) is tightly quasinonexpansive for ^ = 0 if and only if

3 (F,) F)2 + 3 () F, H)2 ≤ 3 (F, H)2

for any F ∈ - \ � () ) and H ∈ � () ).
We hereinafter omit words ‘for ^ ’ if such ^ is clear from context.

Example 4.6. Let - be an admissible complete CAT(^) space. Then the identity mapping on
- is tightly quasinonexpansive.

Example 4.7. Let - be an admissible complete CAT(^) space and  a nonempty closed convex
subset of - . Then a metric projection % from - onto  is tightly quasinonexpansive from
Lemma 2.11.

Example 4.8. Let - be an admissible complete CAT(^) space and  a nonempty closed convex
subset of - . Let 5 be a function from - into [0, 1] such that 5 (- \ ) ⊂ [0, 1[. Then a mapping
) : - → - defined by ) F = 5 (F)F ⊕ (1 − 5 (F))% F is tightly quasinonexpansive.
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Proof. It is obvious that � () ) =  . Take F ∈ - \ � () ) and H ∈ � () ) =  arbitrarily. Then we
have ) F ∈ ]F, % F].
We consider the case where ) F = % F . Then, since % is tightly quasinonexpansive, we

obtain

2^ (3 (F,) F))2 ′′^ (3 () F, H)) +2^ (3 () F, H)) = 2^ (3 (F, % F))2 ′′^ (3 (% F, H)) +2^ (3 (% F, H)) ≤ 2^ (3 (F, H)).

Henceforth, suppose that ) F \= % F . Put > = % F . For a model space ("^ , d), take
a comparison triangle 4(F, H,>) ⊂ "^ of 4(F, H,>) and a comparison point ; ∈ ]F,> [ of
) F ∈ [F, % F].
Assume that ; ∈ ]F, H [. Then there exists U ∈ ]0, 1[ such that ; = UF ⊕ (1 − U)H . This follows

that

3 (F,) F)2 + 3 () F, H)2 ≤ d (F,;)2 + d (;, H)2

= (1 − U)2d (F, H)2 + U2d (F, H)2

= (1 − 2U (1 − U))d (F, H)2

≤ d (F, H)2 = 3 (F, H)2

if ^ = 0, and
1
^
2 ′′^ (3 (F,) F))2 ′′^ (3 () F, H)) ≥

1
^
2 ′′^ (d (F,;))2 ′′^ (d (;, H))

=
1
^
2 ′′^ ((1 − U)d (F, H))2 ′′^ (Ud (F, H))

=
1
2^

(
2 ′′^ (d (F, H)) + 2 ′′^ ((1 − 2U)d (F, H))

)
≥ 1
2^

(
2 ′′^ (d (F, H)) + 2 ′′^ (d (F, H))

)
=
1
^
2 ′′^ (d (F, H))

=
1
^
2 ′′^ (3 (F, H))

if ^ \= 0.
Finally, assume that ; \∈ ]F, H [. Then we easily have > \∈ ]F, H [. Put \ = ∠F> H ∈ [0, c [ and

i = ∠F;H ∈ [0, c [. The angle \ is determined by the formula

cos \ =
2^ (d (F,>))2 ′′^ (d (>, H)) + 2^ (d (>, H)) − 2^ (d (F, H))

2 ′^ (d (F,>))2 ′^ (d (>, H))

=
2^ (d (>, H))2 ′′^ (d (F,>)) + 2^ (d (F,>)) − 2^ (d (F, H))

2 ′^ (d (F,>))2 ′^ (d (>, H))

=


d (F,>)2 + d (>, H)2 − d (F, H)2

2d (F,>)d (>, H) (if ^ = 0);

2 ′′^ (d (F, H)) − 2 ′′^ (d (F,>))2 ′′^ (d (>, H))
^2 ′^ (d (F,>))2 ′^ (d (>, H))

(if ^ \= 0)

=



cosh(
√
−^d (F,>)) cosh(

√
−^d (>, H)) − cosh(

√
−^d (F, H))

sinh(
√
−^d (F,>)) sinh(

√
−^d (>, H)) (if ^ < 0);

d (F,>)2 + d (>, H)2 − d (F, H)2
2d (F,>)d (>, H) (if ^ = 0);

cos(
√
^d (F, H)) − cos(

√
^d (F,>)) cos(

√
^d (>, H))

sin(
√
^d (F,>)) sin(

√
^d (>, H)) (if ^ > 0).
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This formula is just consistent with the law of cosines. Similarly, the angle i is determined by

cos i =
2^ (d (F,;))2 ′′^ (d (;, H)) + 2^ (d (;, H)) − 2^ (d (F, H))

2 ′^ (d (F,;))2 ′^ (d (;, H)) .

We divide into the following cases: (i) ^ = 0; (ii) ^ \= 0.
(i) Let ^ = 0. Since % is tightly quasinonexpansive, we obtain

d (F,>)2 + d (>, H)2 − d (F, H)2 = 3 (F,>)2 + 3 (>, H)2 − 3 (F, H)2 ≤ 0,

which implies c/2 ≤ \ < c . Therefore, since ; ∈ ]F,> [, we obtain \ ≤ i < c . This implies that

3 (F,) F)2 + 3 () F, H)2 − 3 (F, H)2 ≤ d (F,;)2 + d (;, H)2 − d (F, H)2 ≤ 0.

(ii) Assume that ^ \= 0. Then we get
1
^
2 ′′^ (d (F,>))2 ′′^ (d (>, H)) =

1
^
2 ′′^ (3 (F,>))2 ′′^ (3 (>, H)) ≥

1
^
2 ′′^ (3 (F, H)) =

1
^
2 ′′^ (d (F, H)),

by tight quasinonexpansiveness of % . This follows that c/2 ≤ \ < c . We also have \ ≤ i < c

from ; ∈ ]F,> [. Hence we obtain
1
^
2 ′′^ (3 (F,) F))2 ′′^ (3 () F, H)) ≥

1
^
2 ′′^ (d (F,;))2 ′′^ (d (;, H)) ≥ 1

^
2 ′′^ (d (F, H)) =

1
^
2 ′′^ (3 (F, H)).

Consequently, we get the conclusion. �

Next, we show natures for tightly quasinonexpansive mappings.

Lemma 4.9. Let - be an admissible CAT(^) space. Then every firmly vicinal mapping with k

such that � () ) \= ∅ is tightly quasinonexpansive.

Proof. Let ) : - → - be a firmly vicinal mapping with k such that � () ) \= ∅. Take F ∈ - and
H ∈ � () ) arbitrarily. Then, using the definition of firmly vicinal mapping with k , we get

k (3 (F,) F))2^ (3 (F,) F))2 ′′^ (3 () F, H)) +
(
k (3 (F,) F)) +k (0)

)
2^ (3 () F, H))

≤ k (3 (F,) F))2^ (3 (F, H)) +k (0)2^ (3 () F, H)).

Dividing by k (3 (F,) F)) > 0, we get the conclusion. �

Lemma 4.10. Let - be an admissible CAT(^) space. Then every tightly quasinonexpansive
mapping is quasinonexpansive.

Proof. Let ) : - → - be tightly quasinonexpansive, and take F ∈ - and H ∈ � () ). Then, since -
is admissible, we obtain 2 ′′^ (3 () F, H)) > 0. Consequently, we have 0 ≤ 2^ (3 (F, H)) − 2^ (3 () F, H)),
which is the desired result. �

Lemma 4.11. Let - be an admissible CAT(^) space. Then every tightly quasinonexpansive
mapping is asymptotically regular.

Proof. Let ) : - → - be tightly quasinonexpansive, and take F ∈ - and H ∈ � () ). Then we
have 2^ (3 () <F,) <+1F))2 ′′^ (3 () <+1F, H)) ≤ 2^ (3 () <F, H)) − 2^ (3 () <+1F, H)) for any < ∈ ℕ. We also
have {3 () <F, H)} converges to some _ ∈ [0, �^/2[ by the previous lemma. This implies that
inf9 ∈ℕ 2 ′′^ (3 () 9+1F, H)) > 0 and hence

0 ≤ 2^ (3 () <F,) <+1F)) ≤ 2^ (3 ()
<F, H)) − 2^ (3 () <+1F, H))
2 ′′^ (3 () <+1F, H))

≤ 2^ (3 ()
<F, H)) − 2^ (3 () <+1F, H))

inf9 ∈ℕ 2 ′′^ (3 () 9+1F, H))
→ 0

as < →∞, which is the desired result. �
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The above three lemmas immediately prove the following.

Corollary 4.12. Let - be an admissible CAT(^) space. Then every firmly vicinal mapping with
k such that � () ) \= ∅ is quasinonexpansive and asymptotically regular.

Now we consider an example of quasinonexpansive mappings and tightly quasinonex-
pansive mappings on the Euclidean space ℝ< . Let - = ℝ< and 3 a metric on - such
that 3 (·, ·) = ‖· − ·‖ℝ< . Fix 2 ∈ - and set � = {H ∈ - | 3 (H, 2 ) ≤ 1}. Let ) be a map-
ping from - into itself such that � () ) = � . Then ) is quasinonexpansive if and only if
) F ∈ ⋂

H∈� {E ∈ - | 3 (E, H) ≤ 3 (F, H)} for any F ∈ - . Namely, the quasinonexpansiveness of ) is
equivalent to the fact that ) F always belongs to the closed ball that H and F are its center and
its boundary, respectively. Since⋂

H∈�

{
E ∈ -

�� 3 (E, H) ≤ 3 (F, H)} =
{
E ∈ -

�� 3 (F, 2 )2 − 3 (E, 2 )2 ≥ 23 (E, F)}
holds for any F ∈ - , we obtain that ) is quasinonexpansive if and only if

3 (F, 2 )2 − 3 () F, 2 )2 ≥ 23 () F, F)

for any F ∈ - . Put �qn(F) =
{
E ∈ -

�� 3 (F, 2 )2 − 3 (E, 2 )2 ≥ 23 (E, F)} for each F ∈ - . It is the
domain that ) F should be placed so that ) is quasinonexpansive.
Next, we consider the tight quasinonexpansiveness of ) . The mapping ) : - → - is tightly

quasinonexpansive for ^ = 0 if and only if 3 (F,) F)2+3 () F, H)2 ≤ 3 (F, H)2 for any F ∈ - and H ∈ � .
Then a inequality 3 (F,) F)2 + 3 () F, H)2 ≤ 3 (F, H)2 is equivalent to 3 () F, (F + H)/2) ≤ 3 (F, H)/2.
Hence, the tight quasinonexpansiveness of ) is equivalent to the fact that ) F always belongs
to the closed ball whose diameter is the segment joining F and H , in other words, an angle
between two vectors

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
() F)F and

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗
() F)H is obtuse or right for any F ∈ - and H ∈ � . Therefore, )

is tightly quasinonexpansive if and only if

) F ∈
⋂
H∈�

{
E ∈ -

���� 3 (
E,

F + H
2

)
≤ 1
23 (F, H)

}
=

{
E ∈ -

���� 143 (F, 2 )2 − 3 (
E,

F + 2
2

)2
≥ 3 (E, F)

}
for all F ∈ - , that is,

1
43 (F, 2 )

2 − 3
(
) F,

2 + F
2

)2
≥ 3 () F, F)

for all F ∈ - . Put
�tqn(F) =

{
E ∈ -

���� 143 (F, 2 )2 − 3 (
E,

F + 2
2

)2
≥ 3 (E, F)

}
for each F ∈ - , which is the domain that ) F should be placed so that ) is tightly quasinonex-
pansive.
By basic calculations, we have

3 (F, 2 )2 − 3 (E, 2 )2 ≥ 23 (E, F) ⇐⇒ ‖E − F ‖2 + 2‖E − F ‖ ≤ 2〈E − F, 2 − F〉

⇐⇒



E − F2 


2 + 


E − F2 


 ≤ 〈

E − F
2 , 2 − F

〉
and

1
43 (F, 2 )

2 − 3
(
E,

F + 2
2

)2
≥ 3 (E, F) ⇐⇒ ‖E − F ‖2 + ‖E − F ‖ ≤ 〈E − F, 2 − F〉.
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Hence, �tqn(F) and �qn(F) are similar, and their homothetic ratio is 1 : 2. We also get
�tqn(F) ⊂ �qn(F) and �tqn(F) ∩ � = {%�F} for any F ∈ - .
For the sake of simplicity, let - = ℝ2. Then the following figures show domains �qn(F) and

�tqn(F) for some F ∈ ℝ2.

F 2

�qn(F)
� =

{
H ∈ ℝ2 �� 3 (H, 2 ) ≤ 1}

F %�F 2

�tqn(F)

� =
{
H ∈ ℝ2 �� 3 (H, 2 ) ≤ 1}

These represent the case where 3 (F, 2 ) = 12/5.

4.3 Mann type fixed point approximations
In this section, we show fixed point approximation theorems using Mann type iterative se-
quence for tightly quasinonexpansive mappings. For a uniquely �-geodesic space - and a
mapping ) : - → - with � () ) \= ∅, Mann type iterative scheme generates a sequence {F<} on
- by an iteration F<+1 = U<F< ⊕ (1 − U<)) F< for < ∈ ℕ. Our aim is to investigate a convergence
of such {F<} to a fixed point of ) .

Lemma 4.13 (Kajimura and Kimura [8], Kimura and Kohsaka [14, 15]). Let - be a complete
CAT(^) space and  an admissible closed convex subset of - . Let {H<} be a ^-bounded sequence
on  . Take {V<} ⊂ [0,∞[ such that V1 > 0. Define 6 :  → [0,∞] by

6 (G ) = lim sup
<→∞

1∑<
9=1 V9

<∑
9=1

V92^ (3 (G , H9 ))

for G ∈  . Then 6 has a unique minimizer on  .

Proof. Kajimura and Kimura [8] showed the case where ^ = −1 with the assumption
∑∞
9=1 V9 =

∞. In addition, Kimura and Kohsaka [14, 15] showed the case where ^ = 0 and ^ = 1 with∑∞
9=1 V9 =∞. Now we give the proof for all ^ ∈ ℝ without the assumption

∑∞
9=1 V9 =∞.
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Take C ∈  such that sup<∈ℕ 3 (H< , C) < �^/2, and put " = sup<∈ℕ 3 (H< , C). Then we have
2^ (3 (H9 , C)) ≤ 2^ (" ) for all 9 ∈ ℕ. It deduces that 0 ≤ infG ∈ 6 (G ) ≤ 6 (C) ≤ 2^ (" ) <∞.
Fix F1, F2 ∈  arbitrarily. Then we get

2^

(1
23 (F1, F2)

)
+ 2 ′′^

(1
23 (F1, F2)

)
2^

(
3
(1
2F1 ⊕

1
2F2, H9

))
≤ 1
22^ (3 (F1, H9 )) +

1
22^ (3 (F2, H9 ))

for each 9 ∈ ℕ by Lemma 2.9. It follows that

2^

(1
23 (F1, F2)

)
+ 2 ′′^

(1
23 (F1, F2)

)
· 1∑<

9=1 V9

<∑
9=1

V92^

(
3
(1
2F1 ⊕

1
2F2, H9

))
≤ 1
2
∑<
9=1 V9

<∑
9=1

V92^ (3 (F1, H9 )) + 1
2
∑<
9=1 V9

<∑
9=1

V92^ (3 (F2, H9 ))

for any < ∈ ℕ. Hence we have

2^

(1
23 (F1, F2)

)
+ 2 ′′^

(1
23 (F1, F2)

)
6
(1
2F1 ⊕

1
2F2

)
≤ 1
26 (F1) +

1
26 (F2)

for every F1, F2 ∈  .
Put ! = infG ∈ 6 (G ), which satisfies 0 ≤ ! ≤ 2^ (" ) < ∞. Then we can take {G<} ⊂  such that

6 (G<) ≥ 6 (G<+1) for all < ∈ ℕ and lim<→∞ 6 (G<) = !. Suppose that <,; ∈ ℕ satisfies < ≤;. From
the inequality above, we get

6 (G<) ≥ 1
26 (G<) +

1
26 (G;)

≥ 2^
(1
23 (G< , G;)

)
+ 2 ′′^

(1
23 (G< , G;)

)
!

= ! + (1 − !^)2^
(1
23 (G< , G;)

)
.

Therefore we obtain
(1 − !^)2^

(1
23 (G< , G;)

)
≤ 6 (G<) − ! → 0

as < →∞. Note that 1 − !^ > 0 holds without regard to ^ ∈ ℝ. Indeed, if ^ > 0 then we have

1 − !^ =

(
2^

(
�^

2

)
− !

)
^ ≥ (2^ (" ) − !)^ > 0.

Otherwise, if ^ ≤ 0 then 1−!^ ≥ 1 > 0. Hence we get 3 (G< , G;) → 0 as;,<→∞. It follows that
{G<} is a Cauchy sequence on the closed set  and thus it converges to some > ∈  . Since 6 is
continuous, we have 6 (>) = lim<→∞ 6 (G<) = !. Therefore, > is a minimizer of 6 .
Let ? be another minimizer of 6 . Then we get

! + (1 − !^)2^
(1
23 (>, ?)

)
≤ 1
26 (>) +

1
26 (?) = !

and thus > = ? holds, which is the conclusion. �

Corollary 4.14. Let - be a complete CAT(^) space and  an admissible closed convex subset of
- . Take H1, H2, . . . , H< ∈  and W1,W2, . . . ,W< ∈ ]0,∞[. Define 6 :  → [0,∞[ by

6 (G ) =
<∑
9=1

W92^ (3 (G , H9 ))

for G ∈  . Then 6 has a unique minimizer on  .
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Proof. Using Lemma 4.13 for {V<} ⊂ ]0,∞[ defined by V7 = W7 for 7 = 1, 2, . . . , < and V7 = 0 for
7 > <, we obtain the conclusion. �

Lemma 4.15. Let - be a CAT(^) space and ) a quasinonexpansive mapping from - into itself
such that 3 (F,) F) < �^ for every F ∈ - . Let {U<} ⊂ [0, 1]. Take F1 ∈ - arbitrarily and generate
{F<} ⊂ - by the following iteration:

F<+1 = U<F< ⊕ (1 − U<)) F<

for < ∈ ℕ. Then {3 (F< , >)} is nonincreasing for any > ∈ � () ).

Proof. Let > ∈ � () ), then we get

2^ (3 (F<+1, >)) ≤ U<2^ (3 (F< , >)) + (1 − U<)2^ (3 () F< , >))
≤ U<2^ (3 (F< , >)) + (1 − U<)2^ (3 (F< , >))
= 2^ (3 (F< , >))

for any < ∈ ℕ and hence we get the conclusion. �

Lemma 4.16. Let - be an admissible CAT(^) space and ) : - → - a tightly quasinonexpansive
mapping. Let {U<} ⊂ [0, 1] such that lim sup<→∞ U< < 1. Take F1 ∈ - arbitrarily and generate
{F<} ⊂ - by

F<+1 = U<F< ⊕ (1 − U<)) F<
for < ∈ ℕ. Then 3 (F< ,) F<) → 0.

Proof. Let > ∈ � () ). Then {3 (F< , >)} is nonincreasing from Lemma 4.15, and hence there
exists a limit 2 ≥ 0 of {3 (F< , >)}. If 2 = 0, then F< → > , which implies the conclusion. In what
follows, we assume that 2 > 0. Then we obtain 2 < �^/2 and

2^ (3 () F< , >))2 ′′^ (3 (F< ,) F<)) ≤ 2^ (3 (F< , >)) − 2^ (3 (F< ,) F<))

for any < ∈ ℕ by the definition of tightly quasinonexpansive mappings. Since - is admissible,
we have 2 ′′^ (3 (F< ,) F<)) > 0 and hence

2^ (3 (F<+1, >))
≤ U<2^ (3 (F< , >)) + (1 − U<)2^ (3 () F< , >))

≤ U<2^ (3 (F< , >)) + (1 − U<) ·
2^ (3 () F< , >)) − 2^ (3 (F< ,) F<))

2 ′′^ (3 (F< ,) F<))

= 2^ (3 (F< , >)) + (1 − U<) ·
2^ (3 () F< , >)) − 2^ (3 (F< ,) F<)) − 2^ (3 (F< , >))2 ′′^ (3 (F< ,) F<))

2 ′′^ (3 (F< ,) F<))

holds for any < ∈ ℕ. Thus we get

2^ (3 (F< , >)) − 2^ (3 (F<+1, >))

≥ (1 − U<) ·
−2^ (3 () F< , >)) + 2^ (3 (F< ,) F<)) + 2^ (3 (F< , >))2 ′′^ (3 (F< ,) F<))

2 ′′^ (3 (F< ,) F<))

≥ (1 − U<) ·
−2^ (3 () F< , >)) + 2^ (3 (F< , >)) + 2^ (3 (F< ,) F<))2 ′′^ (3 (F< , >))

2 ′′^ (3 (F< ,) F<))

≥ (1 − U<) ·
2^ (3 (F< ,) F<))
2 ′′^ (3 (F< ,) F<))

· 2 ′′^ (3 (F< , >))

≥ 0
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for any < ∈ ℕ by Lemma 2.8. Since lim<→∞ (2^ (3 (F< , >)) − 2^ (3 (F<+1, >))) = 0 and 2 ′′^ (3 (F< , >)) →
2 ′′^ (2 ) > 0, we obtain

lim
<→∞

(
(1 − U<) ·

2^ (3 (F< ,) F<))
2 ′′^ (3 (F< ,) F<))

)
= 0.

Put Y = lim inf<→∞(1 − U<) > 0. Then there exists <0 ∈ ℕ such that 1 − U< > Y/2 for any < ≥ <0.
Thus we have

lim
<→∞

2^ (3 (F< ,) F<))
2 ′′^ (3 (F< ,) F<))

= 0.

It means that lim<→∞ 3 (F< ,) F<) = 0. In fact, if ^ > 0, then

0 = lim
<→∞

2^ (3 (F< ,) F<))
2 ′′^ (3 (F< ,) F<))

= lim
<→∞

1
^

(
1

cos
(√
^3 (F< ,) F<)

) − 1)
and hence cos

(√
^3 (F< ,) F<)

)
→ 1; if ^ ≤ 0 then

0 = lim
<→∞

2^ (3 (F< ,) F<))
2 ′′^ (3 (F< ,) F<))

= lim
<→∞

1
−^

(
1 − 1

cosh
(√
−^3 (F< ,) F<)

) ) ,
which implies cosh

(√
−^3 (F< ,) F<)

)
→ 1. Therefore we get the desired result. �

Lemma 4.17. Let - be an admissible CAT(^) space and ) : - → - a quasinonexpansive
mapping. Let {V<} ⊂ [0, 1] such that lim inf<→∞ V< (1 − V<) > 0. Take F1 ∈ - arbitrarily and
generate {F<} ⊂ - by

F<+1 = V<F<
^
⊕ (1 − V<)) F<

for < ∈ ℕ. Then 3 (F< ,) F<) → 0.

Proof. Let > ∈ � () ) and put

(< =

√
V 2< + 2V< (1 − V<)2 ′′^ (3 (F< ,) F<)) + (1 − V<)2

for each < ∈ ℕ. Then, from Theorem 3.15,

2^ (3 (F<+1, >)) ≤ V<2^ (3 (F< , >)) + (1 − V<)2^ (3 () F< , >))

− 2V< (1 − V<)2^ (3 (F< ,) F<))1 + (<
· V<2

′′
^ (3 (F< , >)) + (1 − V<)2 ′′^ (3 () F< , >))

(<

holds for any < ∈ ℕ. It follows from quasinonexpansiveness of ) that

0 ≤ 2V< (1 − V<)2^ (3 (F< ,) F<))
1 + (<

· V<2
′′
^ (3 (F< , >)) + (1 − V<)2 ′′^ (3 () F< , >))

(<
≤ V<2^ (3 (F< , >)) + (1 − V<)2^ (3 () F< , >)) − 2^ (3 (F<+1, >))
≤ 2^ (3 (F< , >)) − 2^ (3 (F<+1, >))

for any < ∈ ℕ. We know that {3 (F< , >)} is nonincreasing from Lemma 4.15, which implies
lim<→∞ (2^ (3 (F< , >)) − 2^ (3 (F<+1, >))) = 0. Therefore we obtain

lim
<→∞

V< (1 − V<)2^ (3 (F< ,) F<))
(
V<2

′′
^ (3 (F< , >)) + (1 − V<)2 ′′^ (3 () F< , >))

)
= 0.

44



Note that 2 ′′^ (3 (F< , >)) and 2 ′′^ (3 () F< , >)) do not converge to 0. Indeed, if ^ > 0 then we have
sup<∈ℕ 2 ′′^ (3 () F< , >)) ≥ sup<∈ℕ 2 ′′^ (3 (F< , >)) ≥ 2 ′′^ (3 (F1, >)) > 0. On the other hand, if ^ ≤ 0 then
2 ′′^ (3 (F< , >)) ≥ 1 for every < ∈ ℕ. This follows that

lim
<→∞

V< (1 − V<)2^ (3 (F< ,) F<)) = 0.

Consequently we obtain lim<→∞ 2^ (3 (F< ,) F<)) = 0, which is the desired result. �

Corollary 4.18. Let - and ) : - → - be the same as Lemma 4.17. Let {U<} ⊂ [0, 1] such that
lim inf<→∞ U< (1 − U<) > 0. Take F1 ∈ - arbitrarily and generate {F<} ⊂ - by

F<+1 = U<F< ⊕ (1 − U<)) F<
for < ∈ ℕ. Then 3 (F< ,) F<) → 0.

Proof. Let > ∈ � () ), and put V< = Z^
3 (F< ,) F< ) (U<) for each < ∈ ℕ. Then we have

V<F<
^
⊕ (1 − V<)) F< = U<F< ⊕ (1 − U<)) F<

for any < ∈ ℕ. From Lemma 4.15, we get sup<∈ℕ 3 (F< , >) < �^/2. It deduces that

sup
<∈ℕ

3 (F< ,) F<) ≤ sup
<∈ℕ
(3 (F< , >) + 3 () F< , >)) < �^ .

Therefore we obtain lim inf<→∞ V< (1 − V<) > 0 by Corollary 3.26, which implies the conclusion
from Lemma 4.17. �

Lemma 4.19. Let - be an admissible complete CAT(^) space and � a nonempty subset of - .
Let {F<} be a ^-bounded sequence on - . Suppose that (i) and (ii) hold: For any subsequence
{F<7 } of {F<} with E0 = �� ({F<7 }),

(i) E0 ∈ � ;
(ii) {3 (F< ,E0)} is convergent.

Then {F<} Δ-converges to some element in � .

Proof. Let F0 = �� ({F<}) and take its subsequence {F<7 } arbitrarily. Put E0 = �� ({F<7 }). Then
E0 ∈ � , and {3 (F< ,E0)} is convergent. It follows that

lim
<→∞

3 (F< ,E0) = lim
7→∞

3 (F<7 ,E0) ≤ lim sup
7→∞

3 (F<7 , F0) ≤ lim sup
<→∞

3 (F< , F0) ≤ lim
<→∞

3 (F< ,E0).

Thus F0 =E0 = �� ({F<7 }) ∈ � , which implies F< ⇀
�
F0. �

Lemma 4.20. Let - be an admissible complete CAT(^) space and ) a Δ-demiclosed mapping
from - into itself. Suppose that a ^-bounded sequence {F<} ⊂ - satisfies (i) and (ii):

(i) 3 (F< ,) F<) → 0;
(ii) {3 (F< , >)} is convergent if > is a fixed point of ) .

Then {F<} Δ-converges to some fixed point of ) .

Proof. Let {F<7 } be a subsequence of {F<} and takeE0 = �� ({F<7 }). We showE0 is a fixed point
of ) . Take a Δ-convergent subsequence {F<78 } ⊂ {F<7 } and put H0 = Δ-lim8→∞ F<78 . Since ) is
Δ-demiclosed, we have H0 ∈ � () ). Then {3 (F< , H0)} is convergent and hence

lim sup
7→∞

3 (F<7 ,E0) ≤ lim
7→∞

3 (F<7 , H0)

= lim
8→∞

3 (F<78 , H0) ≤ lim sup
8→∞

3 (F<78 ,E0) ≤ lim sup
7→∞

3 (F<7 ,E0).
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It implies E0 = H0 ∈ � () ). Therefore, from Lemma 4.19, we get the conclusion. �

Now we show main results.

Theorem 4.21. Let - be an admissible complete CAT(^) space and ) : - → - a vicinal mapping
with k . Let {U<} ⊂ [0, 1[ such that

∑∞
<=1(1 − U<) = ∞. Take F1 ∈ - arbitrarily and generate

{F<} ⊂ - by
F<+1 = U<F< ⊕ (1 − U<)) F<

for < ∈ ℕ. Let us denote (a) and (b) by the following conditions:

(a) {) F<} is ^-bounded;
(b) sup<∈ℕ 3 (F< ,) F<) < �^/2.

Let k = i ′ ◦ 2^ : [0, �^/2[ → ]0,∞[ and define conditions (P1) and (P2) as follows:

(P1) k is nondecreasing;
(P2) sup<∈ℕk (3 (F< ,) F<)) <∞.

Then the following hold:

(i) Suppose that k satisfies (P1). Then � () ) \= ∅ if (a) and (b) hold. Conversely, � () ) \= ∅
only if (a) and (b) hold when ) is tightly quasinonexpansive.

(i)′ Suppose that k satisfies (P2). Then � () ) \= ∅ if and only if (a) holds.

Theorem 4.22. Let - be an admissible complete CAT(^) space and ) a quasinonexpansive and
Δ-demiclosed mapping from - into itself. Suppose that {U<} and {F<} are the same as the
previous theorem. Then the following hold:

(ii) If ) is tightly quasinonexpansive and lim sup<→∞ U< < 1, then {F<} Δ-converges to some
fixed point of ) .

(iii) If lim inf<∈ℕ U< (1 − U<) > 0, then {F<} Δ-converges to some fixed point of ) .

Proof of Theorem 4.21. Let ) be a vicinal mapping with k from - into itself. Then, ) is
Δ-demiclosed from Lemma 4.2.
First we show the only if part of (i) and (i)′ simultaneously. Suppose that � () ) is

nonempty, and fix > ∈ � () ). Then {3 (F< , >)} is nonincreasing from Lemma 4.15. It im-
plies sup<∈ℕ 3 () F< , >) ≤ sup<∈ℕ 3 (F< , >) = 3 (F1, >) < �^/2 and thus (a) holds. Moreover,
considering the case where (i) and assuming that ) is tightly quasinonexpansive, we have

2^ (3 (F< ,) F<)) ≤ 2^ (3 (F< ,) F<)) + 2^ (3 () F< , >))2 ′′^ (3 (F< ,) F<))
≤ 2^ (3 (F< , >))
≤ 2^ (3 (F1, >))

for any < ∈ ℕ, and then (b) holds.
Next, consider the if part of (i) and (i)′. Let G ∈ - and 9 ∈ ℕ. Then we have

2^ (3 (F9+1,) G )) ≤ U92^ (3 (F9 ,) G )) + (1 − U9 )2^ (3 () F9 ,) G ))
= 2^ (3 (F9 ,) G )) + (1 − U9 )

(
2^ (3 () F9 ,) G )) − 2^ (3 (F9 ,) G ))

)
.

Therefore, since ) is vicinal with k , we obtain

(1 − U9 )k (3 (G ,) G ))
(
2^ (3 () F9 , G )) − 2^ (3 () F9 ,) G ))

)
≥ (1 − U9 )k (3 (F9 ,) F9 ))

(
2^ (3 () F9 ,) G )) − 2^ (3 (F9 ,) G ))

)
≥ k (3 (F9 ,) F9 ))

(
2^ (3 (F9+1,) G )) − 2^ (3 (F9 ,) G ))

)
.
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Hence we get

(1 − U9 )k (3 (G ,) G ))2^ (3 () F9 ,) G ))
≤ (1 − U9 )k (3 (G ,) G ))2^ (3 () F9 , G )) −k (3 (F9 ,) F9 ))

(
2^ (3 (F9+1,) G )) − 2^ (3 (F9 ,) G ))

)
,

which implies

k (3 (G ,) G )) · 1 − U9
k (3 (F9 ,) F9 ))

· 2^ (3 () F9 ,) G ))

≤ k (3 (G ,) G )) · 1 − U9
k (3 (F9 ,) F9 ))

· 2^ (3 () F9 , G )) +
(
2^ (3 (F9 ,) G )) − 2^ (3 (F9+1,) G ))

)
since k (3 (F9 ,) F9 )) \= 0. It concludes

k (3 (G ,) G ))
<∑
9=1

1 − U9
k (3 (F9 ,) F9 ))

2^ (3 () F9 ,) G ))

≤ k (3 (G ,) G ))
<∑
9=1

1 − U9
k (3 (F9 ,) F9 ))

2^ (3 () F9 , G )) +
(
2^ (3 (F1,) G )) − 2^ (3 (F<+1,) G ))

)
(∗)

for any G ∈ - .
Put,< =

∑<
9=1(1 − U9 )/k (3 (F9 ,) F9 )) for each < ∈ ℕ. Then we have lim<→∞,< = ∞. Indeed,

if (P1) and (b) is true, then

lim
<→∞

,< ≥
∞∑
9=1

1 − U9
k

(
sup9 ∈ℕ 3 (F9 ,) F9 )

) =∞;

if (P2) is true, then

lim
<→∞

,< ≥
∞∑
9=1

1 − U9
sup9 ∈ℕk (3 (F9 ,) F9 ))

=∞.

Define 6 : - → ℝ by

6 (G ) = lim sup
<→∞

1
,<

<∑
9=1

1 − U9
k (3 (F9 ,) F9 ))

2^ (3 () F9 , G ))

for G ∈ - . Then 6 has a unique minimizer > ∈ - from Lemma 4.13 and (a). It satisfies
6 (>) ≤ 6 ()>) obviously. We also have

k (3 (G ,) G ))6 () G ) ≤ k (3 (G ,) G ))6 (G ) + lim sup
<→∞

2^ (3 (F1,) G )) − 2^ (3 (F<+1,) G ))
,<

≤ k (3 (G ,) G ))6 (G ) + lim
<→∞

2^ (3 (F1,) G ))
,<

= k (3 (G ,) G ))6 (G )

for all G ∈ - by the inequality (∗). It implies 6 ()>) ≤ 6 (>) and hence > = )> , which implies
� () ) \= ∅. �
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Proof of Theorem 4.22. We first show (iii). Take > ∈ � () ), and suppose that lim inf<→∞ U< (1 −
U<) > 0. Then we obtain 3 (F< ,) F<) → 0 from Corollary 4.18. We also have the convergence of
{3 (F< , >)} from Lemma 4.15. These imply the desired result from Lemma 4.20.
Next, we show (ii). Suppose that ) is tightly quasinonexpansive and lim sup<→∞ U< < 1.

Then we have 3 (F< ,) F<) → 0 from Lemma 4.16. Hence {F<} Δ-converges to some F0 ∈ � () )
from Lemma 4.15 and Lemma 4.20. �

In Theorem 4.21, the condition (P2) always holds if k is bounded above. Related to
Theorems 4.21 and 4.22, we can use ^-convex combinations instead of usual convex combi-
nations as follows:

Theorem 4.23. Let - be an admissible complete CAT(^) space and ) : - → - a vicinal mapping
with k . Let {V<} ⊂ [0, 1[ such that

∑∞
<=1(1 − V<) = ∞. Take F1 ∈ - arbitrarily and generate

{F<} ⊂ - by
F<+1 = V<F<

^
⊕ (1 − V<)) F<

for < ∈ ℕ. Let us denote (a) and (b) by the following conditions:

(a) {) F<} is ^-bounded;
(b) sup<∈ℕ 3 (F< ,) F<) < �^/2.

Let k = i ′ ◦ 2^ : [0, �^/2[ → ]0,∞[ and define conditions (P1) and (P2) as follows:

(P1) k is nondecreasing;
(P2) sup<∈ℕk (3 (F< ,) F<)) <∞.

Then the following hold:

(i) Suppose that k satisfies (P1). Then � () ) \= ∅ if (a) and (b) hold. Conversely, � () ) \= ∅
only if (a) and (b) hold when ) is tightly quasinonexpansive.

(i)′ Suppose that k satisfies (P2). Then � () ) \= ∅ if and only if (a) holds.

Theorem 4.24. Let - be an admissible complete CAT(^) space and ) a quasinonexpansive and
Δ-demiclosed mapping from - into itself. Let {V<} ⊂ [0, 1[ such that

∑∞
<=1(1 − V<) = ∞. Take

F1 ∈ - arbitrarily and generate {F<} ⊂ - by

F<+1 = V<F<
^
⊕ (1 − V<)) F<

for < ∈ ℕ. Then the following hold:

(ii) If ) is tightly quasinonexpansive and lim sup<→∞ V< < 1, then {F<} Δ-converges to some
fixed point of ) .

(iii) If lim inf<∈ℕ V< (1 − V<) > 0, then {F<} Δ-converges to some fixed point of ) .

Proof of Theorems 4.23 and 4.24. If ^ = 0, then it is obvious from Theorems 4.21 and 4.22
since V<F<

0
⊕ (1 − V<)) F< = V<F<

^
⊕ (1 − V<)) F< . Therefore, we hereinafter assume that ^ \= 0.

Let Z^
�
be a function defined in Section 2.5 for each � ≥ 0. Put �< = 3 (F< ,) F<) for every

< ∈ ℕ, and define a real sequence {U<} on [0, 1[ by U< =
(
Z^
�<

)−1(V<) for every < ∈ ℕ. Then
V<F<

^
⊕ (1− V<)) F< = U<F< ⊕ (1− U<)) F< for all < ∈ ℕ by Lemma 3.6. Therefore, to prove desired

theorems, we know that it is sufficient to show the following:

(a) If
∑∞
<=1(1 − V<) =∞, then

∑∞
<=1(1 − U<) =∞;

(b) if lim sup<→∞ V< < 1, then lim sup<→∞ U< < 1;
(c) if lim inf<∈ℕ V< (1 − V<) > 0, then lim inf<∈ℕ U< (1 − U<) > 0.
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We obtain (b) and (c) by Lemma 3.25 and Corollary 3.26, respectively. Thus we only need to
show (a). Suppose that

∑∞
<=1(1 − V<) =∞.

If ^ < 0, then we have
1
2 (1 − V<) ≤ 1 − U<

for all < ∈ ℕ from Lemma 2.18, and hence
∞∑
<=1
(1 − U<) ≥ 1

2

∞∑
<=1
(1 − V<) =∞.

We consider the case where ^ > 0. Fix < ∈ ℕ such that F< \= ) F< . Then using Lemma 2.17, we
obtain

1 − V< = 1 − Z^�<
(U<) <

�<

2 ′^ (�<)
(1 − U<).

Since - is admissible and a function ]0, �^ [ 3 B ↦→ B /2 ′^ (B ) ∈ ]1,∞[ is strictly increasing, we get

�<

2 ′^ (�<)
<

�^/2
2 ′^ (�^/2)

=
c
2

and hence
1 − V< ≤ c2 (1 − U<).

It also holds even if F< =) F< . Consequently, we have

∞∑
<=1
(1 − U<) ≥ 2

c

∞∑
<=1
(1 − V<) =∞.

Therefore we get the conclusion. �

4.4 Halpern type fixed point approximations
For a uniquely �-geodesic space - and a mapping ) : - → - , Halpern type iterative scheme
generates a sequence {F<} on - by an iteration F<+1 = U<C ⊕ (1 − U<)) F< for < ∈ ℕ and some
fixed C ∈ - . We consider the convergence of such {F<} to a fixed point of ) .
To prove approximation theorems of a fixed point using Halpern type approximation

scheme, we use the following lemma.

Lemma 4.25 (Kimura and Saejung [16]; Saejung and Yotkaew [26]). Let {V<} ⊂ ]0, 1[ such that∑∞
<=1 V< =∞. Take {0<} ⊂ [0,∞[ and {1<} ⊂ ℝwhich satisfies 0<+1 ≤ (1−V<)0< +V<1< for all < ∈ ℕ.

If lim inf7→∞
(
0i (7 )+1 − 0i (7 )

)
≥ 0 implies lim sup7→∞ Bi (7 ) ≤ 0 for any nondecreasing function

i : ℕ→ ℕ such that lim7→∞ i (7 ) = ∞, then 0< → 0. Suppose that lim sup7→∞ 1i (7 ) ≤ 0 for any
nondecreasing function i : ℕ→ℕ such that lim inf7→∞

(
0i (7 )+1 − 0i (7 )

)
≥ 0 and lim7→∞ i (7 ) =∞.

Then {0<} converges to 0.

Lemma 4.26. For ^ \= 0, let - be a CAT(^) space. Take F, G , H ∈ - such that 3 (F, G ) + 3 (G , H) +
3 (H, F) < 2�^ , and let U ∈ [0, 1]. Put

V = 1 − 1 − U√
U2 + 2U (1 − U)2 ′′^ (3 (F, G )) + (1 − U)2

.
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Then

2^ (3 (UF
^
⊕ (1 − U)G , H))

≤ (1 − V) 2^ (3 (G , H))

+ V · 1
^

©­­«1 −
(
1 − U +

√
U2 + 2U (1 − U)2 ′′^ (3 (F, G )) + (1 − U)2

)
2 ′′^ (3 (F, H))

U + 2(1 − U)2 ′′^ (3 (F, G ))
ª®®¬ .

Proof. Set ( =
√
U2 + 2U (1 − U)2 ′′^ (3 (F, G )) + (1 − U2). By using Theorem 3.14, we obtain

2^ (3 (UF
^
⊕ (1 − U)G , H)) = 1

^

(
1 − 2 ′′^ (3 (UF

^
⊕ (1 − U)G , H))

)
≤ 1
^
− 1
^
· U2

′′
^ (3 (F, H)) + (1 − U)2 ′′^ (3 (G , H))

(

=
1
^
− 1 − U

^(
2 ′′^ (3 (G , H)) −

U
^(

2 ′′^ (3 (F, H))

=
1
^
− 1 − U

^(

(
1 −^2^ (3 (G , H))

)
− U
^(

2 ′′^ (3 (F, H))

=
1
^

(
1 − 1 − U

(

)
+ 1 − U

(
2^ (3 (G , H)) − U

^(
2 ′′^ (3 (F, H))

= V · 1
^
+ (1 − V) 2^ (3 (G , H)) − U

^(
2 ′′^ (3 (F, H))

= (1 − V) 2^ (3 (G , H)) + V · 1
^

(
1 − U

V(
2 ′′^ (3 (F, H))

)
.

We also have
U
V(

=
U

( − (1 − U) =
U (( + (1 − U))
(2 − (1 − U)2

=
1 − U + (

U + 2(1 − U)2 ′′^ (3 (F, G ))
.

Therefore we get the conclusion. �

Lemma 4.27. Let ^ ∈ ℝ and {U<}, ⊂ [0, 1] such that lim<→∞ U< = 0. Let {3<} ⊂ [0, �^/2[ be a
sequence and put

V< = 1 − 1 − U<√
U 2
< + 2U< (1 − U<)2 ′′^ (3<) + (1 − U<)2

for all < ∈ ℕ. Then {V<} ⊂ [0, 1].

Proof. The inequality V< ≤ 1 is obvious for any < ∈ ℕ. Put " = sup<∈ℕ 3< . First, we assume
that ^ > 0. Then we have 2 ′′^ (" ) ≥ 0 since {3<} ⊂ [0, �^/2[, and hence

V< ≥ 1 −
1 − U<√

U 2
< + 2U< (1 − U<)2 ′′^ (" ) + (1 − U<)2

≥
√
U 2
< + 2U< (1 − U<)2 ′′^ (" ) + (1 − U<)2 − (1 − U<)√

U 2
< + 2U< (1 − U<)2 ′′^ (" ) + (1 − U<)2

=
U 2
< + 2U< (1 − U<)2 ′′^ (" )√

U 2
< + 2U< (1 − U<)2 ′′^ (" ) + (1 − U<)2

(√
U 2
< + 2U< (1 − U<)2 ′′^ (" ) + (1 − U<)2 + 1 − U<

)
≥ U 2

< + 2U< (1 − U<)2 ′′^ (" )√
U 2
< + 2U< (1 − U<) + (1 − U<)2

(√
U 2
< + 2U< (1 − U<) + (1 − U<)2 + 1

)
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=
U 2
<

2 + U< (1 − U<)2
′′
^ (" )

for any < ∈ ℕ. It implies V< ≥ 0 for any < ∈ ℕ.
Next we assume that ^ ≤ 0. Then, since 2 ′′^ (3<) ≥ 1 for any < ∈ ℕ, we have

V< ≥ 1 −
1 − U<√

U 2
< + 2U< (1 − U<) · 1 + (1 − U<)2

= U< ≥ 0

for any < ∈ ℕ. �

Lemma 4.28. Let ^ ∈ ℝ and {U<} ⊂ [0, 1] such that
∑∞
<=1 U< =∞. Let {3<} ⊂ [0, �^/2[ and put

V< = 1 − 1 − U<√
U 2
< + 2U< (1 − U<)2 ′′^ (3<) + (1 − U<)2

for all < ∈ ℕ. In the case where ^ > 0, suppose that (i) or (ii) holds:

(i) sup<∈ℕ 3< < �^/2,
(ii)

∑∞
<=1 U

2
< =∞.

Then
∑∞
<=1 V< =∞.

Proof. If ^ ≤ 0, then 2 ′′^ (3<) ≥ 1 for any < ∈ ℕ. Hence we get

∞∑
<=1

V< ≥
∞∑
<=1

(
1 − 1 − U<√

U 2
< + 2U< (1 − U<) · 1 + (1 − U<)2

)
=

∞∑
<=1

U< =∞.

Assume that ^ > 0. Put " = sup<∈ℕ 3< ≤ �^/2. Then we have 2 ′′^ (" ) ≥ 0 and

∞∑
<=1

V< ≥
∞∑
<=1

(
U 2
<

2 + U< (1 − U<)2
′′
^ (" )

)
by the same calculation as Lemma 4.27. If (i) is true, then 2 ′′^ (" ) > 0. Hence

∑∞
<=1 V< =∞ holds

if (i) or (ii) is true, which is the desired result. �

Theorem 4.29. Let - be an admissible complete CAT(^) space and ) : - → - a tightly quasi-
nonexpansive and Δ-demiclosed mapping. Let {U<} ⊂ ]0, 1[ such that lim<→∞ U< = 0 and∑∞
<=1 U< =∞. Let C, F1 ∈ - arbitrarily and define {F<} ⊂ - by

F<+1 = U<C
^
⊕ (1 − U<)) F<

for any < ∈ ℕ. In the case where ^ > 0, suppose that (i) or (ii) holds:

(i) sup<∈ℕ 3 (C,) F<) < �^/2,
(ii)

∑∞
<=1 U

2
< =∞.

Then {F<} converges to %� () )C .

To prove the above theorem, we divide the two cases, ^ \= 0 and ^ = 0.
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Proof of Theorem 4.29 when ^ \= 0. Put > = %� () )C and

0< = 2^ (3 (F< , >));

V< = 1 − 1 − U<√
U 2
< + 2U< (1 − U<)2 ′′^ (3 (C,) F<)) + (1 − U<)2

;

1< =
1
^

©­­«1 −
(
1 − U< +

√
U 2
< + 2U< (1 − U<)2 ′′^ (3 (C,) F<)) + (1 − U<)2

)
2 ′′^ (3 (C,>))

U< + 2(1 − U<)2 ′′^ (3 (C,) F<))
ª®®¬

for each < ∈ ℕ. Then we get 0<+1 ≤ (1 − V<)0< + V<1< for any < ∈ ℕ by Lemmas 4.10, 4.26, and
4.27. Moreover, we obtain

∑∞
<=1 V< =∞ by Lemma 4.28.

Note the quasinonexpansiveness of ( and ) . Since 2^ is nondecreasing, we obtain

2^ (3 (F<+1, >)) ≤ U<2^ (3 (C,>)) + (1 − U<)2^ (3 () F< , >))
≤ U<2^ (3 (C,>)) + (1 − U<)2^ (3 (F< , >))

for any < ∈ ℕ, and it deduces that

2^ (3 (F< , >)) ≤ min{2^ (3 (C,>)), 2^ (3 (F1, >))} < 2^ (�^/2)

for any < ∈ ℕ. Thus we get sup<∈ℕ 3 () F< , >) ≤ sup<∈ℕ 3 (F< , >) < �^/2.
Let i : ℕ→ ℕ be a nondecreasing function such that lim7→∞ i (7 ) =∞. Put <7 = i (7 ) for each

7 ∈ ℕ and suppose that lim inf7→∞(0<7+1 − 0<7 ) ≥ 0. Then we get

0 ≤ lim inf
7→∞

(
0<7+1 − 0<7

)
= lim inf

7→∞

(
2^ (3 (F<7+1, >)) − 2^ (3 (F<7 , >))

)
≤ lim inf

7→∞

(
U<7 2^ (3 (C,>)) + (1 − U<7 )2^ (3 () F<7 , >)) − 2^ (3 (F<7 , >))

)
= lim inf

7→∞

(
2^ (3 () F<7 , >)) − 2^ (3 (F<7 , >))

)
≤ lim sup

7→∞

(
2^ (3 () F<7 , >)) − 2^ (3 (F<7 , >))

)
≤ 0.

Therefore, lim7→∞
(
2^ (3 () F<7 , >)) − 2^ (3 (F<7 , >))

)
= 0 holds.

Put ! = inf7 ∈ℕ 2 ′′^ (3 () F<7 , >)). Then we obtain ! > 0. Indeed, if ^ < 0, we have ! ≥ 1 obviously;
if ^ > 0, then

! ≥ inf
7 ∈ℕ

2 ′′^ (3 (F<7 , >)) = 2 ′′^
(
sup
7 ∈ℕ

3 (F<7 , >)
)
> 2 ′′^

(
�^

2

)
= 0.

Since ) is tightly quasinonexpansive, we have

2^ (3 (F<7 ,) F<7 ))2 ′′^ (3 () F<7 , >)) ≤ 2^ (3 (F<7 , >)) − 2^ (3 () F<7 , >))

for any 7 ∈ ℕ, which yields

2^ (3 (F<7 ,) F<7 )) ≤
2^ (3 (F<7 , >)) − 2^ (3 () F<7 , >))

2 ′′^ (3 () F<7 , >))

≤
2^ (3 (F<7 , >)) − 2^ (3 () F<7 , >))

!
→ 0.

as 7 →∞. Thus we get 3 (F<7 ,) F<7 ) → 0.
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Take a subsequence {F<78 } of {F<7 } and its subsequence {F<789 } such that

X B lim inf
7→∞

3 (C,) F<7 ) = lim
8→∞

3 (C,) F<78 )

and F<789⇀
�
H ∈ - . Then we obtain H ∈ � () ) since ) is Δ-demiclosed.

Note that X < �^/2 always holds if ^ ≤ 0. Indeed, we have sup7 ∈ℕ 3 (C,) F<7 ) ≤ 3 (C,>) +
sup7 ∈ℕ 3 () F<7 , >) <∞ = �^/2 if ^ ≤ 0.
In what follows, {9 } denotes {<7 89 }. Then we get from Corollary 2.7 that

X = lim
9→∞

3 (C,) F9 ) = lim
9→∞

3 (C, F9 ) ≥ 3 (C, H) ≥ 3 (C,>).

Moreover, using lim<→∞ U< = 0, we obtain

lim sup
7→∞

1<7 = lim sup
7→∞

1
^

©­­­­«
1 −

(
1 − U<7 +

√
U 2
<7 + 2U<7 (1 − U<7 )2 ′′^ (3 (C,) F<7 )) + (1 − U<7 )2

)
2 ′′^ (3 (C,>))

U<7 + 2(1 − U<7 )2 ′′^ (3 (C,) F<7 ))

ª®®®®¬
= lim sup

7→∞

1
^

(
1 − 2 ′′^ (3 (C,>))

2 ′′^ (3 (C,) F<7 ))

)
=
1
^

(
1 − lim

9→∞

2 ′′^ (3 (C,>))
2 ′′^ (3 (C,) F9 ))

)
.

If X < �^/2, then we have

1
^

(
1 − lim

9→∞

2 ′′^ (3 (C,>))
2 ′′^ (3 (C,) F9 ))

)
≤ 1
^

(
1 − 2

′′
^ (3 (C,>))
2 ′′^ (3 (C,>))

)
= 0.

Otherwise, if X =�^/2, which occurs only if ^ > 0, then we obtain lim9→∞ 2 ′′^ (3 (C,) F9 )) = 0 and
2 ′′^ (3 (C,>)) > 0; this follows that

1
^

(
1 − lim

9→∞

2 ′′^ (3 (C,>))
2 ′′^ (3 (C,) F9 ))

)
= −∞ < 0.

Consequently, we get the conclusion from Lemma 4.25. �

Proof of Theorem 4.29 when ^ = 0. Take a point > = %� () )C , and put 0< = 3 (F< , >)2 and
1< = 3 (C,>)2 − (1 − U<)3 (C,) F<)2 for < ∈ ℕ. Then we get 0<+1 ≤ U<3 (C,>)2 + (1 −
U<)3 () F< , >)2 − U< (1 − U<)3 (C,) F<)2 ≤ (1 − U<)0< + U<1< for any < ∈ ℕ. We also have
3 (F<+1, >)2 ≤ U<3 (C,>)2 + (1 − U<)3 (F< , >)2 ≤ max{3 (C,>)2, 3 (F< , >)2} for any < ∈ ℕ, and thus
sup<∈ℕ 3 (F< , >) ≤ max{3 (C,>), 3 (F1, >)} < ∞. It means that sequences {3 (F< , >)}, {3 () F< , >)},
{3 (C, F<)} and {3 (C,) F<)} are bounded.
Let i : ℕ→ ℕ be a nondecreasing function such that lim7→∞ i (7 ) =∞. Put <7 = i (7 ) for each

7 ∈ ℕ and suppose that lim inf7→∞(0<7+1−0<7 ) ≥ 0. Then we get lim7→∞
(
3 () F<7 , >)2 − 3 (F<7 , >)2

)
=

0 by the same calculation as the proof of Theorem 4.29. Therefore we obtain

3 (F<7 ,) F<7 )2 ≤ 3 (F<7 , >)2 − 3 () F<7 , >)2→ 0

as 7 →∞ by the tight quasinonexpansiveness of ) , which implies lim7→∞ 3 (F<7 ,) F<7 ) = 0.
Take subsequences {F<789 } ⊂ {F<78 } ⊂ {F<7 } such that lim inf7→∞ 3 (C,) F<7 ) = lim8→∞ 3 (C,) F<78 )

and F<789 ⇀
�
H ∈ - . Then H ∈ � () ). Let us denote {<7 89 } by {9 } simply. Then, since U< → 0 as
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<→∞, we have lim sup7→∞ 1<7 = 3 (C,>)2− lim inf7→∞(1−U<7 )3 (C,) F<7 )2 = 3 (C,>)2− lim9→∞(1−
U9 )3 (C,) F9 )2 = 3 (C,>)2− lim9→∞ 3 (C,) F9 )2 = 3 (C,>)2− lim9→∞ 3 (C, F9 )2 ≤ 3 (C,>)2−3 (C, H)2 ≤ 0
by Lemma 2.6. Therefore we get the desired result from Lemma 4.25. �

By Theorem 4.29, we obtain an Halpern type approximation theorem for a firmly vicinal
mapping with k an admissible complete CAT(^) space as follows.

Corollary 4.30. Let - be an admissible complete CAT(^) space and ) : - → - a firmly vicinal
mapping with k such that � () ) \= ∅. Suppose that {U<}, C , and {F<} are the same as
Theorem 4.29. In the case where ^ > 0, suppose that (i) or (ii) holds:

(i) sup<∈ℕ 3 (C,) F<) < �^/2,
(ii)

∑∞
<=1 U

2
< =∞.

Then {F<} converges to %� () )C .

Proof. By Lemmas 4.2 and 4.9, ) is Δ-demiclosed and tightly quasinonexpansive. Therefore,
from Theorem 4.29, we get the conclusion. �
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Chapter 5

Equilibrium problems

Let - be a CAT(^) space,  a nonempty closed convex subset of - , and 5 :  2 → ℝ. Then
a mapping ' 5 is called a resolvent operator of the equilibrium problem for 5 if the set of all
fixed points of ' 5 coincides with the set of all solutions to the equilibrium problem for 5 , that
is, � (' 5 ) = Equil 5 . Resolvents of the equilibrium problem play an important role in reducing
the equilibrium problem to a fixed point problem.
In 2018, Kimura and Kishi [12] proposed the resolvent & 5 : - → 2 of the equilibrium

problem for 5 :  2→ ℝ defined by

& 5 F =

{
H ∈  

���� infG ∈ 

(
5 (H, G ) + 123 (F, G )

2 − 123 (F, H)
2
)
≥ 0

}
on a complete CAT(0) space - and a nonempty closed convex subset  of - . They assumed
that - has the convex hull finite property, and 5 satisfies conditions (E1)–(E4) when proving
that & 5 is well-defined as a single-valued mapping. This mapping & 5 can be expressed by

& 5 F =

{
H ∈  

���� infG ∈ 
( 5 (H, G ) + i (20(3 (F, G ))) − i (20(3 (F, H)))) ≥ 0

}
,

where i (B ) = B for B ∈ [0,∞[.
Later, in 2021, Kimura [11] showed the resolvent ' 5 defined by the following is a single-

valued mapping under the appropriate conditions on an admissible complete CAT(1) space:

' 5 F =

{
H ∈  

���� infG ∈ 
( 5 (H, G ) − log cos3 (F, G ) + log cos3 (F, H)) ≥ 0

}
=

{
H ∈  

���� infG ∈ 
( 5 (H, G ) + i (21(3 (F, G ))) − i (21(3 (F, H)))) ≥ 0

}
,

where i (B ) = − log (1 − B ) for B ∈ [0, 1[.
Similarly, the resolvent ( 5 on a complete CAT(−1) space was proposed by Kimura and

Ogihara [20]. It is defined by

( 5 F =

{
H ∈  

���� infG ∈ 
( 5 (H, G ) + cosh3 (F, G ) − cosh3 (F, H)) ≥ 0

}
=

{
H ∈  

���� infG ∈ 
( 5 (H, G ) + i (2−1(3 (F, G ))) − i (2−1(3 (F, H)))) ≥ 0

}
,

where i (B ) = B for B ∈ [0,∞[.
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In the same fashion, in general CAT(^) spaces, we expect a resolvent defined by using a
perturbation i (2^ (3)) to be a single-valued mapping with the appropriate conditions. In this
chapter, we consider the sufficient conditions for the function i to define the resolvent as a
single-valued mapping on an admissible CAT(^) space.

5.1 Resolvents of the equilibrium problem
In what follows, put [<] = {1, 2, . . . , <} for each < ∈ ℕ.

Lemma 5.1. Let - be a uniquely geodesic space and � = {G1, G2, . . . , G<} a subset of - . For a
nonempty set �, let ℎ be a bifunction from �×- into ℝ. Suppose that the function ℎ (H, ·) : - →ℝ

is convex for any H ∈ �. Then, for any D ∈ co� , there exists {`1, `2, . . . , `<} ⊂ [0, 1] such that∑<
7=1 `7 = 1 and ℎ (H,D ) ≤ ∑<

7=1 `7ℎ (H, G7 ) for all H ∈ �.

Proof. Put �1 = � and �8+1 = {BC ⊕ (1 − B )C ′ | C,C ′ ∈ - , B ∈ [0, 1]} for 8 ∈ ℕ. Then co� =
⋃
8 ∈ℕ �8 .

Therefore, we need to show that the existence of such {`1, `2, . . . , `<} ⊂ [0, 1] for any 8 ∈ ℕ and
D ∈ �8 . We show it by induction for 8 ∈ ℕ.
Suppose 8 = 1 and let D ∈ �8 = � . Then there exists 7< ∈ [<] such that D = G70 . Thus, putting

`70 = 1 and `7 = 0 for 7 ∈ [<] \ {70}, we get ℎ (H,D ) =
∑<
7=1 ℎ (H, G7 ) for any H ∈ �.

Next, assume that is true for some 8 ∈ ℕ. Let D ∈ �8+1. Then there exists B ∈ [0, 1] and C,C ′ ∈ �8
such that D = BC ⊕ (1 − B )C ′. Hence, from the assumption, there exists {`1, `2, . . . , `<} ⊂ [0, 1]
such that

∑<
7=1 `7 = 1 and ℎ (H,C) ≤

∑<
7=1 `7ℎ (H, G7 ) for any H ∈ �. Similarly, we have the existence

of {`′1, `
′
2, . . . , `

′
<} ⊂ [0, 1] such that

∑<
7=1 `

′
7
= 1 and ℎ (H,C ′) ≤ ∑<

7=1 `
′
7
ℎ (H, G7 ) for any H ∈ �. Take

H ∈ � arbitrarily. Then

ℎ (H,D ) ≤ Bℎ (H,C) + (1 − B )ℎ (H,C ′) ≤
<∑
7=1

(
B`7 + (1 − B )`′7

)
ℎ (H, G7 )

and
∑<
7=1

(
B`7 + (1 − B )`′7

)
= 1 hold and thus we get the conclusion. �

Lemma 5.2 (Kimura [11]). For ^ > 0, let - be an admissible complete CAT(^) space having the
convex hull finite property and � a nonempty subset of - . Suppose that a mapping " : � → 2-
satisfies that " (G ) is closed for any G ∈ - . If cl co� ⊂ ⋃

G ∈� " (G ) holds for any finite subset �
of - , then {" (G ) | G ∈ � } has the finite intersection property.

Lemma 5.3 (Niculescu and Rovenţa [25]). Let - be a complete CAT(0) space having the convex
hull finite property and � a nonempty subset of - . Suppose that a mapping " : � → 2-
satisfies that " (G ) is nonempty closed convex for any G ∈ - . If cl co� ⊂ ⋃

G ∈� " (G ) holds for
any finite subset � of - , then {" (G ) | G ∈ � } has the finite intersection property.

Lemma 5.4 (Kimura [11]). For ^ > 0, let - be an admissible complete CAT(^) space and � a
nonempty closed convex subset of - satisfying infG ∈� supF∈� 3 (F, G ) < �^/2. Let M be a family
of closed convex subsets of - and suppose that M has the finite intersection property. Then,⋂M \= ∅.
Lemma 5.5 (Kimura and Kishi [12]). Let - be a complete CAT(0) space and � a Δ-compact
subset of - . Let M be a family of Δ-closed subsets of - and suppose that M has the finite
intersection property. Then,

⋂M \= ∅.
Lemma 5.6. Let - be an admissible complete CAT(^) space. Suppose that - has the convex
hull finite property. Let  be a nonempty closed convex subset of - and suppose that a function
ℎ :  2 → ℝ satisfies (E1), (E2) and (E3). Let � be a nonempty closed convex subset of  and
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define a set " (G ) by " (G ) = {H ∈ � | ℎ (G , H) ≤ 0} for each G ∈ � . Then the following properties
hold:

(i) " (G ) is nonempty closed convex for any G ∈ � ,
(ii) a set {" (G ) | G ∈ � } has the finite intersection property,
(iii) if infG ∈� supF∈� 3 (F, G ) < �^/2, then

⋂
G ∈� " (G ) \= ∅.

Proof. (i) Let G ∈ � . Since ℎ satisfies (E1), we get G ∈ " (G ) and hence " (G ) is nonempty.
Therefore, since ℎ satisfies (E3), we obtain " (G ) is closed and convex.
(ii) Let � = {G1, G2, . . . , G<} ⊂ � . We show co� ⊂ ⋃<

7=1" (G7 ). Assume that it is false, and let
D ∈ co� \⋃<

7=1" (G7 ). Then we get ℎ (G7 , D ) > 0 for any 7 ∈ [<]. From D ∈ co� and Lemma 5.1,
there exists {`1, `2, . . . , `<} ⊂ [0, 1] such that

∑<
7=1 `7 = 1 and ℎ (G9 , D ) ≤

∑<
7=1 `7ℎ (G9 , G7 ) for any

9 ∈ [<]. Thus we obtain

0 <

<∑
9=1

`9ℎ (G9 , D ) ≤
<∑
9=1

<∑
7=1

`9`7ℎ (G9 , G7 ) = 1
2

<∑
9=1

<∑
7=1

`9`7 (ℎ (G9 , G7 ) +ℎ (G7 , G9 )) ≤ 0,

which is a contradiction. Hence we get co� ⊂ ⋃<
7=1" (G7 ). It implies that

cl co� ⊂ cl
<⋃
7=1

" (G7 ) =
<⋃
7=1

" (G7 )

and thus {" (G ) | G ∈ � } has the finite intersection property by Lemma 5.2 or Lemma 5.3.
(iii) First we consider the case of ^ > 0. By the result of (ii), {" (G ) | G ∈ � } has the finite

intersection property. Hence we get
⋂
G ∈� " (G ) \=∅ by using Lemma 5.4. We consider the case

of ^ ≤ 0. Suppose infG ∈� supF∈� 3 (F, G ) < �^/2 =∞. It means that � is bounded and hence � is
Δ-compact by Lemma 2.4. Furthermore, " (G ) is Δ-closed for any G ∈ � since " (G ) ⊂ � from
Lemma 2.5. Thus, from Lemma 5.5 and (ii), we have

⋂
G ∈� " (G ) \= ∅. �

Lemma 5.7. Let - be an admissible complete CAT(^) space. Suppose that - has the convex
hull finite property. Let  be a nonempty closed convex subset of - and ℎ a real function on  2

with conditions (E1)–(E4). Suppose that there exist C ∈  and ' ∈ ]0, �^/2[ such that ℎ (H,C) ≤ 0
for any H ∈  satisfying 3 (C, H) = ' . Then Equilℎ \= ∅.
Proof. Put � = {H ∈  | 3 (C, H) ≤ '}, and let " (G ) = {H ∈ � | ℎ (G , H) ≤ 0} for each G ∈ � . We
know that � is a nonempty closed convex subset of  , and we have

inf
G ∈�

sup
F∈�

3 (F, G ) ≤ sup
H∈�

3 (C, H) ≤ ' <
�^

2 .

Therefore, from Lemma 5.6 (iii), we obtain
⋂
G ∈� " (G ) \= ∅.

Let H0 ∈
⋂
G ∈� " (G ). Then we get ℎ (G , H0) ≤ 0 for any G ∈ � . We also have 3 (C, H0) ≤ ' . Let

E ∈ � and B ∈ ]0, 1[ arbitrarily. Then BE ⊕ (1 − B )H0 ∈ � , and this implies

0 = ℎ (BE ⊕ (1 − B )H0, BE ⊕ (1 − B )H0) ≤ Bℎ (BE ⊕ (1 − B )H0,E )

by using the condition (E3). It follows that ℎ (BE ⊕ (1 − B )H0,E ) ≥ 0. Since ℎ satisfies the
condition (E4), we obtain

ℎ (H0,E ) ≥ lim sup
B→0

ℎ (BE ⊕ (1 − B )H0,E ) ≥ 0.

Therefore ℎ (H0,E ) ≥ 0 holds for any E ∈ � .
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We show that ℎ (H0, G ) ≥ 0 holds for each G ∈  . Let G ∈  and put

C0 =

{
C (if 3 (C, H0) = ');
H0 (if 3 (C, H0) < ').

Then we have 3 (C,C0) < ' . In fact, if 3 (C, H0) = ' , then we get 3 (C,C0) = 3 (C,C) = 0. On the
other hand, if 3 (C, H0) < ' , then we have 3 (C,C0) = 3 (C, H0) < ' .
Since 3 (C,C0) < ' , we can take a sufficiently small B0 ∈ ]0, 1[ satisfying

B02^ (3 (C, G )) + (1 − B0)2^ (3 (C,C0)) < 2^ (').

Then we get

2^ (3 (C, B0G ⊕ (1 − B0)C0)) ≤ B02^ (3 (C, G )) + (1 − B0)2^ (3 (C,C0)) < 2^ (')

and thus 3 (C, B0G ⊕ (1− B0)C0) < ' . Since  is convex, we get B0G ⊕ (1− B0)C0 ∈  . Hence, by the
definition of � , we obtain B0G ⊕ (1 − B0)C0 ∈ � . Therefore

0 ≤ ℎ (H0, B0G ⊕ (1 − B0)C0) ≤ B0ℎ (H0, G ) + (1 − B0)ℎ (H0, C0).

Incidentally, we also have ℎ (H0, C0) ≤ 0 and hence ℎ (H0, G ) ≥ 0. Indeed, if 3 (C, H0) = ' , then
ℎ (H0, C0) = ℎ (H0, C) ≤ 0 holds by the assumption, and if 3 (C, H0) < ' then ℎ (H0, C0) = ℎ (H0, H0) = 0.
Thus we get the conclusion. �

Remark 5.8. In the assumptions of Lemma 5.7, there need not exist H ∈  such that 3 (C, H) = ' .
This means that, we can adapt this lemma even when 3 (C, H) < ' for all H ∈  .

In what follows for a function Φ : [0, �^/2[ → [0,∞[, let us write Φ(3) as Φ3 for every
3 ∈ [0, �^/2[.

Theorem 5.9. Let - be an admissible complete CAT(^) space. Suppose that - has the convex
hull finite property. Let  be a nonempty closed convex subset of - and let 5 :  2 → ℝ with
conditions (E1)–(E4). Let Φ : [0, �^/2[ → [0,∞[ be a continuous convex function. Suppose the
following:

• If ^ ≤ 0 and  is unbounded, then

lim inf
3 (C,H )→∞

H∈ 

5 (C, H)
3 (C, H) + lim3→∞

Φ3
3

> 0

for some C ∈  .
• If ^ > 0, then suppose that Φ is strictly increasing and lim3→�^/2Φ3 =∞.

For F ∈ - , define a function ℎF :  2→ ℝ by

ℎF (H, G ) = 5 (H, G ) +Φ3 (F, G ) −Φ3 (F, H)

for any (H, G ) ∈  2. Then EquilℎF \= ∅ for any F ∈ - .

Proof. Take F ∈ - arbitrarily, and put ℎ B ℎF for simplicity. Since Φ is continuous and convex,
ℎ satisfies the conditions (E1)–(E4).
First, we consider the case where ^ ≤ 0. Take a point C ∈  satisfying the assumption. We

show the following condition (∗) holds:

(∗) there exists ' > 0 such that for any H ∈  with 3 (C, H) = ' , an inequality ℎ (C, H) ≤ 0 holds.
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If  is bounded, then we can take ' > 0 such that 3 (C, H) < ' , thus (∗) holds. Suppose that  
is unbounded. Then we have

ℎ (H,C) = 5 (H,C) +Φ3 (F,C) −Φ3 (F, H)
≤ −5 (C, H) +Φ3 (F,C) −Φ3 (F, H)
= Φ3 (F,C) − ( 5 (C, H) +Φ3 (F, H))

for any H ∈  . We also obtain

lim inf
3 (C,H )→∞

H∈ 

5 (C, H) +Φ3 (F, H)
3 (C, H) > 0.

In fact, in case (a), we have

lim inf
3 (C,H )→∞

H∈ 

5 (C, H) +Φ3 (F, H)
3 (C, H) ≥ lim inf

3 (C,H )→∞
H∈ 

0 +Φ3 (F, H)
3 (C, H) = lim

3→∞
Φ3
3

> 0

since C ∈ Equil 5 ; otherwise, in case (b),

lim inf
3 (C,H )→∞

H∈ 

5 (C, H) +Φ3 (F, H)
3 (C, H) ≥ lim inf

3 (C,H )→∞
H∈ 

5 (C, H)
3 (C, H) + lim inf

3 (C,H )→∞
H∈ 

Φ3 (F, H)
3 (C, H)

= lim inf
3 (C,H )→∞

H∈ 

5 (C, H)
3 (C, H) + lim3→∞

Φ3
3

> 0.

Hence we get 5 (C, H) + Φ3 (F, H) → ∞ when 3 (C, H) → ∞, and it means that ℎ (H,C) → −∞ if
3 (C, H) → ∞. Therefore we can take ' > 0 such that ℎ (H,C) ≤ 0 for any H ∈  with 3 (C, H) = ' .
This implies that (∗) holds regardless of whether the set  is bounded or not. Consequently,
from Lemma 5.7, there exists H0 ∈ � such that infG ∈ ℎ (H0, G ) ≥ 0. Thus we get the conclusion
if ^ ≤ 0.
Next, we consider the case where ^ > 0. By the assumptions for Φ, we can assume that Φ is

bijective onto [9,∞[ for 9 B Φ(0). Thus there exists the inverse Φ−1 : [9,∞[ → [0, �^/2[ of Φ.
Let C = % F and put ! = infG ∈ 5 (C, G ) − Φ3 (F,C). Since 5 satisfies the condition (E3), we

obtain that 5 (C, ·) is bounded below by Lemma 2.2. Hence we have

−∞ < ! ≤ 5 (C,C) −Φ3 (F,C) = −Φ3 (F,C) ≤ −9.

If ! = −9 , then we obtain

ℎ (C, G ) = 5 (C, G ) +Φ3 (F, G ) −Φ3 (F,C) ≥ −9 +Φ3 (F, G ) ≥ 0

for all G ∈  and thus we get the conclusion.
Suppose ! < −9 . Using Corollary 2.12, we get 3 (C, H) ≤ 3 (F, H) and it implies Φ3 (C, H) ≤

Φ3 (F, H). Thus we have

ℎ (H,C) = 5 (H,C) +Φ3 (F,C) −Φ3 (F, H)
≤ −5 (C, H) +Φ3 (F,C) −Φ3 (C, H)
≤ −! −Φ3 (C, H)
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for any H ∈  . Put ' = Φ−1(−!) < �^/2. Then we obtain

−! −Φ3 (C, H) = 0 ⇐⇒ 3 (C, H) = '

for any H ∈  . It implies that ℎ (H,C) ≤ 0 for any H ∈  with 3 (C, H) = ' . Therefore, from
Lemma 5.7, we get the conclusion. �

Remark 5.10. If Φ : [0, �^/2[ → [0,∞[ is continuous and convex, then there exists a limit
lim3→∞Φ3/3 ∈ [0,∞].

Remark 5.11. Consider the case where ^ ≤ 0 in Theorem 5.9. Then we have

lim inf
3 (C,H )→∞

H∈ 

5 (C, H)
3 (C, H) ≥ 0

for all C ∈ Equil 5 by the definition of Equil 5 . Therefore, if Equil 5 \= ∅ and lim3→∞Φ3/3 > 0,
then

lim inf
3 (C,H )→∞

H∈ 

5 (C, H)
3 (C, H) + lim3→∞

Φ3
3

> 0

holds for all C ∈ Equil 5 ⊂  .

Remark 5.12. Consider the case where ^ ≤ 0 in Theorem 5.9 again. If lim3→∞Φ3/3 = ∞, then
we obtain

lim inf
3 (C,H )→∞

H∈ 

5 (C, H)
3 (C, H) + lim3→∞

Φ3
3

> 0

for all C ∈  . In fact, by Lemma 2.1, there exists ! ∈ ]−∞, 0] such that for any C ∈  ,

lim inf
3 (C,H )→∞

H∈ 

5 (C, H)
3 (C, H) ≥ !.

This implies that

lim inf
3 (C,H )→∞

H∈ 

5 (C, H)
3 (C, H) + lim3→∞

Φ3
3
≥ ! + lim

3→∞
Φ3
3

=∞

for all C ∈  .

Remark 5.13. In this thesis, we say that a real function 5 : [0,1 [ → ℝ is differentiable if 5 is
differentiable on ]0,1 [ and 5 is right differentiable at 0 . Then we write a right derivative of 5
at 0 simply by 5 ′(0). That is, 5 ′(0) = limB ←0 ( 5 (B ) − 5 (0))/(B − 0). In addition, 5 is said to be
continuous on [0,1 [ if 5 is continuous at ]0,1 [ and 5 is right continuous at 0 .
Similarly, 6 : ]0,1] → ℝ is said to be differentiable if 6 is differentiable on ]0,1 [ and 6 is left

differentiable at 1 . Moreover, 6 is said to be continuous on ]0,1] if 6 is continuous at ]0,1 [
and 6 is left continuous at 1 .

Lemma 5.14. Let - be an admissible CAT(^) space and  a nonempty convex subset of
- . Let i : [0, 2^ (�^/2) [ → [0,∞[ be a differentiable function such that i ′ is continuous on
[0, 2^ (�^/2) [. Take F ∈ - and H,E ∈  such that H \=E , and put � = 3 (H,E ). Define a function
Υ from [0, 1[ into [0, 2^ (�^/2) [ by

Υ(B ) = (B )^�
(
2^ (3 (F,E )) − 2^ ((1 − B )�)

)
+ (1 − B )^�

(
2^ (3 (F, H)) − 2^ (B�)

)
for B ∈ [0, 1[. Then

lim
B→0

i (Υ(B )) − i (2^ (3 (F, H)))
B

= i ′(2^ (3 (F, H))) · �

2 ′^ (�)
(
2^ (3 (F,E )) − 2^ (�) − 2 ′′^ (�)2^ (3 (F, H))

)
.
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Proof. Define ! : [0, 1[ → ℝ by ! (B ) = i (Υ(B )) − i (2^ (3 (F, H))) for every B ∈ [0, 1[. Then ! is
differentiable on ]0, 1[, and ! (0) = 0. In fact, since

3
3B
(B )^� =

�2 ′′^ (B�)
2 ′^ (�)

and 3
3B
(1 − B )^� = −�2

′′
^ ((1 − B )�)
2 ′^ (�)

for any B ∈ ]0, 1[, we get

Υ′(B ) = �2 ′′^ (B�)
2 ′^ (�)

(
2^ (3 (F,E )) − 2^ ((1 − B )3 (E, H))

)
+� (B )^�2^ ((1 − B )�)

− �2
′′
^ ((1 − B )�)
2 ′^ (�)

(
2^ (3 (F, H)) − 2^ (B3 (E, H))

)
−� (1 − B )^�2^ (B�).

This follows that

lim
B→0

Υ′(B ) = �

2 ′^ (�)
(
2^ (3 (F,E )) − 2^ (�) − 2 ′′^ (�)2^ (3 (F, H))

)
.

since B ↦→ (B )�^ is continuous at 0 and 1. Furthermore, since i ′ is continuous,

lim
B→0

i ′(Υ(B )) = i ′(Υ(0)) = i ′(2^ (3 (F, H))).

Hence we obtain

lim
B→0

3!
3B
(B ) = lim

B→0
i ′(Υ(B ))Υ′(B )

= i ′(2^ (3 (F, H))) · �

2 ′^ (�)
(
2^ (3 (F,E )) − 2^ (�) − 2 ′′^ (�)2^ (3 (F, H))

)
.

Consequently, we get

lim
B→0

i (Υ(B )) − i (2^ (3 (F, H)))
B

= lim
B→0

! (B )
B

= lim
B→0

3!
3B
(B ),

which is the desired result. �

Lemma 5.15. Let - be an admissible complete CAT(^) space. Suppose that - has the convex
hull finite property. Let  be a nonempty closed convex subset of - and 5 a real function
on  2 with conditions (E1)–(E4). Let i : [0, 2^ (�^/2) [ → [0,∞[ be a nondecreasing and
differentiable function such that i ′ is continuous on [0, 2^ (�^/2) [. Define Φ : [0, �^/2[ → [0,∞[
by Φ3 = i (2^ (3)) for 3 ∈ [0, �^/2[. Fix F ∈ - and define a subset ' 5 F of  by

' 5 F =

{
H ∈  

���� infG ∈ 
( 5 (H, G ) +Φ3 (F, G ) −Φ3 (F, H)) ≥ 0

}
.

Suppose that ' 5 F is nonempty. Then

0 ≤ 5 (H,E ) + i ′(2^ (3 (F, H))) · �

2 ′^ (�)
(
2^ (3 (F,E )) − 2^ (�) − 2 ′′^ (�)2^ (3 (F, H))

)
holds for any H ∈ ' 5 F and E ∈  \ {H}, where � = 3 (H,E ).
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Proof. Let H ∈ ' 5 F , E ∈  , B ∈ ]0, 1[ and suppose that E \= H . Since BE ⊕ (1 − B )H ∈  , we have

0 ≤ 5 (H, BE ⊕ (1 − B )H) +Φ3 (F, BE ⊕ (1 − B )H) −Φ3 (F, H)
≤ B 5 (H,E ) + (1 − B ) 5 (H, H) +Φ3 (F, BE ⊕ (1 − B )H) −Φ3 (F, H)
= B 5 (H,E ) +Φ3 (F, BE ⊕ (1 − B )H) −Φ3 (F, H),

and thus
0 ≤ 5 (H,E ) + Φ3 (F, BE ⊕ (1 − B )H) −Φ3 (F, H)

B
.

Put � = 3 (H,E ) > 0 and

Υ(B ) = (B )^�
(
2^ (3 (F,E )) − 2^ ((1 − B )�)

)
+ (1 − B )^�

(
2^ (3 (F, H)) − 2^ (B�)

)
.

Then, from Stewart’s theorem on CAT(^) spaces and the nondecreasingness of i , we obtain

Φ3 (F, BE ⊕ (1 − B )H) −Φ3 (F, H) = i (2^ (3 (F, BE ⊕ (1 − B )H))) −Φ3 (F, H)
≤ i (Υ(B )) −Φ3 (F, H).

Therefore, using Lemma 5.14, we get

0 ≤ 5 (H,E ) + Φ3 (F, BE ⊕ (1 − B )H) −Φ3 (F, H)
B

≤ 5 (H,E ) + i (Υ(B )) −Φ3 (F, H)
B

→ 5 (H,E ) + i ′(2^ (3 (F, H))) · �

2 ′^ (�)
(
2^ (3 (F,E )) − 2^ (�) − 2 ′′^ (�)2^ (3 (F, H))

)
as B ←0 for any H ∈ ' 5 F and E ∈  \ {H}, where � = 3 (H,E ). �

Theorem 5.16. Let - ,  , 5 , i , Φ, and ' 5 are same as Lemma 5.15. Suppose that ' 5 F is
nonempty for all F ∈ - . Then for any F1, F2 ∈ - , H1 ∈ ' 5 F1, and H2 ∈ ' 5 F2,(

i ′(2^ (�1))2 ′′^ (�1) + i ′(2^ (�2))2 ′′^ (�2)
)
2^ (3 (H1, H2))

≤ i ′(2^ (�1))
(
2^ (3 (F1, H2)) − 2^ (�1)

)
+ i ′(2^ (�2))

(
2^ (3 (F2, H1)) − 2^ (�2)

) (∗)

holds, where �1 = 3 (F1, H1), and �2 = 3 (F2, H2). In addition, if ' 5 is well-defined as a single-
valued mapping from - into  , then the following hold:

(i) ' 5 is firmly vicinal with i ′ ◦ 2^ : [0, �^/2[ → ]0,∞[;
(ii) � (' 5 ) = Equil 5 holds, and Equil 5 is closed and convex.

Proof. Let F1, F2 ∈ - , H1 ∈ ' 5 F1 and H2 ∈ ' 5 F2, and put � = 3 (H1, H2). If H1 = H2, then (∗) holds
obviously. Considering the case where H1 \= H2, we have

0 ≤ 5 (H1, H2) + i ′(2^ (3 (F1, H1))) · �

2 ′^ (�)
(
2^ (3 (F1, H2)) − 2^ (�) − 2 ′′^ (�)2^ (3 (F1, H1))

)
and

0 ≤ 5 (H2, H1) + i ′(2^ (3 (F2, H2))) · �

2 ′^ (�)
(
2^ (3 (F2, H1)) − 2^ (�) − 2 ′′^ (�)2^ (3 (F2, H2))

)
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from Lemma 5.15. Summing up these inequalities and dividing by �/2 ′^ (�), we obtain

0 ≤ i ′(2^ (3 (F1, H1)))
(
2^ (3 (F1, H2)) − 2^ (�) − 2 ′′^ (�)2^ (3 (F1, H1))

)
+ i ′(2^ (3 (F2, H2)))

(
2^ (3 (F2, H1)) − 2^ (�) − 2 ′′^ (�)2^ (3 (F2, H2))

)
.

Let � be the right-hand side of the above inequality. Since 2 ′′^ (3) = 1 − ^2^ (3) holds for any
3 ∈ ℝ, we have

� = i ′(2^ (3 (F1, H1)))
(
2^ (3 (F1, H2)) − 2^ (�) − 2^ (3 (F1, H1)) +^2^ (�)2^ (3 (F1, H1))

)
+ i ′(2^ (3 (F2, H2)))

(
2^ (3 (F2, H1)) − 2^ (�) − 2^ (3 (F2, H2)) +^2^ (�)2^ (3 (F2, H2))

)
= i ′(2^ (3 (F1, H1)))

(
2^ (3 (F1, H2)) − 2^ (3 (F1, H1))

)
+ i ′(2^ (3 (F2, H2)))

(
2^ (3 (F2, H1)) − 2^ (3 (F2, H2))

)
−

(
i ′(2^ (3 (F1, H1)))

(
1 −^2^ (3 (F1, H1))

)
+ i ′(2^ (3 (F2, H2)))

(
1 −^2^ (3 (F2, H2))

) )
2^ (�)

= i ′(2^ (3 (F1, H1)))
(
2^ (3 (F1, H2)) − 2^ (3 (F1, H1))

)
+ i ′(2^ (3 (F2, H2)))

(
2^ (3 (F2, H1)) − 2^ (3 (F2, H2))

)
−

(
i ′(2^ (3 (F1, H1))) 2 ′′^ (3 (F1, H1)) + i ′(2^ (3 (F2, H2))) 2 ′′^ (3 (F2, H2))

)
2^ (�),

which is the conclusion of (∗).
Henceforth, assume that ' 5 is single-valued. Take F1, F2 ∈ - arbitrarily. Then, substituting

H1 B ' 5 F1 and H2 B ' 5 F2 to (∗), we get (i) from Lemma 4.3.
We show � (' 5 ) ⊂ Equil 5 . Suppose that H ∈ � (' 5 ), namely, H = ' 5 H . Let G ∈  and put

� = 3 (H, G ). Then from Lemma 5.15,

0 ≤ 5 (H, G ) + i ′(2^ (3 (H, H))) · �

2 ′^ (�)
(
2^ (�) − 2^ (�) − 2 ′′^ (�)2^ (3 (H, H))

)
= 5 (H, G ) + i ′(0) · �

2 ′^ (�)
(
2^ (�) − 2^ (�) − 2 ′′^ (�) · 0

)
= 5 (H, G )

if H \= G . We also have 5 (H, G ) ≥ 0 even if H = G by (E2). Thus we get 5 (H, G ) ≥ 0 for all G ∈  .
This implies H ∈ Equil 5 , and thus � (' 5 ) ⊂ Equil 5 .
Finally, we show � (' 5 ) ⊃ Equil 5 . Take H ∈ Equil 5 . Since Φ is strictly increasing on [0, �^/2[,

we obtain
inf
G ∈ 
( 5 (H, G ) +Φ3 (H, G ) −Φ3 (H, H)) ≥ inf

G ∈ 
5 (H, G ) ≥ 0

and hence H = ' 5 H , that is, H ∈ � (' 5 ). It concludes that � (' 5 ) = Equil 5 .
If � (' 5 ) is nonempty, then ' 5 is quasinonexpansive by (iv). Thus the set � (' 5 ) is closed and

convex, and so is Equil 5 . Consequently, we get the conclusion. �

We consider a condition for ' 5 F \= ∅ to hold.

Lemma 5.17. Let - be an admissible complete CAT(^) space. Suppose that - has the convex
hull finite property. Let  be a nonempty closed convex subset of - and 5 a real function
on  2 with conditions (E1)–(E4). Let i : [0, 2^ (�^/2) [ → [0,∞[ be a nondecreasing and
differentiable function such that i ′ is continuous on [0, 2^ (�^/2) [. Define Φ : [0, �^/2[ → [0,∞[
by Φ3 = i (2^ (3)) for 3 ∈ [0, �^/2[. Suppose the following:

• Φ is convex.
• If ^ ≤ 0 and  is unbounded, then

lim inf
3 (C,H )→∞

H∈ 

5 (C, H)
3 (C, H) + lim3→∞

Φ3
3

> 0
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for some C ∈  .
• If ^ > 0, then suppose that i is strictly increasing and lim3→�^/2Φ3 =∞.

Fix F ∈ - and define a subset ' 5 F of  by

' 5 F =

{
H ∈  

���� infG ∈ 
( 5 (H, G ) +Φ3 (F, G ) −Φ3 (F, H)) ≥ 0

}
.

Then ' 5 F is nonempty.

Proof. By the assumption, Φ is continuous and convex. In addition, when ^ > 0, then Φ is
strictly increasing on [0, �^/2[ since so are i and 2^ | [0,�^ ] . Thus, from Theorem 5.9, we get
' 5 F \= ∅ for every F ∈ - . �

Now we show two main results for the well-definedness of the resolvent for equilibrium
problems with a perturbation function Φ = i ◦ 2^ .

Theorem 5.18. Let - be an admissible complete CAT(^) space. Suppose that - has the convex
hull finite property. Let  be a nonempty closed convex subset of - and 5 a real function
on  2 with conditions (E1)–(E4). Let i : [0, 2^ (�^/2) [ → [0,∞[ be a strictly increasing and
differentiable function such that i ′ is continuous on [0, 2^ (�^/2) [ and nondecreasing. Define
Φ : [0, �^/2[ → [0,∞[ by Φ3 = i (2^ (3)) for 3 ∈ [0, �^/2[. Suppose the following:

• If ^ ≤ 0 and  is unbounded, then

lim inf
3 (C,H )→∞

H∈ 

5 (C, H)
3 (C, H) + lim3→∞

Φ3
3

> 0

for some C ∈  .
• If ^ > 0, then suppose that lim3→�^/2Φ3 =∞.

Define a subset ' 5 F of  by

' 5 F =

{
H ∈  

���� infG ∈ 
( 5 (H, G ) +Φ3 (F, G ) −Φ3 (F, H)) ≥ 0

}
for each F ∈ - . Then the following hold:

(i) ' 5 F consists of exactly one point for every F ∈ - , and thus ' 5 : - →  is defined as a
single-valued mapping;

(ii) ' 5 is firmly vicinal with i ′ ◦ 2^ : [0, �^/2[ → ]0,∞[;
(iii) � (' 5 ) = Equil 5 .

Proof. The nondecreasingness of i ′ yields the convexity of i . Furthermore, since 2^ is convex
on [0, �^/2[, Φ is also convex. Therefore, from Lemma 5.17, ' 5 F is nonempty for all F ∈ - . We
also have i ′(B ) > 0 for any B ∈ ]0, 2^ (�^/2) [ since i is strictly increasing.
Let F ∈ - and H1, H2 ∈ ' 5 F . Then we obtain from Theorem 5.16 that

2^ (3 (H1, H2))

≤
i ′(2^ (3 (F, H1)))

(
2^ (3 (F, H2)) − 2^ (3 (F, H1))

)
+ i ′(2^ (3 (F, H2)))

(
2^ (3 (F, H1)) − 2^ (3 (F, H2))

)
i ′(2^ (3 (F, H1)))2 ′′^ (3 (F, H1)) + i ′(2^ (3 (F, H2)))2 ′′^ (3 (F, H2))

=

(
i ′(2^ (3 (F, H1))) − i ′(2^ (3 (F, H2)))

) (
2^ (3 (F, H2)) − 2^ (3 (F, H1))

)
i ′(2^ (3 (F, H1)))2 ′′^ (3 (F, H1)) + i ′(2^ (3 (F, H2)))2 ′′^ (3 (F, H2))

.
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Since we are now assuming that i ′ is nondecreasing, we obtain 2^ (3 (H1, H2)) ≤ 0 and thus
H1 = H2. Therefore we can consider ' 5 to be a single-valued mapping from - into  .
Conditions (ii) and (iii) are obtained from Theorem 5.16. �

Theorem 5.19. For ^ ≤ 0, let - be an admissible complete CAT(^) space and suppose that -
has the convex hull finite property. Let  be a nonempty closed convex subset of - and 5

a real function on  2 with conditions (E1)–(E4). Let i : [0,∞[ → [0,∞[ be a nondecreasing
and differentiable function such that i ′ is continuous on [0,∞[. Define Φ : [0,∞[ → [0,∞[ by
Φ3 = i (2^ (3)) for 3 ∈ [0,∞[. If  is unbounded, then assume that

lim inf
3 (C,H )→∞

H∈ 

5 (C, H)
3 (C, H) + lim3→∞

Φ3
3

> 0

for some C ∈  . Furthermore, suppose that the following two conditions hold:

• Φ = i ◦ 2^ is convex on [0,∞[;
• Φ3 (F, ·) is strictly midpoint convex on  for any F ∈ - , namely,

Φ3
(
F,
1
2G1 ⊕

1
2G2

)
<
1
2Φ3 (F, G1) +

1
2Φ3 (F, G2)

holds for any F ∈ - and G1, G2 ∈  with G1 \= G2.

Define a subset ' 5 F of  by

' 5 F =

{
H ∈  

���� infG ∈ 
( 5 (H, G ) +Φ3 (F, G ) −Φ3 (F, H)) ≥ 0

}
for each F ∈ - . Then the following hold:

(i) ' 5 F consists of exactly one point for every F ∈ - , and thus ' 5 : - →  is defined as a
single-valued mapping;

(ii) ' 5 is firmly vicinal with i ′ ◦ 2^ : [0,∞[ → ]0,∞[;
(iii) � (' 5 ) = Equil 5 .

Proof. (i) Take F ∈ - and H ∈  arbitrarily, and put 6H (·) = 5 (H, ·) +Φ3 (F, ·). Then 6H :  → ℝ is
lower semicontinuous and convex. By the assumptions for 5 and Φ, we get

6H

(1
2G1 ⊕

1
2G2

)
= 5

(
H,
1
2G1 ⊕

1
2G2

)
+Φ3

(
F,
1
2G1 ⊕

1
2G2

)
<
1
26H (G1) +

1
26H (G2)

for any G1, G2 ∈  with G1 \= G2. Moreover, we obtain

lim inf
3 (H,G )→∞

G ∈ 

6H (G )
3 (H, G ) ≥ lim inf

3 (H,G )→∞
G ∈ 

5 (H, G )
3 (H, G ) + lim inf

3 (H,G )→∞
G ∈ 

Φ3 (F, G )
3 (H, G )

= lim inf
3 (H,G )→∞

G ∈ 

5 (H, G )
3 (H, G ) + lim3→∞

Φ3
3

> 0

and hence 6H (G ) → ∞ if 3 (H, G ) → ∞, that is, 6H is coercive. It concludes that 6H has the unique
minimizer by Lemma 6.7 (in Chapter 6).
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Put GH = argminG ∈ 6H (G ) for each H ∈  . Let H1, H2 ∈ ' 5 F . Then we have 5 (H1, GH1) +Φ3 (F, GH1) −
Φ3 (F, H1) ≥ 0 and 5 (H2, GH2) +Φ3 (F, GH2) −Φ3 (F, H2) ≥ 0. Thus

5 (H1, GH1) + 5 (H2, GH2) ≥ Φ3 (F, H1) +Φ3 (F, H2) −Φ3 (F, GH1) −Φ3 (F, GH2)

holds. Assume that H1 \= H2. Then we obtain

5 (H1, GH1) +Φ3 (F, GH1) ≤ 5
(
H1,

1
2H1 ⊕

1
2H2

)
+Φ3

(
F,
1
2H1 ⊕

1
2H2

)
<
1
2 5 (H1, H2) +

1
2Φ3 (F, H1) +

1
2Φ3 (F, H2)

and similarly we get

5 (H2, GH2) +Φ3 (F, GH2) <
1
2 5 (H2, H1) +

1
2Φ3 (F, H2) +

1
2Φ3 (F, H1).

Summing up these inequalities, we obtain

5 (H1, GH1) + 5 (H2, GH2) < Φ3 (F, H1) +Φ3 (F, H2) −Φ3 (F, GH1) −Φ3 (F, GH2),

which is a contradiction. Thus ' 5 F is a singleton for every F ∈ - . (ii) and (iii) are directly
obtained by Theorem 5.16. �

In Theorem 5.19, the assumption that i is nondecreasing is not much different from
assuming that i is strictly increasing. Indeed, we get the following.

Fact 5.20. Let - be an admissible CAT(^) space and � ∈ ]0, �^/2[. Let  be a convex subset of
- such that there exist >, ? ∈  such that 3 (>, ?) ≥ � . Suppose that a function i : [0, 2^ (�^/2) [
is nondecreasing. Put Φ3 = i (2^ (3)) for 3 ∈ [0, �^/2[, and suppose that Φ3 (F, ·) is strictly
midpoint convex on  for all F ∈ - . Then, i is strictly increasing on [0, 2^ (�) [. In particular, if
^ ≤ 0 and  is unbounded, then i is strictly increasing on [0,∞[.

Proof. Assume that i is not strictly increasing on [0, 2^ (�) [. Then there exist B1, B2 ∈ [0, 2^ (�) [
such that B1 < B2 and i (B ) = i (B1) = i (B2) for all B ∈ [B1, B2]. Take 31, 32 ∈ [0, � [ such that
B1 = 2^ (31) and B2 = 2^ (32). Then we obtain Φ3 = Φ31 = Φ32 for all 3 ∈ [31, 32].
Let >, ? ∈  such that 3 (>, ?) ≥ � . Then there exist C,E ∈ [>, ?] which satisfy 3 (C,E ) = 32.

Take D ∈ [C,E ] such that 3 (C,D ) = 31. Then we get

Φ3
(
C,
1
2D ⊕

1
2E

)
<
1
2Φ3 (C,D ) +

1
2Φ3 (C,E ) =

1
2Φ31 +

1
2Φ32 = Φ31.

We also obtain
3
(
C,
1
2D ⊕

1
2E

)
=
31 + 32

2 ∈ [31, 32]

and thus
Φ3

(
C,
1
2D ⊕

1
2E

)
= Φ31,

which is a contradiction. Therefore i is strictly increasing on [0, 2^ (�) [.
If ^ ≤ 0 and  is unbounded, then we can take any large� ∈ [0,∞[ satisfying the assumption.

This is the conclusion. �
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As a consequences of previous results, we obtain sufficient conditions that the perturbation
Φ = i ◦ 2^ makes ' 5 a single-valued mapping as follows. Recall that the differentiability and
the continuity of the mapping is specified in Remark 5.13.
In what follows, suppose that - is an admissible complete CAT(^)space which has the convex

hull finite property. Let  be a nonempty closed convex subset of - and 5 a real function on  2

with conditions (E1)–(E4). Let i : [0, 2^ (�^/2) [ → [0,∞[ and put Φ = i ◦2^ : [0, �^/2[ → [0,∞[.
Define a set-valued mapping ' 5 : - → 2 by

' 5 F =

{
H ∈  

���� infG ∈ 
( 5 (H, G ) +Φ(3 (F, G )) −Φ(3 (F, H))) ≥ 0

}
(★)

for F ∈ - .
First, we consider case where ^ ≤ 0. If i : [0,∞[ → [0,∞[ has the following conditions

(a), (b), (c), and (d1), then a resolvent ' 5 of the equilibrium problem for 5 is well-defined by
Theorem 5.18 or Theorem 5.19:

(a) i is strictly increasing and differentiable;
(b) i ′ is continuous on [0,∞[;
(c) at least one of the following hold:

(c1) i ′ is nondecreasing;
(c2) Φ = i ◦ 2^ is convex on [0,∞[, and Φ3 (F, ·) is strictly midpoint convex on  for any

F ∈ - ;
(d1)  is bounded; otherwise, an inequality

lim inf
3 (C,H )→∞

H∈ 

5 (C, H)
3 (C, H) + lim3→∞

Φ3
3

> 0

holds for some C ∈  .

Note the following remarks.

• If the condition (c2) holds, then we can change the condition of the strict increasingness
of i in (a) to the nondecreasingness of i . These two conditions for i are equivalent
under (c2) if  is unbounded, see Fact 5.20.

• If lim3→∞Φ3/3 > 0 and Equil 5 \= ∅, then (d1) is always true, see Remark 5.11.
• If lim3→∞Φ3/3 = ∞, then (d1) is always true, see Remark 5.12. Therefore (d1) is true
if limB→∞ i ′(B ) = ∞. Indeed, if limB→∞ i ′(B ) = ∞, then we have limB→∞ i (B )/B = ∞ and
hence lim3→∞Φ3/3 =∞.

• If  is unbounded, then the condition (d1) is true if 5 (D, ·) is bounded below for any
D ∈  and lim3→∞Φ3/3 > 0.

Next, consider the case where ^ > 0. If i : [0, 2^ (�^/2) [ → [0,∞[ has the following conditions
(a), (b), (c1), and (d2), then a resolvent ' 5 of the equilibrium problem for 5 is well-defined by
Theorem 5.18.

(a) i is strictly increasing and differentiable;
(b) i ′ is continuous on [0, 2^ (�^/2) [;
(c1) i ′ is nondecreasing;
(d2) Φ satisfies lim3→�^/2Φ3 =∞.

Note the following remarks.

• lim3→�^/2Φ3 =∞ if and only if lim3→�^/2Φ3/3 =∞ since �^ = c/
√
^ for ^ > 0.
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• Since ^ > 0, we have 2^ (�^/2) = 1/^ . Therefore, (d2) is equivalent to lim_ →1 i (_/^) =∞.

We now consider some specific cases. First, we confirm that the same results as in previous
studies [11, 12, 20] in several perturbation functions follow from Theorems 5.18 and 5.19. In
the following three cases, a resolvent ' 5 is well-defined as a single-valued mapping from
Theorem 5.18.

Corollary 5.21 (Kimura [11]). Let ^ = 1 and i (B ) = − log (1 − B ) for B ∈ [0, 1[. Then, Φ3 =

− log cos3 for 3 ∈ [0, c/2[, and a resolvent ' 5 : - →  defined by the equation (★) is well-
defined. Moreover, the following hold:

(i) ' 5 is firmly vicinal with k : [0, c/2[ 3 3 ↦→ 1/cos3 , that is,

2 cos3 (' 5 F1, ' 5 F2) ≥
cos3 (F1, ' 5 F2)
cos3 (F1, ' 5 F1)

+
cos3 (F2, ' 5 F1)
cos3 (F2, ' 5 F2)

for any F1, F2 ∈ - ;
(ii) ' 5 is vicinal with the same k as (i);
(iii) ' 5 is vicinal with a constant function 1 : [0, c/2[ 3 3 ↦→ 1.

Proof. A derivative of i is expressed by i ′(B ) = 1/(1−B ) for B ∈ [0, 1[. Thus i satisfies conditions
(a), (b), (c1), and (d2). Therefore, ' 5 is well-defined as a single-valued mapping. Putk = i ′ ◦2^ ,
then k (3) = 1/cos3 for 3 ∈ [0, c/2[, and ' 5 is firmly vicinal with k . It follows that (i) and (ii)
hold. Moreover, (i) implies an inequality 2 cos3 (' 5 F1, ' 5 F2) ≥ cos3 (F1, ' 5 F2) + cos3 (F2, ' 5 F1)
for every F1, F2 ∈ - , which means the vicinity of ' 5 with a constant function 1. �

Corollary 5.21 (iii) means that such a mapping ' 5 is spherically nonspreading of sum type,
see Section 4.1.

Corollary 5.22 (Kimura and Kishi [12]). Let ^ = 0 and i (B ) = B for B ∈ [0,∞[. Then, Φ3 = 32/2
for 3 ∈ [0,∞[, and a resolvent ' 5 : - →  defined by the equation (★) is well-defined. Moreover,
' 5 is firmly metrically nonspreading.

Proof. We easily obtain that conditions (a), (b), (c1), and (d1) are true, hence ' 5 is well-defined.
Put k = i ′ ◦ 2^ for any 3 ∈ [0,∞[. Then k (3) = 1 for any 3 ∈ [0,∞[. Thus ' 5 is firmly metrically
nonspreading, see Section 4.1. �

Corollary 5.23 (Kimura and Ogihara [20]). Let ^ = −1 and i (B ) = B + 1 for B ∈ [0,∞[. Then,
Φ3 = cosh3 for 3 ∈ [0,∞[, and a resolvent ' 5 : - →  defined by the equation (★) is well-defined.
Moreover, it satisfies(

cosh3 (F1, ' 5 F1) + cosh3 (F2, ' 5 F2)
)
cosh3 (' 5 F1, ' 5 F2) ≤ cosh3 (F1, ' 5 F2) + cos3 (F2, ' 5 F1)

for any F1, F2 ∈ - .

Proof. Now conditions (a), (b), (c1), and (d1) are true. Put k = i ′ ◦ 2^ , that is, k (3) = 1 for any
3 ∈ [0,∞[. Then ' 5 is firmly vicinal with k , which follows the desired inequality. �

Now we introduce three corollaries, which are our new result. The following Corollaries 5.24
and 5.26 are obtained from Theorem 5.18, and Corollary 5.27 from Theorem 5.19.

Corollary 5.24. We consider the case where ^ = 1 and i (B ) = 1/(1 − B ) − (1 − B ) for B ∈ [0, 1[.
Then,Φ3 = tan3 sin3 for 3 ∈ [0, c/2[. Define a resolvent ' 5 : - →  by the equation (★). Then
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' 5 is well-defined, and it satisfies((
1

cos2 3 (F1, ' 5 F1)
+ 1

)
cos3 (F1, ' 5 F1) +

(
1

cos2 3 (F2, ' 5 F2)
+ 1

)
cos3 (F2, ' 5 F2)

)
cos3 (' 5 F1, ' 5 F2)

≥
(

1
cos2 3 (F1, ' 5 F1)

+ 1
)
cos3 (F1, ' 5 F2) +

(
1

cos2 3 (F2, ' 5 F2)
+ 1

)
cos3 (F2, ' 5 F1)

for any F1, F2 ∈ - . Furthermore, ' 5 is firmly spherically nonspreading in the sense of Kimura
and Kohsaka [13]. Namely,

cos2 3 (' 5 F1, ' 5 F2) ≥ 2
cos3 (F1, ' 5 F1) + cos3 (F1, ' 5 F1)

cos3 (F1, ' 5 F2) cos3 (F2, ' 5 F1)

for any F1, F2 ∈ - .

Proof. We get i ′(B ) = 1 + 1/(1 − B )2 for any B ∈ [0, 1[. Thus i satisfies (a), (b), (c1), and
(d2), therefore ' 5 is well-defined as a single-valued mapping. Put k = i ′ ◦ 2^ , that is,
k (3) = 1/cos2 3 + 1 for 3 ∈ [0, c/2[, then ' 5 is firmly vicinal with k . Therefore, we get the
desired first inequality.
Let F1, F2 ∈ - and put i1 = cos3 (F1, ' 5 F2), i2 = cos3 (F2, ' 5 F1) and put �1 = cos3 (F1, ' 5 F1)

and �2 = cos3 (F2, ' 5 F2). Then we get

cos3 (' 5 F1, ' 5 F2) ≥

(
1
� 2
1
+ 1

)
i1 +

(
1
� 2
2
+ 1

)
i2(

1
� 2
1
+ 1

)
�1 +

(
1
� 2
2
+ 1

)
�2

=

�2
�1
i1 +

�1
�2
i2 +�1�2(i1 + i2)

(�1 +�2) (1 +�1�2)
≥
2√i1i2 + 2�1�2

√
i1i2

(�1 +�2) (1 +�1�2)
=
2√i1i2
�1 +�2

and thus

cos2 3 (' 5 F1, ' 5 F2) ≥
(

2
�1 +�2

)2
i1i2 ≥ 2

�1 +�2
cos3 (F1, ' 5 F2) cos3 (F2, ' 5 F1)

for any F1, F2 ∈ - . This is the desired result. �

In 2016, the well-definedness of the resolvent of the convex function defined by using the
perturbation tan3 sin3 was proved by Kimura and Kohsaka [13]. The result above implies
that we can use the same perturbation tan3 sin3 to define the resolvent of the equilibrium
problem as the single-valued mapping.

Corollary 5.25. We consider the case where ^ = 1 and i (B ) = 1/(1 − B ) for B ∈ [0, 1[. Then,
Φ3 = 1/cos3 for 3 ∈ [0, c/2[. Define a resolvent ' 5 : - →  by the equation (★). Then ' 5 is
well-defined, and it satisfies(

1
cos3 (F1, ' 5 F1)

+ 1
cos3 (F2, ' 5 F2)

)
cos3 (' 5 F1, ' 5 F2)

≥ 1
cos2 3 (F1, ' 5 F1)

· cos3 (F1, ' 5 F2) + 1
cos2 3 (F2, ' 5 F2)

· cos3 (F2, ' 5 F1)

for any F1, F2 ∈ - .
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Proof. Since i ′(B ) = 1/(1 − B )2 for any B ∈ [0, 1[, i satisfies (a), (b), (c1), and (d2). Hence
' 5 is well-defined as a single-valued mapping. Moreover, putting k = i ′ ◦ 2^ , we have
k (3) = 1/cos2 3 for 3 ∈ [0, c/2[ and ' 5 is firmly vicinal with k . This is the conclusion. �

Corollary 5.26. We consider the case where ^ = −1 and i (B ) = log (B + 1) for B ∈ [0,∞[. Then,
Φ3 = log cosh3 for 3 ∈ [0,∞[. Suppose that 5 :  2→ ℝ satisfies (E1)–(E4) and

lim inf
3 (C,H )→∞

H∈ 

5 (C, H)
3 (C, H) + 1 > 0

for some C ∈  . Then a resolvent ' 5 : - →  defined by the equation (★) is well-defined, and

2 cosh3 (' 5 F1, ' 5 F2) ≤
cosh3 (F1, ' 5 F2)
cosh3 (F1, ' 5 F1)

+
cosh3 (F2, ' 5 F1)
cosh3 (F2, ' 5 F2)

holds for any F1, F2 ∈ - .

Proof. We get i ′(B ) = 1/(B + 1), and thus i satisfies (a), (b), and (c1). Furthermore, since
lim3→∞Φ3/3 = lim3→∞(log cosh3)/3 = 1, we obtain (d1). Thus ' 5 is well-defined as a single-
valued mapping. Put k = i ′ ◦ 2^ , that is, k (3) = 1/cosh3 for 3 ∈ [0,∞[. Then ' 5 is firmly
vicinal with k and hence we get the conclusion. �

Corollary 5.27. We consider the case where ^ = −1 and i (B ) = B + 1 − 1/(B + 1) for B ∈ [0,∞[.
Then,Φ3 = tanh3 sinh3 for 3 ∈ [0,∞[. Define a resolvent ' 5 : - →  by the equation (★). Then
' 5 is well-defined, and it satisfies((

1
cosh2 3 (F1, ' 5 F1)

+ 1
)
cosh3 (F1, ' 5 F1) +

(
1

cosh2 3 (F2, ' 5 F2)
+ 1

)
cosh3 (F2, ' 5 F2)

)
cosh3 (' 5 F1, ' 5 F2)

≤
(

1
cosh2 3 (F1, ' 5 F1)

+ 1
)
cosh3 (F1, ' 5 F2) +

(
1

cosh2 3 (F2, ' 5 F2)
+ 1

)
cosh3 (F2, ' 5 F1)

for any F1, F2 ∈ - .

To show it, we use the next lemma.

Lemma 5.28 (Kajimura and Kimura [7]). Let - be a complete CAT(−1) space and F ∈ - . Define
a real function 6 by

6 (·) = tanh3 (F, ·) sinh3 (F, ·).
Then 6 is strictly midpoint convex.

Proof of Corollary 5.27. A functionΦ is convex, andΦ3 (F, ·) = tanh3 (F, ·) sinh3 (F, ·) is strictly
midpoint convex by the above lemma. Moreover, we get lim3→∞Φ3/3 = ∞. It means that i
satisfies (a), (b), (c2) and (d1). Therefore ' 5 is well-defined from Theorem 5.19. Putk = i ′ ◦2^ .
Then k (3) = 1 + 1/cosh2 3 for any 3 ∈ [0,∞[, and then ' 5 is firmly vicinal with k . It implies
the desired result. �

In Theorems 5.16, 5.18, and 5.19, we used a perturbation i ◦ 2^ to define a resolvent ' 5 .
Henceforth, we consider that we use a perturbation i ◦ 2 ′′^ instead of i ◦ 2^ , and consider
conditions to well-define a resolvent. Let - be a complete CAT(^) space with the convex hull
finite property, and  a nonempty closed convex subset of - .
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Consider the case where ^ < 0. Let i : [0,∞[ → [0,∞[ and i : [1,∞[ → [0,∞[. Suppose that
i ◦ 2^ = i ◦ 2 ′′^ , and let ' 5 : - → 2 be a set-valued mapping defined by

' 5 F =

{
H ∈  

���� infG ∈ 
( 5 (H, G ) + i (2^ (3 (F, G ))) − i (2^ (3 (F, H)))) ≥ 0

}
=

{
H ∈  

���� infG ∈ 

(
5 (H, G ) + i (2 ′′^ (3 (F, G ))) − i (2 ′′^ (3 (F, H)))

)
≥ 0

}
for F ∈ - . Then we know that ' 5 is well-defined if i : [0,∞[ → [0,∞[ satisfies conditions (a),
(b), (c), and (d1). Moreover since 2 ′′^ (3) = 1 −^2^ (3) for 3 ∈ ℝ, we get i (B ) = i (1 −^B ) for any
B ≥ 0. Indeed, we obtain i (2^ (3)) = i (2 ′′^ (3)) = i (1 −^2^ (3)) for all 3 ≥ 0. Under this setting,
we have the following.

Theorem 5.29. Let ^ < 0, i : [0,∞[ → [0,∞[, and i : [1,∞[ → [0,∞[. Suppose that i (2^ (3)) =
i (2 ′′^ (3)) for every 3 ∈ [0,∞[. Define conditions (a), (b) and (c1) for i by

(a) i is strictly increasing and differentiable;
(b) i ′ is continuous on [0,∞[;
(c1) i ′ is nondecreasing.

Similarly, define conditions (a′), (b′) and (c1′) for i by

(a′) i is strictly increasing and differentiable;
(b′) i ′ is continuous on [1,∞[;
(c1′) i ′ is nondecreasing.

Then conditions (a) and (a′) are equivalent. Moreover, under the conditions (a) and (a′), the
following hold:

• (b) and (b′) are equivalent;
• (c1) and (c1′) are equivalent.

Proof. Since −^ > 0 and i (B ) = i (1−^B ) for any B ≥ 0, we easily get that i is strictly increasing
if and only if so is i . Moreover, from i ((A − 1)/(−^)) = i (A ) for any A ≥ 1, it is clear
that i is differentiable if and only if i is differentiable. Assuming that (a) is true, we get
i ′(B ) = −^i ′(1 −^B ) for all B ∈ [0,∞[, which is the conclusion. �

In the same way, we also get the following for ^ > 0.

Theorem 5.30. Let ^ > 0, i : [0, 2^ (�^/2) [ → [0,∞[, and i : ]0, 1] → [0,∞[. Suppose that
i (2^ (3)) = i (2 ′′^ (3)) for every 3 ∈ [0, �^/2[. Define conditions (a), (b) and (c1) for i by

(a) i is strictly increasing and differentiable;
(b) i ′ is continuous on [0,∞[;
(c1) i ′ is nondecreasing.

Similarly, define conditions (a′), (b′) and (c1′) for i by

(a′′) i is strictly decreasing and differentiable;
(b′) i ′ is continuous on ]0, 1];
(c1′) i ′ is nondecreasing.

Then conditions (a) and (a′′) are equivalent. Moreover, under the conditions (a) and (a′′), the
following hold:

• (b) and (b′) are equivalent;
• (c1) and (c1′) are equivalent.
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Proof. By assumptions, we get 2^ (�^/2) = 1/^ and i (B ) = i (1 − ^B ) for any B ∈ [0, 1/^ [. In
other words, i ((1 − A )/^) = i (A ) for any A ∈ ]0, 1]. These imply the conclusion. �

Theorems 5.29 and 5.30 imply that using 2^ and 2 ′′^ to define the perturbation function are
essentially equivalent for any ^ \= 0. Note that since i ′(B ) = −^i ′(1 − ^B ) for all B ∈ [0,∞[, we
get i ′ ◦ 2^ = −^ (i ′ ◦ 2 ′′^ ). This means that a mapping ) : - → - is (firmly) vicinal with i ′ ◦ 2^
if and only if ) is (firmly) vicinal with −^ (i ′ ◦ 2 ′′^ ).
The following table describes natures of a resolvent ' 5 of the equilibrium problem defined

by using a perturbation Φ = i ◦ 2^ = i ◦ 2 ′′^ , where ‘FV’ and ‘V’ mean ‘firmly vicinal’ and
‘vicinal’, respectively.

Perturbation
Φ(3) i (B ) i (A ) Nature of

i ′ and i ′
Natures of ' 5

^ = 1

− log cos3 − log (1 − B ) − log A nondecreasing
FV with 3 ↦→ 1

cos3 ;
V with 3 ↦→ 1.

tan3 sin3 1
1 − B − (1 − B )

1
A
− A nondecreasing FV with 3 ↦→ 1

cos2 3 + 1.

1
cos3

1
1 − B

1
A

nondecreasing FV with 3 ↦→ 1
cos2 3 .

^ = 0 1
23

2 B (null) nondecreasing FV with 3 ↦→ 1.

^ = −1

log cosh3 log (B − 1) log A nondecreasing FV with 3 ↦→ 1
cosh3 .

tanh3 sinh3 B + 1 − 1
B + 1 A − 1

A
nonincreasing FV with 3 ↦→ 1

cosh2 3
+ 1.

cosh3 B + 1 A nondecreasing FV with 3 ↦→ 1.

Note that perturbations defining ' 5 and functions defining firm vicinity of ' 5 are related to
an integral with the formula ∫ 3

0
5 (2 ′′^ (B ))2 ′^ (B )3B .

For instance, if ^ = 1, which implies 2 ′′^ (B ) = cos B and 2 ′^ (B ) = sin B , then we get

− log cos3 =

∫ 3

0

1
cos B · sin B 3B , tan3 sin3 =

∫ 3

0

(
1

cos2 B
+ 1

)
sin B 3B ,

and
1

cos3 = 1 +
∫ 3

0

1
cos2 B

· sin B 3B .

Similarly, if ^ = −1, which implies 2 ′′^ (B ) = cosh B , 2 ′^ (B ) = sinh B , then we obtain

log cosh3 =

∫ 3

0

1
cosh B · sinh B 3B , tanh3 sinh3 =

∫ 3

0

(
1

cosh2 B
+ 1

)
sinh B 3B ,

and

cosh3 = 1 +
∫ 3

0
1 · sinh B 3B .
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This fact is obtained by the following result.

Theorem 5.31. For ^ \= 0, let - be a complete CAT(^) space with the convex hull finite property,
and  a nonempty closed convex subset of - . Let i : [0,∞[ → [0,∞[ be a function which
satisfies the same conditions as Theorem 5.16, and ' 5 : - →  a resolvent for 5 well defined by

' 5 F =

{
H ∈  

���� infG ∈ 
( 5 (H, G ) + i (2^ (3 (F, G ))) − i (2^ (3 (F, H)))) ≥ 0

}
for F ∈ - as a single-valued mapping. Put �^ = [1,∞[ if ^ < 0, and �^ = ]0, 1] if ^ > 0. Let
2 ∈ ℝ and 6 : �^ → ℝ such that i ′(2^ (0)) = 6 (2 ′′^ (0)) and

i (2^ (3)) = 2 +
∫ 3

0
6 (2 ′′^ (B ))2 ′^ (B )3B

for every 3 ∈ [0, �^/2[. Then ' 5 is firmly vicinal with 6 ◦ 2 ′′^ .

Proof. By assumptions, we obtain

i ′(2^ (3))2 ′^ (3) = 6 (2 ′′^ (3))2 ′^ (3)

for every 3 ∈ [0, �^/2[. This means that i ′(2^ (3)) = 6 (2 ′′^ (3)) for all 3 ∈ [0, �^/2[. Therefore,
from Theorem 5.16, we get the conclusion. �

5.2 Applications
By applying results of Lemma 4.9 and Theorem 5.16 to Theorems 4.21, 4.22, 4.23, and 4.24, we
obtain the following convergence theorem with Mann type approximation scheme.

Corollary 5.32. Let - ,  , 5 , i and Φ be the same as Theorem 5.16, and ' 5 : - →  resolvent
well defined by an equation (★), see p.67. Let {U<} ⊂ [0, 1[ such that

∑∞
<=1(1 − U<) = ∞. Take

F1 ∈ - arbitrarily and generate {F<} ⊂ - by either

F<+1 = U<F< ⊕ (1 − U<)' 5 F<

for < ∈ ℕ or
F<+1 = U<F<

^
⊕ (1 − U<)' 5 F<

for < ∈ ℕ. Let us denote (a) and (b) by the following conditions:

(a) {' 5 F<} is ^-bounded;
(b) sup<∈ℕ 3 (F< , ' 5 F<) < �^/2.

Suppose that ' 5 is vicinal with k : [0, �^/2[ → ]0,∞[, and define conditions (P1) and (P2) as
follows:

(P1) k is nondecreasing;
(P2) sup<∈ℕk (3 (F< , ' 5 F<)) <∞.

Then the following hold:

(i) Suppose that k satisfies (P1). Then Equil 5 \= ∅ if and only if (a) and (b) hold.
(i)′ Suppose that k satisfies (P2). Then Equil 5 \= ∅ if and only if (a) holds.
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Corollary 5.33. Let - ,  , 5 , i and Φ be the same as Theorem 5.16, and ' 5 : - →  resolvent
well defined by an equation (★). Suppose that Equil 5 \= ∅. Let {U<} ⊂ [0, 1[ such that
lim sup<→∞ U< < 1 and

∑∞
<=1(1 − U<) =∞. Take F1 ∈ - and generate {F<} ⊂ - by either

F<+1 = U<F< ⊕ (1 − U<)' 5 F<

for < ∈ ℕ or
F<+1 = U<F<

^
⊕ (1 − U<)' 5 F<

for < ∈ ℕ. Then {F<} Δ-converges to some element in Equil 5 .

In Corollary 5.32, the function k need not be given by i ′ ◦ 2^ . Therefore for instance, if ' 5 is
the resolvent defined by Corollary 5.21, which uses the perturbation function Φ3 = i (21(3)) =
− log cos3 , then we can use not only i ′ ◦ 21 but also the constant function 1 as the function k .
In this case, i ′ ◦ 21 satisfies (P1) since i ′(21(3)) = 1/cos3 , and 1 satisfies both (P1) and (P2).
Note that the condition (P2) always holds if k is bounded above.
We also get the following convergence theorem with Halpern type approximation scheme

from Theorem 4.29.

Corollary 5.34. Let - ,  , 5 , i and Φ be the same as Theorem 5.16, and ' 5 : - →  resolvent
well defined by an equation (★). Suppose that Equil 5 \= ∅. Let {U<} ⊂ ]0, 1[ such that
lim<→∞ U< = 0 and

∑∞
<=1 U< =∞. Let C, F1 ∈ - arbitrarily and define {F<} ⊂ - by

F<+1 = U<C
^
⊕ (1 − U<)' 5 F<

for any < ∈ ℕ. In the case where ^ > 0, suppose that (i) or (ii) holds:

(i) sup<∈ℕ 3 (C,' 5 F<) < �^/2,
(ii)

∑∞
<=1 U

2
< =∞.

Then {F<} converges to some element in Equil 5 .

Finally, we show a property for two resolvents '_5 and '`5 for _, ` > 0.

Theorem 5.35. Let - be an admissible complete CAT(^) space. Let  be a nonempty closed
convex subset of - and 5 a real function on  2 with conditions (E2). Let i : [0, 2^ (�^/2) [ →
[0,∞[ be a differentiable function. For _, ` > 0, let '_5 , '`5 be mappings from - into  . Assume
that for each a ∈ {_, `}, an inequality

0 ≤ a 5 ('a 5 F,E ) + i ′(2^ (3 (F, 'a 5 F))) · �

2 ′^ (� )
(
2^ (3 (F,E )) − 2^ (� ) − 2 ′′^ (� )2^ (3 (F, 'a 5 F))

)
holds for any F ∈ - and E ∈  \ {'a 5 F}, where � = 3 ('a 5 F,E ). Then for any F, G ∈ - , the
following inequalities hold:

0 ≤ _i ′(2^ (�GG ))
(
2^ (�GF ) − 2^ (�) − 2 ′′^ (�)2^ (�GG )

)
+ `i ′(2^ (�FF ))

(
2^ (�FG ) − 2^ (�) − 2 ′′^ (�)2^ (�FF )

)
; (i)

(
_i ′(2^ (�GG ))2 ′′^ (�GG ) + `i ′(2^ (�FF ))2 ′′^ (�FF )

)
2^ (�)

≤ _i ′(2^ (�GG ))
(
2^ (�GF ) − 2^ (�GG )

)
+ `i ′(2^ (�FF ))

(
2^ (�FG ) − 2^ (�FF )

)
; (ii)
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1
^

(
_i ′(2^ (�GG ))2 ′′^ (�GG ) + `i ′(2^ (�FF ))2 ′′^ (�FF )

)
2 ′′^ (�)

≥ 1
^

(
_i ′(2^ (�GG ))2 ′′^ (�GF ) + `i ′(2^ (�FF ))2 ′′^ (�FG )

)
, (iii)

where �FF = 3 (F, '_5 F), �FG = 3 (F, '`5 G ), �GF = 3 (G , '_5 F), �GG = 3 (G , '`5 G ), and � =

3 ('_5 F, '`5 G ). The inequality (iii) is considered only when ^ \= 0.

Proof. Let _, ` > 0 and F, G ∈ - . If '_5 F = '`5 G , then we get the conclusion obviously. Suppose
that '_5 F \= '`5 G . Then, for a function `5 :  2→ ℝ, we have

0 ≤ `5 ('`5 G , '_5 F) + i ′(2^ (�GG )) · �

2 ′^ (�)
(
2^ (�GF ) − 2^ (�) − 2 ′′^ (�)2^ (�GG )

)
and hence

0 ≤ 2
′
^ (�)
�

_`5 ('`5 G , '_5 F) + _i ′(2^ (�GG ))
(
2^ (�GF ) − 2^ (�) − 2 ′′^ (�)2^ (�GG )

)
.

Similarly, for a function _5 , we get

0 ≤ 2
′
^ (�)
�

`_5 ('_5 F, '`5 G ) + `i ′(2^ (�FF ))
(
2^ (�FG ) − 2^ (�) − 2 ′′^ (�)2^ (�FF )

)
.

Summing up these two inequalities, we obtain (i) since 5 satisfies (E2).
Using Lemma 2.8, we obtain that the inequality (i) is equivalent to

0 ≤ _i ′(2^ (�GG ))
(
2^ (�GF ) − 2^ (�GG ) − 2 ′′^ (�GG )2^ (�)

)
+ `i ′(2^ (�FF ))

(
2^ (�FG ) − 2^ (�FF ) − 2 ′′^ (�FF )2^ (�)

)
,

and so is (ii).
Assume that ^ \= 0. Then, using Lemma 2.8 again, we obtain that (i) is equivalent to

0 ≤ _i ′(2^ (�GG ))
(1 − 2 ′′^ (�GF )

^
−
1 − 2 ′′^ (�GG )2 ′′^ (�)

^

)
+ `i ′(2^ (�FF ))

(1 − 2 ′′^ (�FG )
^

− 1 − 2
′′
^ (�FF )2 ′′^ (�)

^

)
,

and so is (iii). �

Corollary 5.36. For _, ` > 0, let '_5 and '`5 be well-defined resolvents of the equilibrium
problem under the assumption of Theorem 5.16 for _5 and `5 , respectively. Then these satisfy
inequalities (i), (ii) and (iii) of Theorem 5.35 for any F, G ∈ - .

Proof. Suppose that '_5 and '`5 are well-defined as a single-valued mapping. From
Lemma 5.15, we obtain

0 ≤ _5 ('_5 F,E ) + i ′(2^ (3 (F, '_5 F))) ·
�_

2 ′^ (�_)
(
2^ (3 (F,E )) − 2^ (�_) − 2 ′′^ (�_)2^ (3 (F, '_5 F))

)
for any F ∈ - and E ∈  \ {'_5 F}, where �_ = 3 ('_5 F,E ). We also have

0 ≤ `5 ('`5 F,E ) + i ′(2^ (3 (F, '`5 F))) ·
�`

2 ′^ (�`)
(
2^ (3 (F,E )) − 2^ (�`) − 2 ′′^ (�`)2^ (3 (F, '`5 F))

)
for any F ∈ - and E ∈  \ {'`5 F}, where �` = 3 ('`5 F,E ). From Theorem 5.35, we obtain the
conclusion. �
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Chapter 6

Convex functions

In this chapter, we consider a convex minimization problem and a new type of convex
functions.

Definition 6.1. Let - be a uniquely �-geodesic space and 5 a proper function from - into
]−∞,∞]. Then 5 is said to be midpoint convex if

5
(1
2G1 ⊕

1
2G2

)
≤ 1
2 5 (G1) +

1
2 5 (G2)

for any G1, G2 ∈ dom( 5 ) with 3 (G1, G2) <� . In addition, 5 is said to be strictly midpoint convex if

5
(1
2G1 ⊕

1
2G2

)
<
1
2 5 (G1) +

1
2 5 (G2)

for any G1, G2 ∈ dom( 5 ) with 0 < 3 (G1, G2) < � .

Definition 6.2. Let - be a uniquely �-geodesic space and 5 a proper function from - into
]−∞,∞]. Then 5 is said to be quasiconvex if

5 (B G1 ⊕ (1 − B )G2) ≤ max {5 (G1), 5 (G2)}

for any G1, G2 ∈ dom( 5 ) and B ∈ ]0, 1[. In addition, 5 is said to be strictly midpoint quasiconvex
if

5
(1
2G1 ⊕

1
2G2

)
<max {5 (G1), 5 (G2)}

for any G1, G2 ∈ dom( 5 ) with 0 < 3 (G1, G2) < � .

It is clear that if 5 is convex then 5 is quasiconvex. Similarly, if 5 is strictly midpoint convex,
then 5 is strictly midpoint quasiconvex.

6.1 Convex minimization problems
In this section, we consider applying the result of fixed point approximation theorems shown
in the previous chapter to solve convexminimization problems on admissible complete CAT(^)
spaces.
Let 5 be a proper convex function from - into ]−∞,∞]. Then we call a mapping ( 5 from -

into itself a resolvent operator of 5 if the set of all fixed points of ( 5 coincides with the set of
all minimizers of 5 , that is, � (( 5 ) = argmin 5 .
Regarding resolvents of convex functions, Kajimura and Kimura proved the following result.
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Lemma 6.3 (Kajimura and Kimura [9]). Let - be an admissible complete CAT(^) space and 5 a
proper convex function from - into ]−∞,∞]. Suppose that a function i : [0, 2^ (�^/2) [ → [0,∞[
is nondecreasing and differentiable, and i ′ is continuous at [0, 2^ (�^/2) [. Define a set-valued
mapping ( 5 from - into 2dom( 5 ) by

( 5 F = argmin
G ∈-

(
5 (G ) + i (2^ (3 (F, G )))

)
for F ∈ - . Assume that ( 5 is well-defined as a single-valued mapping from - into dom( 5 ).
Then ( 5 is firmly vicinal with i ′ ◦ 2^ : [0, �^/2[ → ]0,∞[.

Lemma 6.3 is obtained by the next lemma.

Lemma 6.4. Let - , 5 and i are the same as Lemma 6.3. Define a set-valued mapping ( 5 from
- into 2dom( 5 ) by

( 5 F = argmin
G ∈-

(
5 (G ) + i (2^ (3 (F, G )))

)
for F ∈ - . Then the following hold:

(i) For any F ∈ - , H ∈ ( 5 F and E ∈ - \ {H}, an inequality

0 ≤ 5 (E ) − 5 (H) + i ′(2^ (3 (F, H))) · �

2 ′^ (�)
(
2^ (3 (F,E )) − 2^ (�) − 2 ′′^ (�)2^ (3 (F, H))

)
holds, where � = 3 (H,E );

(ii) for any F1, F2 ∈ - , H1 ∈ ( 5 F1 and H2 ∈ ( 5 F2, an inequality(
i ′(2^ (�1))2 ′′^ (�1) + i ′(2^ (�2))2 ′′^ (�2)

)
2^ (3 (H1, H2))

≤ i ′(2^ (�1))
(
2^ (3 (F1, H2)) − 2^ (�1)

)
+ i ′(2^ (�2))

(
2^ (3 (F2, H1)) − 2^ (�2)

)
holds, where �1 = 3 (F1, H1), and �2 = 3 (F2, H2).

Proof. (i) Since 5 is proper convex, dom( 5 ) is a nonempty convex set. Define 5 : dom( 5 )2→ℝ

by 5 (H, G ) = 5 (G ) − 5 (H) for H, G ∈ dom( 5 ). Put Φ3 B i (2^ (3)) for every 3 ∈ [0, �^/2[. Then we
obtain

( 5 F = argmin
G ∈-

(
5 (G ) + i (2^ (3 (F, G )))

)
= argmin
G ∈dom( 5 )

(
5 (G ) +Φ3 (F, G )

)
=

{
H ∈ dom( 5 )

��� inf
G ∈dom( 5 )

(
5 (G ) +Φ3 (F, G )

)
≥ 5 (H) +Φ3 (F, H)

}
=

{
H ∈ dom( 5 )

��� inf
G ∈dom( 5 )

(
5 (H, G ) +Φ3 (F, G ) −Φ3 (F, H)

)
≥ 0

}
for every F ∈ - . Therefore, from Lemma 5.15 we obtain

0 ≤ 5 (E ) − 5 (H) + i ′(2^ (3 (F, H))) · �

2 ′^ (�)
(
2^ (3 (F,E )) − 2^ (�) − 2 ′′^ (�)2^ (3 (F, H))

)
for any F ∈ - , H ∈ ( 5 F andE ∈ dom( 5 ) \ {H}, where � = 3 (H,E ). This inequality is true obviously
if E ∈ - \ dom( 5 ).
(ii) By Theorem 5.16, we get the conclusion. �
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From Lemma 4.3 and the inequality (ii) in Lemma 6.4, we obtain that ( 5 is firmly vicinal with
i ′ ◦ 2^ if ( 5 is well-defined as a single-valued mapping from - into dom( 5 ). This completes
the proof of Lemma 6.3.
Now we show the following crucial fact.

Lemma 6.5. The single-valued mapping ( 5 : - → dom( 5 ) well defined in Lemma 6.3 satisfies
� (( 5 ) = argmin 5 .

Proof. Let H ∈ argmin 5 . Then since i is nondecreasing, we have

5 (H) + i (2^ (3 (H, H))) = 5 (H) + i (0) ≤ 5 (G ) + i (0) ≤ 5 (G ) + i (2^ (3 (H, G )))

for any G ∈ - . It implies that H = ( 5 H , that is, H ∈ � (( 5 ).
Conversely, take H ∈ � (( 5 ). Then we get

5 (H) ≤ 5 (E ) + i ′(2^ (3 (H, H))) ·
3 (H,E )

2 ′^ (3 (H,E ))
(
2^ (3 (H,E )) − 2^ (3 (H,E )) − 2 ′′^ (3 (H,E ))2^ (3 (H, H))

)
= 5 (E )

for any E ∈ - \ {H} from Lemma 6.4 (i). It means that H ∈ argmin 5 . �

We consider a sufficient condition of i such that such a resolvent ( 5 is well-defined as a
single-valued mapping. In 2016, Kimura and Kohsaka gave a sufficient condition on 5 so that
5 has the unique minimizer.

Lemma 6.6 (Kimura and Kohsaka [13]). For ^ > 0, let - be an admissible complete CAT(^)
space and 5 a proper lower semicontinuous quasiconvex (�^/2)-coercive function from - into
]−∞,∞]. Then 5 has at least one minimizer on - . Moreover, if 5 is also strictly midpoint convex,
then 5 has the unique minimizer on - .

Later, in 2019, Kajimura and Kimura showed the following result.

Lemma 6.7 (Kajimura and Kimura [7]). Let - be a complete CAT(0) space and 5 a proper
lower semicontinuous convex coercive function from - into ]−∞,∞]. Suppose that 5 is strictly
midpoint convex. Then 5 has the unique minimizer on - .

From the three lemmas above, we get the following result.

Theorem 6.8. Let - be an admissible complete CAT(^) space and 5 a proper lower semicontin-
uous convex function from - into ]−∞,∞]. Suppose that a function i : [0, 2^ (�^/2) [ → [0,∞[
is strictly increasing, differentiable, and i ′ is nondecreasing and continuous on [0, 2^ (�^/2) [.
Define Φ : [0, �^/2[ → [0,∞[ by Φ = i ◦ 2^ . Suppose the following:

• If ^ ≤ 0, then

lim inf
3 (C,H )→∞

5 (H)
3 (C, H) + lim3→∞

Φ(3)
3

> 0

for some C ∈ - .
• If ^ > 0, then suppose that lim3→�^/2Φ(3) =∞.

Define a set-valued mapping ( 5 : - → 2dom( 5 ) by

( 5 F = argmin
G ∈-

(
5 (G ) +Φ(3 (F, G ))

)
for F ∈ - . Then the following hold.
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(i) ( 5 : - → dom( 5 ) is well-defined as a single-valued mapping;
(ii) ( 5 is firmly vicinal with i ′ ◦ 2^ : [0, �^/2[ → ]0,∞[;
(iii) � (( 5 ) = argmin 5 .

Proof. This is obtained by similar proof of Theorem 5.18. Since i ′ is nondecreasing, we obtain
that i is convex. Moreover, since 2^ is convex on [0, �^/2[, Φ is also convex. Therefore, from
Lemmas 6.6 and 6.7, we get ( 5 F \= ∅ for every F ∈ - . Since i is strictly increasing and i ′ is
nondecreasing, we also have i ′(B ) > 0 for all B ∈ ]0, 2^ (�^/2) [.
Let F ∈ - and H1, H2 ∈ ( 5 F . Then from Lemma 6.4 (ii), we obtain

2^ (3 (H1, H2))

≤
i ′(2^ (3 (F, H1)))

(
2^ (3 (F, H2)) − 2^ (3 (F, H1))

)
+ i ′(2^ (3 (F, H2)))

(
2^ (3 (F, H1)) − 2^ (3 (F, H2))

)
i ′(2^ (3 (F, H1)))2 ′′^ (3 (F, H1)) + i ′(2^ (3 (F, H2)))2 ′′^ (3 (F, H2))

=

(
i ′(2^ (3 (F, H1))) − i ′(2^ (3 (F, H2)))

) (
2^ (3 (F, H2)) − 2^ (3 (F, H1))

)
i ′(2^ (3 (F, H1)))2 ′′^ (3 (F, H1)) + i ′(2^ (3 (F, H2)))2 ′′^ (3 (F, H2))

.

Since i ′ is nondecreasing, we get 2^ (3 (H1, H2)) ≤ 0, and hence H1 = H2. This is the conclusion
of (i). Note that (ii) and (iii) are obtained from Lemmas 6.3 and 6.5. �

Theorem 6.9. Let - be an admissible complete CAT(^) space and 5 a proper lower semicontin-
uous convex function from - into ]−∞,∞]. Suppose that a function i : [0, 2^ (�^/2) [ → [0,∞[
is nondecreasing, differentiable, and i ′ is continuous on [0, 2^ (�^/2) [. Define Φ : [0, �^/2[ →
[0,∞[ by Φ = i ◦ 2^ . Furthermore, suppose that Φ(3 (F, ·)) is strictly midpoint convex for any
F ∈ - . Suppose the following:

• If ^ ≤ 0, then

lim inf
3 (C,H )→∞

5 (H)
3 (C, H) + lim3→∞

Φ(3)
3

> 0

for some C ∈ - .
• If ^ > 0, then suppose that lim3→�^/2Φ(3) =∞.

Define a set-valued mapping ( 5 : - → 2dom( 5 ) by

( 5 F = argmin
G ∈-

(
5 (G ) +Φ(3 (F, G ))

)
for F ∈ - . Then the following hold.

(i) ( 5 : - → dom( 5 ) is well-defined as a single-valued mapping;
(ii) ( 5 is firmly vicinal with i ′ ◦ 2^ : [0, �^/2[ → ]0,∞[;
(iii) � (( 5 ) = argmin 5 .

Proof. Fix F ∈ - and put 6 (·) = 5 (·) + Φ(3 (F, ·)). Then 6 : - → ]−∞,∞] is proper and lower
semicontinuous. SinceΦ(3 (F, ·)) is continuous and midpoint convex, we obtain thatΦ(3 (F, ·))
is convex on dom( 5 ). Hence, for any G1, G2 ∈ dom( 5 ) and B ∈ ]0, 1[,

6 (B G1 ⊕ (1 − B )G2) = 5 (B G1 ⊕ (1 − B )G2) +Φ(3 (F, B G1 ⊕ (1 − B )G2))
≤ B 5 (G1) + (1 − B ) 5 (G2) + BΦ(3 (F, G1)) + (1 − B )Φ(3 (F, G2)) = B 6 (G1) + (1 − B )6 (G2).

Thus 6 is convex. We also have

6
(1
2G1 ⊕

1
2G2

)
= 5

(1
2G1 ⊕

1
2G2

)
+Φ

(
3
(
F,
1
2G1 ⊕

1
2G2

))
<
1
26 (G1) +

1
26 (G2)
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for any G1, G2 ∈ dom( 5 ) with G1 \= G2. Hence 6 is strictly midpoint convex.
We show 6 is (�^/2)-coercive. If ^ > 0, then we have lim3→�^/2Φ(3) =∞ by the assumption.

It follows that lim3 (F,H ) →�^/2 6 (H) = ∞, which implies the coercivity of 6 . We consider the case
where ^ ≤ 0. Take a point C ∈ - satisfying the assumption. Then we obtain

lim inf
3 (F,H )→∞

6 (H)
3 (F, H) ≥ lim inf

3 (C,H )→∞

(
5 (H)
3 (C, H) ·

3 (C, H)
3 (F, H)

)
+ lim
3→∞

Φ(3)
3

> 0

and hence 6 is coercive.
Consequently, by Lemmas 6.6 and 6.7, ( 5 F is a singleton for any F ∈ - . Moreover, from

Lemmas 6.3 and 6.5, we get (ii) and (iii). �

In the previous theorem, we consider the case where ^ ≤ 0. Suppose that 5 is bounded
below and lim inf3→∞(Φ(3)/3) > 0. Then the condition lim inf3 (F,H )→∞( 5 (H)/3 (F, H)) +
lim inf3→∞(Φ(3)/3) > 0 is true. Indeed, we get lim inf3 (F,H )→∞( 5 (H)/3 (F, H)) = 0 if 5 is bounded
below.
Note that we obtain from Lemmas 4.2 and 4.9 that, if ) : - → - is firmly vicinal with k and

� () ) \= ∅, then ) is tightly quasinonexpansive and Δ-demiclosed. From this fact, we get the
following results from Theorems 4.21, 4.22, 4.23, and 4.24.

Corollary 6.10. Let - , 5 , and i be the same as Lemma 6.3, and ( 5 : - → dom( 5 ) resolvent well
defined by an equation

( 5 F = argmin
G ∈-

(
5 (G ) + i (2^ (3 (F, G )))

)
. (★★)

Let {U<} ⊂ [0, 1[ such that
∑∞
<=1(1 − U<) = ∞. Take F1 ∈ - arbitrarily and generate {F<} ⊂ - by

either
F<+1 = U<F< ⊕ (1 − U<)( 5 F<

for < ∈ ℕ or
F<+1 = U<F<

^
⊕ (1 − U<)( 5 F<

for < ∈ ℕ. Let us denote (a) and (b) by the following conditions:

(a) {( 5 F<} is ^-bounded;
(b) sup<∈ℕ 3 (F< , ( 5 F<) < �^/2.

Suppose that ( 5 is vicinal with k : [0, �^/2[ → ]0,∞[, and define conditions (P1) and (P2) as
follows:

(P1) k is nondecreasing;
(P2) sup<∈ℕk (3 (F< , ( 5 F<)) <∞.

Then the following hold:

(i) Suppose that k satisfies (P1). Then argmin 5 \= ∅ if and only if (a) and (b) hold.
(i)′ Suppose that k satisfies (P2). Then argmin 5 \= ∅ if and only if (a) holds.

Corollary 6.11. Let - , 5 , and i be the same as Lemma 6.3, and suppose that argmin 5 \= ∅.
Let ( 5 : - → dom( 5 ) a resolvent well defined by an equation (★★). Let {U<} ⊂ [0, 1[ such that
lim sup<→∞ U< < 1 and

∑∞
<=1(1 − U<) =∞. Take F1 ∈ - and generate {F<} ⊂ - by either

F<+1 = U<F< ⊕ (1 − U<)( 5 F<

for < ∈ ℕ or
F<+1 = U<F<

^
⊕ (1 − U<)( 5 F<
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for < ∈ ℕ. Then {F<} Δ-converges to some minimizer of 5 .

We also get the following result from Theorem 4.29.

Corollary 6.12. Let - , 5 , and i be the same as Lemma 6.3, and suppose that argmin 5 \= ∅.
Let ( 5 : - → dom( 5 ) a resolvent well defined by an equation (★★). Let {U<} ⊂ ]0, 1[ such that
lim<→∞ U< = 0 and

∑∞
<=1 U< =∞. Let C, F1 ∈ - arbitrarily and define {F<} ⊂ - by

F<+1 = U<C
^
⊕ (1 − U<)( 5 F<

for any < ∈ ℕ. In the case where ^ > 0, suppose that (i) or (ii) holds:

(i) sup<∈ℕ 3 (C, ( 5 F<) < �^/2,
(ii)

∑∞
<=1 U

2
< =∞.

Then {F<} converges to some minimizer of 5 .

6.2 (−1)-convex functions
Using (−1)-convex combination, we can define another type of convex functions named ‘(−1)-
convex function.’ In this section, we investigate its natures and perform some numerical
experiments.

6.2.1 Natures of (−1)-convex functions on geodesic spaces
Let - be a uniquely geodesic space and 5 a function from - into ]−∞,∞]. 5 is said to be
(−1)-convex [27] if

5 (UF
−1
⊕ (1 − U)G ) ≤ U5 (F) + (1 − U) 5 (G )

for any F, G ∈ - and U ∈ [0, 1].
Then we easily get the following:

• If 5 , 6 : - → ]−∞,∞] is (−1)-convex, then so is 5 + 6 .
• If 5 : - → ]−∞,∞] is (−1)-convex, then so is 9 5 for any 9 ≥ 0.
• If 5 : ℝ→ ]−∞,∞] is (−1)-convex, then so is 6 : ℝ 3 B ↦−→ 5 (B + 2 ) for any 2 ∈ ℝ.
• If 5 : ℝ→ ]−∞,∞] is (−1)-convex, then so is 6 : ℝ 3 B ↦−→ 5 (−B ).

We can get several examples as follows.

• Let - be a CAT(−1) space and H ∈ - . Then a function 5 : - → ]−∞,∞] defined by
5 (·) = cosh3 (·, H) is (−1)-convex.

• A function 5 : ℝ 3 B ↦−→ cosh B is (−1)-convex.
• A function 5 : ℝ 3 B ↦−→ exp B is (−1)-convex.
• For 1 ∈ ℝ, a function 5 : ℝ 3 B ↦−→ 1 is (−1)-convex.
• For 0,1 ∈ ℝ such that 0 \= 0, a function 5 : ℝ 3 B ↦−→ 0B + 1 is not (−1)-convex.
• A function 5 : ℝ 3 B ↦−→ B 2 is not (−1)-convex.

Theorem 6.13. Let - be a uniquely geodesic space. Then a function 5 : - → ]−∞,∞] is
(−1)-convex if and only if for any F, G ∈ - with F \= G and B ∈ ]0, 1[,

5 (B F ⊕ (1 − B )G ) ≤ sinh(B3 (F, G ))
sinh(B3 (F, G )) + sinh((1 − B )3 (F, G )) 5 (F)

+ sinh((1 − B )3 (F, G ))
sinh(B3 (F, G )) + sinh((1 − B )3 (F, G )) 5 (G ).
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Proof. 5 (UF
−1
⊕ (1 − U)G ) = U5 (F) + (1 − U) 5 (G ) always holds if F = G or U ∈ {0, 1}. Therefore, 5 is

(−1)-convex if and only if 5 (UF
−1
⊕ (1− U)G ) ≤ U5 (F) + (1− U) 5 (G ) for any F, G ∈ - with F \= G and

U ∈ ]0, 1[. It is equivalent from Lemma 3.6 to 5 (B F ⊕ (1− B )G ) ≤ Z^
3 (F,G ) (B ) 5 (F) + Z

^
3 (F,G ) (1− B ) 5 (G )

for any F, G ∈ - with F \= G and B ∈ ]0, 1[. This implies the conclusion. �

Corollary 6.14. Let - be a uniquely geodesic space. Then a function 5 : - → ]−∞,∞] is
(−1)-convex if and only if for any F, G ∈ - with F \= G and H ∈ ]F, G [,

5 (H) ≤ (sinh3 (G , H)) 5 (F) + (sinh3 (F, H)) 5 (G )sinh3 (G , H) + sinh3 (F, H) .

Corollary 6.15. Let - be a uniquely geodesic space. Then a function 5 : - → ]−∞,∞] is
(−1)-convex if and only if for any F, G ∈ - with F \= G and H ∈ ]F, G [,

(sinh3 (G , H)) ( 5 (F) − 5 (H)) + (sinh3 (F, H)) ( 5 (G ) − 5 (H)) ≥ 0.

Corollary 6.16. Let - be a uniquely geodesic space. Then a function 5 : - → ℝ is (−1)-convex
if and only if for any F, G ∈ - with F \= G and H ∈ ]F, G [,

5 (H) ≤ 5 (F) + 5 (G )
2 +

tanh 3 (G , H) − 3 (F, H)2

tanh 3 (G , H) + 3 (F, H)2

· 5 (F) − 5 (G )2 .

A (−1)-convex function has the following relationship with convex functions.

Lemma 6.17. Let - be a uniquely geodesic space. Then every continuous (−1)-convex function
5 : - → ]−∞,∞] is convex.

Proof. Assume that 5 is continuous and (−1)-convex. Then we obtain from Corollary 3.7 that

5
(1
2F ⊕

1
2G

)
= 5

(1
2F
−1
⊕ 1
2G

)
≤ 1
2 5 (F) +

1
2 5 (G )

for any F, G ∈ - , and hence 5 is midpoint convex. Therefore, since 5 is continuous, we get the
desired result. �

Theorem 6.18. Let - be a uniquely geodesic space and 5 : - → ]−∞,∞] a proper (−1)-convex
function. Let C,D ∈ dom( 5 ). Then 5 | ]C,D [ is continuous.

Proof. Take an arbitrary point F ∈ ]C,D [. Let {F<} be a sequence on ]C,D [ which converges to
F ∈ ]C,D [. Put � = {< ∈ ℕ | F< ∈ ]C, F [} and � = {< ∈ ℕ | F< ∈ [F,D [}. Then there exists {U<}<∈�
and {V<}<∈� such that

F< = U<C
−1
⊕ (1 − U<)F and F< = V<D

−1
⊕ (1 − V<)F

for any < ∈ � and < ∈ � , respectively. Since F< → F as < →∞, we obtain from Lemma 3.22 that
{U<} and {V<} both converge to 0. By the (−1)-convexity of 5 , we get

5 (F<) ≤ U< 5 (C) + (1 − U<) 5 (F) and 5 (F<) ≤ V< 5 (D ) + (1 − V<) 5 (F)

for any < ∈ � and < ∈ � , respectively. It follows that lim sup<→∞ 5 (F<) ≤ 5 (F).
Take {W<}<∈� and {X<}<∈� satisfying

F = W<D
−1
⊕ (1 −W<)F< and F = X<C

−1
⊕ (1 − X<)F<
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for any < ∈ �, and < ∈ � , respectively. Then {W<} and {X<} both converge to 0 from Lemma 3.23.
We also have

5 (F) ≤ W< 5 (C) + (1 −W<) 5 (F<) and 5 (F) ≤ X< 5 (D ) + (1 − X<) 5 (F<)

for any < ∈ �, and < ∈ � , respectively. Therefore we obtain 5 (F) ≤ lim inf<→∞ 5 (F<).
Consequently, we get 5 (F) = lim<→∞ 5 (F<), which is the desired result. �

Using Lemma 6.17 and Theorem 6.18, we obtain the following fact.

Theorem 6.19. Let - be a uniquely geodesic space and 5 : - → ]−∞,∞] a proper (−1)-convex
function. Then 5 |dom( 5 ) is convex.

Proof. Let C,D ∈ dom( 5 ). It is obvious if C = D , therefore we assume that C \= D . We immediately
obtain that 5 | ]C,D [ is convex from Lemma 6.17 and Theorem 6.18.
Take F ∈ [C,D [ ⊂ dom( 5 ) arbitrarily. Since 5 is (−1)-convex, we have 5 (B F

−1
⊕ (1 − B )D ) ≤

B 5 (F) + (1 − B ) 5 (D ) for any B ∈ ]0, 1[. Note that there exists a limit ! = limU→0 5 (UC ⊕ (1 − U)D ).
It follows that

5 (D ) ≥ lim sup
B→0

5 (B F
−1
⊕ (1 − B )D ) − B 5 (F)

1 − B = lim
B→0

5 (B F
−1
⊕ (1 − B )D ) = !.

Since D ∈ dom( 5 ), we have ! <∞. Then we get

B 5 (F) + (1 − B ) 5 (D ) − 5 (B F ⊕ (1 − B )D ) = B 5 (F) + (1 − B ) 5 (D ) − lim
A→0

5 (B F ⊕ (1 − B ) (AF ⊕ (1 − A )D ))

≥ B 5 (F) + (1 − B ) 5 (D ) − B 5 (F) − (1 − B ) lim
A→0

5 (AF ⊕ (1 − A )D )

= (1 − B ) ( 5 (D ) − !)
≥ 0

for any B ∈ ]0, 1[. Thus 5 is convex on ]C,D ].
Similarly, we also obtain B 5 (C) + (1 − B ) 5 (G ) − 5 (BC ⊕ (1 − B )G ) ≥ 0 for any G ∈ ]C,D ] and

B ∈ ]0, 1[, and hence 5 is convex on [C,D [. Consequently, we get the conclusion. �

Lemma 6.20. Let - be a uniquely geodesic space and 5 : - → ]−∞,∞] a proper (−1)-convex
function. Then for any C,D ∈ dom( 5 ) such that 5 (C) \= 5 (D ),

5
(1
2C ⊕

1
2D

)
<
1
2 5 (C) +

1
2 5 (D ).

Proof. Take C,D ∈ dom( 5 ) such that 5 (C) < 5 (D ). Put � = 3 (C,D )/4 > 0. Then we have

5
(3
4C ⊕

1
4D

)
≤ (sinh(3�)) 5 (C) + (sinh�) 5 (D )sinh(3�) + sinh�
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by Theorem 6.13. Hence we obtain

5
(1
2C ⊕

1
2D

)
= 5

(2
3

(3
4C ⊕

1
4D

)
C ⊕ 13D

)
≤ sinh(2�)
sinh(2�) + sinh� 5

(3
4C ⊕

1
4D

)
+ sinh�
sinh(2�) + sinh� 5 (D )

≤ sinh(2�) sinh(3�)
(sinh(2�) + sinh�) (sinh(3�) + sinh�) 5 (C)

+ (sinh(2�) + sinh(3�) + sinh�) sinh�(sinh(2�) + sinh�) (sinh(3�) + sinh�) 5 (D )

=
� (3 + 4(2)

2(2� + 1) (1 + (2)
5 (C) + � + 2 + 2(2

2(2� + 1) (1 + (2)
5 (D ),

where ( = sinh� and � = cosh� . Therefore, we have

1
2 5 (C) +

1
2 5 (D ) −

(
� (3 + 4(2)

2(2� + 1) (1 + (2)
5 (C) + � + 2 + 2(2

2(2� + 1) (1 + (2)
5 (D )

)
=
(2(2 + 1)� 2 − (2 − 1
(2� + 1) (1 + (2)

( 5 (D ) − 5 (C))

≥ (2(
2 + 1) · 1 − (2 − 1
(2� + 1) (1 + (2)

( 5 (D ) − 5 (C))

=
(2

(2� + 1) (1 + (2)
( 5 (D ) − 5 (C)) > 0.

It follows that
5
(1
2C ⊕

1
2D

)
<
1
2 5 (C) +

1
2 5 (D ),

which is the desired result. �

Corollary 6.21. Let - be a uniquely geodesic space and 5 : - → ]−∞,∞] a proper (−1)-convex
function. Suppose that

5
(1
2C ⊕

1
2D

)
=
1
2 5 (C) +

1
2 5 (D ).

for any C,D ∈ dom( 5 ). Then 5 |dom( 5 ) is a constant function.

Theorem 6.22. Let - be a uniquely geodesic space and 5 : - → ]−∞,∞] a proper (−1)-convex
function. Suppose that there exists C,D ∈ dom( 5 ) such that 5 (C) \= 5 (D ). Then

5 (BC ⊕ (1 − B )D ) < B 5 (C) + (1 − B ) 5 (G )

for any B ∈ ]0, 1[.

Proof. From Theorem 6.19, 5 |dom( 5 ) is convex. Let B ∈ ]0, 1[. If B = 1/2, then we get the
conclusion by Lemma 6.20.
Suppose that B < 1/2. Then putting ; = (1/2)C ⊕ (1/2)D and A = 2B , we have

5 (BC ⊕ (1 − B )D ) = 5 (A; ⊕ (1 − A )D ) ≤ A 5 (;) + (1 − A ) 5 (D )

<
1
2A 5 (C) +

(
1 − 12A

)
5 (D )

= B 5 (C) + (1 − B ) 5 (D ).
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Next, suppose that B > 1/2. Put @ = 2B − 1. Then we obtain

5 (BC ⊕ (1 − B )D ) = 5 (@C ⊕ (1 − @ );) ≤ @ 5 (C) + (1 − @ ) 5 (;)

<

(1
2 +

1
2@

)
5 (C) + 12 (1 − @ ) 5 (D )

= B 5 (C) + (1 − B ) 5 (D ).

Thus we get the conclusion. �

Corollary 6.23. Let - be a uniquely geodesic space and 5 : - → ]−∞,∞] a proper (−1)-convex
function. Let C,D ∈ dom( 5 ) such that C \= D . Assume that 5 (F) \= 5 (G ) for any F, G ∈ [C,D ]. Then
5 is strictly midpoint convex on [C,D ].

Proof. Take two points F, G ∈ [C,D ] with F \= G and 3 (C, F) < 3 (C, G ), and let B ∈ ]0, 1[. Then we
get 5 (F) \= 5 (G ) by the assumption of 5 . Therefore, we get 5 (B F ⊕ (1 − B )G ) < B 5 (F) + (1 − B ) 5 (G )
from Theorem 6.22, which is the desired result. �

In Corollary 6.23, if there exist F, G ∈ [C,D ] satisfying 5 (F) = 5 (G ), then 5 is not always strictly
midpoint convex on [C,D ]. For instance, a function 5 : ℝ→ ℝ defined by

5 (B ) =
{
0 (if B ≤ 0);
cosh B − 1 (if B ≥ 0)

is (−1)-convex, and not strictly midpoint convex on [−1, 1].

6.2.2 Natures of (−1)-convex functions on the real line
We consider (−1)-convex functions on ℝ. Henceforth, we use a function 6F,G : ℝ→ ℝ defined
by

6F,G (H) =
sinh(G − H)

sinh(G − H) + sinh(H − F) 5 (F) +
sinh(H − F)

sinh(G − H) + sinh(H − F) 5 (G )

=
5 (F) + 5 (G )

2 −
tanh

(
H − G + F2

)
tanh G − F

2
· 5 (F) − 5 (G )2

for F, G , H ∈ ℝ such that F < G . By Theorem 6.13 and Corollary 6.16, a function 5 : ℝ → ℝ is
(−1)-convex if and only if for any F, G , H ∈ ℝ such that F < H < G , an inequality 5 (H) ≤ 6F,G (H)
holds. In other words, we can explain that the (−1)-convexity of 5 means that epi 5 ⊃ epi 6F,G
for any F < G .
The following figure represents a graph of 51 : ℝ 3 B ↦→ cosh B ∈ ℝ and 6F,G defined by the

above formula, where F = −1 and G = 2. This function 51 is (−1)-convex, and hence 6F,G is
always above the graph of 51 on any bounded interval ]F, G [.
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Define a function 52 : ℝ 3 B ↦−→ B 2. Then 52 is not (−1)-convex, since 52(H) > 6F,G (H) holds for
F = 2, G = 6, and 2 < H < H0, where H0 ≈ 3.48659558.

ℝ

6F,G

52

F H0 G

Similarly, we can obtain that a function 5 : ℝ 3 B ↦−→ 0B is not (−1)-convex for any 0 \= 0.

Theorem 6.24. Every (−1)-convex function 5 : ℝ→ ℝ is convex.

Proof. Let 5 : ℝ→ℝ be a (−1)-convex function. Then, since dom( 5 ) =ℝ, we get the conclusion
from Theorem 6.19. �

Let � ⊂ ℝ be a closed interval and 5 a function from � into ℝ. Then, 5 is (−1)-convex if and
only if

5 (B ) ≤ inf
A≤B ≤C
A<C
A ,C∈�

(
sinh(C − B )

sinh(C − B ) + sinh(B − A ) 5 (A ) +
sinh(B − A )

sinh(C − B ) + sinh(B − A ) 5 (C)
)

(∗)

for any B ∈ � by Theorem 6.13. It means that, for a function 5 to be (−1)-convex, the value 5 (B )
must satisfy the inequality (∗).
Let � be a bounded closed interval on ℝ, and 5 a function from � into ℝ. Define a function

6 : � → ℝ by

6 (B ) = min
A≤B ≤C
A<C
A ,C∈�

(
sinh(C − B )

sinh(C − B ) + sinh(B − A ) 5 (A ) +
sinh(B − A )

sinh(C − B ) + sinh(B − A ) 5 (C)
)

for B ∈ � . Then 5 is (−1)-convex if and only if 5 = 6 .
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Lemma 6.25. Define a function ℎ : ]−∞, 0] → ℝ by

ℎ (B ) = tanh B2

for B ∈ ]−∞, 0]. Then ℎ is (−1)-convex.

Proof. Let A , B ,C ∈ ]−∞, 0] such that A < B < C . Then we have

(sinh(C − B )) (ℎ (A ) −ℎ (B )) + (sinh(B − A )) (ℎ (C) −ℎ (B ))

= sinh(C − B )
(
tanh A2 − tanh

B
2

)
+ sinh(B − A )

(
tanh C2 − tanh

B
2

)
= 2 sinh C − B2 cosh C − B2 ·

− sinh B − A2
cosh A

2 cosh
B
2
+ 2 sinh B − A2 cosh B − A2 ·

sinh C − B2
cosh C2 cosh

B
2

=
2 sinh C − B2 sinh B − A2
cosh A

2 cosh
B
2 cosh

C
2

(
− cosh C − B2 cosh C2 + cosh

B − A
2 cosh A2

)
=
2 sinh C − B2 sinh B − A2 sinh C − A2 sinh B − A −C2

cosh A
2 cosh

B
2 cosh

C
2

.

Since B − A −C ≤ −A ≤ 0, we obtain

(sinh(C − B )) (ℎ (A ) −ℎ (B )) + (sinh(B − A )) (ℎ (C) −ℎ (B )) ≥ 0.

It means that ℎ is (−1)-convex from Corollary 6.15. �

Now we prove the following crucial result.

Theorem 6.26. Let 5 : ℝ→ ℝ be a (−1)-convex function. Then for any D ∈ ℝ,

lim inf
|C−D |→∞

5 (C)
|C − D | ≥ 0.

Proof. By Theorem 6.24, we have 5 is continuous and convex, Thus, from Lemma 2.1, there
exists ! ∈ ]−∞, 0] such that for any D ∈ ℝ,

lim inf
|C−D |→∞

5 (C)
|C − D | ≥ !.

Suppose ! < 0 and assume that there exists D ∈ ℝ such that the inequality above holds as an
equation. Then

lim
C→∞

5 (C)
C − D = ! or lim

C→−∞
5 (C)
−(C − D ) = !

holds. Without loss of generality, we may assume the first equation holds, which implies

lim
C→∞

5 (C)
C

= lim
C→∞

(
5 (C)
C − D ·

C − D
C

)
= !.
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Take a real number Y such that 0 < Y < −!/7. Then there exists C0 > 0 such that for any
C ≥ C0, an inequality (! − Y)C < 5 (C) < (! + Y)C holds. Thus, for any _ > 0, we get

(! − Y) (C0 + 3_) < 5 (C0 + 3_) ≤
(sinh_) 5 (C0) + (sinh 3_) 5 (C0 + 4_)

sinh_ + sinh 3_

≤ (! + Y) · (sinh_)C0 + (sinh 3_) (C0 + 4_)sinh_ + sinh 3_

≤ (! + Y)C0 + (4! + 4Y) ·
(sinh 3_)_

sinh_ + sinh 3_ .

It deduces that

0 <
1
_

(
(−! + Y) (C0 + 3_) + (! + Y)C0 + (4! + 4Y) ·

(sinh 3_)_
sinh_ + sinh 3_

)
<
2Y
_
C0 − 3! + 3Y + (4! + 4Y) · sinh 3_

sinh_ + sinh 3_
→ ! + 7Y < 0

as _→∞, which is a contradiction. Hence we get the conclusion. �

6.2.3 Numerical experiments for (−1)-convex functions on the real line
In what follows, we consider numerical experiments for (−1)-convex functions on ℝ. First, we
generate a “maximum” (−1)-convex function on ℝ joining two points. Let F1, F2, G1, G2 be real
numbers such that F1 < F2 and G1 < G2. Let 51 : [F1, F2] → [G1, G2] be an affine function such that
5 (F1) = G1 and 5 (F2) = G2. Namely,

51(B ) = G1 ·
B − F2
F1 − F2

+ G2 ·
B − F1
F2 − F1

for B ∈ [F1, F2]. Then 51 is not (−1)-convex.
Starting with 51, we attempt to create a sequence of mappings {5<} whose limit lim<→∞ 5<

being (−1)-convex. Put � = [F1, F2] and � = [G1, G2]. Define a function 52 : � → � by

52(B ) = min
A≤B ≤C
A<C
A ,C∈�

(
sinh(C − B )

sinh(C − B ) + sinh(B − A ) 51(A ) +
sinh(B − A )

sinh(C − B ) + sinh(B − A ) 51(C)
)

for B ∈ � . Then 52 is not (−1)-convex.
The following graph describes the construction of 52 from 51. epi 52 is given by the lower

envelope created by the family of epigraphs {epi 6A ,C | A ,C ∈ � , A < C}.
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In the same fashion, for each < ∈ ℕ, define a function 5<+1 : � → � by

5<+1(B ) = min
A≤B ≤C
A<C
A ,C∈�

(
sinh(C − B )

sinh(C − B ) + sinh(B − A ) 5< (A ) +
sinh(B − A )

sinh(C − B ) + sinh(B − A ) 5< (C)
)

inductively. Then the following hold.

Lemma 6.27. 5< (F1) = G1 and 5< (F2) = G2 for any < ∈ ℕ.
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Proof. It is obvious if < = 1. Take < ∈ ℕ. Then we have

5<+1(F1) = min
A≤F1≤C
A<C
A ,C∈�

(
sinh(C − F1)

sinh(C − F1) + sinh(F1 − A )
5< (A ) +

sinh(F1 − A )
sinh(C − F1) + sinh(F1 − A )

5< (C)
)

=min
F1<C
C∈�

(
sinh(C − F1)

sinh(C − F1) + 0
5< (F1) + 0

)
= 5< (F1).

It implies that 5< (F1) = G1 for any < ∈ ℕ. Similarly, we get 5<+1(F2) = 5< (F2) = G2 for all < ∈ ℕ. �

Lemma 6.28. 5<+1(B ) ≤ 5< (B ) for any < ∈ ℕ and B ∈ � .

Proof. We get

5<+1(B ) = min
A≤B ≤C
A<C
A ,C∈�

(
sinh(C − B )

sinh(C − B ) + sinh(B − A ) 5< (A ) +
sinh(B − A )

sinh(C − B ) + sinh(B − A ) 5< (C)
)

≤ min
A≤B ≤C
A<C
A ,C∈�

max{5< (A ), 5< (C)} ≤ 5< (B )

for all < ∈ ℕ and B ∈ � . �

Lemma 6.29. G1 ≤ 5< (B ) for any < ∈ ℕ and B ∈ � .

Proof. It is obvious when < = 1. Suppose that some < ∈ ℕ satisfies for all B ∈ � , G1 ≤ 5< (B ). Then
we get

5<+1(B ) ≥ min
A≤B ≤C
A<C
A ,C∈�

(
sinh(C − B )

sinh(C − B ) + sinh(B − A ) G1 +
sinh(B − A )

sinh(C − B ) + sinh(B − A ) G1
)
= G1

for any B ∈ � . Hence we obtain the conclusion. �

By above lemmas, we obtain that there exists a limit lim<→∞ 5< (B ) for each B ∈ � . Define a
function 5∞ : � → � by 5∞(B ) = lim<→∞ 5< (B ) for B ∈ � .
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Black solid line: G = 51(F), dotted line: G = 52(F),
G = 53(F), G = 54(F), G = 55(F), G = 56(F), G = 58(F), G = 511(F), G = 518(F), G = 5∞(F).

Then we expect the following holds.

Conjecture 6.30. For any B ∈ � ,

5∞(B ) =
sinh

(2F2 − F1 − B
2

)
sinh

(2F2 − F1 − B
2

)
+ sinh

(
B − F1
2

) G1 + sinh
(
B − F1
2

)
sinh

(2F2 − F1 − B
2

)
+ sinh

(
B − F1
2

) (2G2 − G1)
= G2 + (G2 − G1) ·

tanh B − F22
tanh F2 − F12

.

We can show that the following hold.

Theorem 6.31. Let F1, F2, G1, G2 ∈ ℝ such that F1 < F2 and G1 < G2. Define 6 : ]−∞, F2] → ℝ by

6 (B ) = G2 + (G2 − G1) ·
tanh B − F22
tanh F2 − F12

for B ∈ ]−∞, F2]. Then 6 is (−1)-convex.

Proof. Define ℎ : ]−∞, 0] → ℝ by

ℎ (B ) = 6 (B + F2) − G2
G2 − G1

tanh F2 − F12 = tanh B2

for B ∈ ]−∞, 0]. Then 6 is (−1)-convex if and only if ℎ is (−1)-convex. Therefore we get the
conclusion from Lemma 6.25. �

This implies that if Conjecture 6.30 is true, then the function 5∞ is (−1)-convex.
Next, we propose the following conjectures:
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Conjecture 6.32. Let 5 be a (−1)-convex function from ℝ into itself. Then 5 is bounded below.

Conjecture 6.33. Let - be a CAT(−1) space and 5 a proper (−1)-convex function from - into
]−∞,∞]. Then for any D ∈ - ,

lim inf
3 (C,D )→∞

5 (C)
3 (C,D ) ≥ 0.

Note that Conjecture 6.33 is true if - = ℝ, which is obtained by Theorem 6.26. Now we
present the experiment that led us to the Conjecture 6.32. Specifically, we attempt to simulate
the extension of a (−1)-convex function. In preparation for the numerical experiment, we
notice the following fact. Let A , B ,C ∈ ℝ such that A < B < C . Suppose that a function
5 : [A ,C] → ℝ is (−1)-convex on [A , B ]. Then, for 5 to be (−1)-convex on [A ,C], 5 must satisfy

5 (C) ≥ (sinh(C − B
′) + sinh(B ′ − A ′)) 5 (B ′) − (sinh(C − B ′)) 5 (A ′)

sinh(B ′ − A ′)

for all A ′, B ′ ∈ ℝ such that A ≤ A ′ < B ′ ≤ B . Note that the inequality above is equivalent to
5 (B ′) ≤ 6A ′,C (B ′). Naturally, satisfying this condition is not sufficient for 5 to be (−1)-convex.
Let Y > 0 such that |Y | � 1 and take X < 0 arbitrarily. Put � = {9Y | 9 ∈ ℕ ∪ {0}}. We will

create a function 5 : � → ℝ. Define 5 (0) = 0 and 5 (Y) = X . In addition, for any 9 ∈ ℕ, define
5 ((9 + 1)Y) by

5 ((9 + 1)Y) = max
0≤A ′<B ′≤Y9
A ′,B ′∈�

(sinh((9 + 1)Y − B ′) + sinh(B ′ − A ′)) 5 (B ′) − sinh((9 + 1)Y − B ′) 5 (A ′)
sinh(B ′ − A ′)

= max
0≤;<<≤9
;,<∈ℕ∪{0}

(sinh((9 + 1 − <)Y) + sinh((< −;)Y)) 5 (<Y) − sinh((9 + 1 − <)Y) 5 (;Y)
sinh((< −;)Y) .

Put %9 = {(;,<) ∈ ℤ2 | 0 ≤ ; < < ≤ 9 } and

�9 (;,<) = (sinh((9 + 1 − <)Y) + sinh((< −;)Y)) 5 (<Y) − sinh((9 + 1 − <)Y) 5 (;Y)
sinh((< −;)Y)

for every 9 ∈ ℕ such that 0 ≤ ; < < ≤ 9 . Then we have 5 ((9 + 1)Y) = max(;,< ) ∈%9 �9 (;,<).
For instance, we get 5 (2Y) = max(;,< ) ∈%1 �1(;,<) = �1(0, 1) = 2X . Similarly, we have 5 (3Y) =
max{�2(0, 1), �2(0, 2), �2(1, 2)}, and

5 (4Y) =max{�3(0, 1), �3(0, 2), �3(0, 3), �3(1, 2), �3(1, 3), �3(2, 3)}.

The following figure represents a definition of 5 (3Y).

92



�

ℝ

0

5 (Y) = X

Y

5 (2Y) = 2X

2Y 3Y

�2(0, 1)

5 (3Y) = �2(0, 2)
�2(1, 2)

Similarly, the following figure represents a definition of 5 (4Y).

�
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For ease of recognizing, the figures above are drawn for the large epsilon Y = 0.8, and X = −0.5.
If |Y | is significantly small, then the four points (Y, 5 (Y)), (2Y, 5 (2Y)), (3Y, 5 (3Y)) and (4Y, 5 (4Y))
are almost aligned in a straight line.
By the definition of 5 , we have

5 (B ) ≤ sinh(C − B )
sinh(C − B ) + sinh(B − A ) 5 (A ) +

sinh(B − A )
sinh(C − B ) + sinh(B − A ) 5 (C)

for any A , B ,C ∈ � such that A < B < C . Therefore, a function 5 discretely simulates the extension
of a (−1)-convex function to ∞ when |Y | � 1.
In what follows, we assume that 0 < Y ≤ 1. Then we expect that the following hold.
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Conjecture 6.34. For any B ∈ �,

5 (B ) =
sinh B

2
sinh Y

2 cosh
(
B − Y
2 Y

) X =
X

tanh Y
2
tanh B − Y2 + X .

In other words, for any : ∈ ℕ ∪ {0},

5 (: Y) =
sinh

(
:
2Y

)
sinh Y

2 cosh
(
: − 1
2 Y

) X =
X

tanh Y
2
tanh : Y − Y2 + X . (�: )

We can easily verify that the above equation holds if : = 0, 1, 2. This Conjecture 6.34 can be
proven if the following conjecture is true:

Conjecture 6.35. For any 9,;, < ∈ ℕ ∪ {0} such that 9 ≥ 2 and 0 ≤ ; < < ≤ 9 ,

1
sinh

(
< −;
2 Y

)
cosh

(
< −;
2 Y

) · ©­­«
sinh

(
9 + 1 −;

2 Y
)
cosh

(
9 + 1 − 2< +;

2 Y
)
sinh

(
<
2 Y

)
cosh

(
< − 1
2 Y

)
−
sinh

(
9 + 1 − <

2 Y
)
cosh

(
9 + 1 − <

2 Y
)
sinh

(
;
2 Y

)
cosh

(
; − 1
2 Y

) ª®®¬ ≥
sinh

(
9 + 1
2 Y

)
cosh

(
9
2 Y

) .

Proof of Conjecture 6.34 under Conjecture 6.35. We show it by induction. Suppose that (�: )
holds for : = 0, 1, 2, 3, . . . , 9 . Then we have

�9 (;,<) = (sinh((9 + 1 − <)Y) + sinh((< −;)Y)) 5 (<Y) − sinh((9 + 1 − <)Y) 5 (;Y)
sinh((< −;)Y)

=

sinh
(
9 + 1 −;

2 Y
)
cosh

(
9 + 1 − 2< +;

2 Y
)

sinh
(
< −;
2 Y

)
cosh

(
< −;
2 Y

) 5 (<Y) − sinh((9 + 1 − <)Y)sinh((< −;)Y) 5 (;Y)

=

sinh
(
9 + 1 −;

2 Y
)
cosh

(
9 + 1 − 2< +;

2 Y
)

sinh
(
< −;
2 Y

)
cosh

(
< −;
2 Y

) ·
sinh

(
<
2 Y

)
sinh Y

2 cosh
(
< − 1
2 Y

) X
−
sinh

(
9 + 1 − <

2 Y
)
cosh

(
9 + 1 − <

2 Y
)

sinh
(
< −;
2 Y

)
cosh

(
< −;
2 Y

) ·
sinh

(
;
2 Y

)
sinh Y

2 cosh
(
; − 1
2 Y

) X
=

X

sinh
(
< −;
2 Y

)
cosh

(
< −;
2 Y

)
sinh Y

2

·
©­­«
sinh

(
9 + 1 −;

2 Y
)
cosh

(
9 + 1 − 2< +;

2 Y
)
sinh

(
<
2 Y

)
cosh

(
< − 1
2 Y

)
−
sinh

(
9 + 1 − <

2 Y
)
cosh

(
9 + 1 − <

2 Y
)
sinh

(
;
2 Y

)
cosh

(
; − 1
2 Y

) ª®®¬
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for any (;,<) ∈ %9 . In particular, we also have

�9 (0, 9 ) = X

sinh
(
9
2 Y

)
cosh

(
9
2 Y

)
sinh Y

2

·
sinh

(
9 + 1
2 Y

)
cosh

(
9 − 1
2 Y

)
sinh

(
9
2 Y

)
cosh

(
9 − 1
2 Y

) =

sinh
(
9 + 1
2 Y

)
sinh Y

2 cosh
(
9
2 Y

) X .
Therefore, if Conjecture 6.35 is true, then �9 (;,<) ≤ �9 (0, 9 ) for any (;,<) ∈ %9 . Hence

5 ((9 + 1)Y) = max
(;,< ) ∈%9

�9 (;,<) = �9 (0, 9 ) =
sinh

(
9 + 1
2 Y

)
sinh Y

2 cosh
(
9
2 Y

) X ,
which implies the conclusion. �

We consider the case where Y = 0.01 and X = −0.01. Define a function 5 : � → ℝ by the
same method, where � = {0.019 | 9 ∈ ℕ ∪ {0}}. The following figure shows 201 points (0, 5 (0)),
(0.05, 5 (0.05)), (0.1, 5 (0.1)), . . . , (9.95, 5 (9.95)), (10, 5 (10)).

�

ℝ

0
1 2 3 4 5 6 7 8 9 10

−1

−2

Then the shape of the graph of 5 is like the graph of the hyperbolic tangent function. Put
�′ = {B ∈ � | B ≤ 10} = {0.019 | 9 ∈ ℤ, 0 ≤ 9 ≤ 1000}, and define ℎ : �′→ ℝ by

ℎ (B ) = X

tanh Y
2
tanh B − Y2 + X = − 0.01

tanh0.005 tanh
B − 0.01

2 − 0.01

for B ∈ �′. We attempt to calculate maxB ∈�′ | 5 (B ) −ℎ (B ) | by a computer. Then, using a quadruple-
precision floating point calculation, we obtain maxB ∈�′ | 5 (B ) − ℎ (B ) | ≈ 2.153 × 10−31. This result
is consistent with Conjecture 6.34, since maxB ∈�′ | 5 (B ) −ℎ (B ) | = 0 if that conjecture is true.
The following figure shows a graph of ℎ and points (0, 5 (0)), (0.2, 5 (0.2)), . . . , (10, 5 (10)).

ℝ

ℝ

0−1 1 2 3 4 5 6 7 8 9 10 11

1

−1

−2 ℎ

From this result, we suggest Conjecture 6.32.
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Chapter 7

Conclusion

In this thesis, we consider the following themes:

• Natures of ^-convex combinations on geodesic spaces;
• fixed point approximation theorems for tightly quasinonexpansive mappings on com-
plete CAT(^) spaces;

• resolvents of the equilibrium problem on complete CAT(^) spaces;
• resolvents of a convex function on complete CAT(^) spaces;
• natures of (−1)-convex functions.

First, we consider another type of convex combination which is named a ^-convex com-
bination. We show that a ^-convex combination has good properties on CAT(^) spaces. In
particular, we obtain the following results on the unit sphere on a real Hilbert space.

Theorem 7.1. Let H be a real Hilbert space and (H = {F ∈ H | ‖F ‖ = 1} a unit sphere on H with
a metric 3 : (H × (H → [0, c] defined by 3 (C,D ) = cos−1〈C,D〉 for C,D ∈ (H. Then for any F, G ∈ (H
such that 3 (F, G ) < c and U ∈ [0, 1],

UF
1
⊕ (1 − U)G =

UF + (1 − U)G
‖UF + (1 − U)G ‖ .

Theorem 7.2. Let H and (H be the same as Theorem 7.1. Let ( be a nonempty convex subspace
of (H such that 3 (C,D ) < c for any C,D ∈ ( . Let 4(F, G , H) be a geodesic triangle on ( such that
[F, G ] ∩ [G , H] ∩ [H, F] = ∅. For U, V,W ∈ ]0, 1[, take > = (1 − U)F

1
⊕ UG , ? = (1 − V)G

1
⊕ VH , and

@ = (1 −W )H
1
⊕ WF . Then the following are equivalent:

• [F, ?] ∩ [G , @ ] ∩ [H,>] \= ∅;
• UVW/((1 − U) (1 − V) (1 −W )) = 1.

Next, we propose a notion of tightly quasinonexpansive mappings on CAT(^) spaces. We
show that every tightly quasinonexpansive mapping is quasinonexpansive, and every firmly
vicinal mapping with k is tightly quasinonexpansive. We prove Mann type fixed point
approximation theorems for vicinal mappings withk and tightly quasinonexpansive mappings
on a complete CAT(^) space as follows:

Theorem 7.3. Let - be an admissible complete CAT(^) space and ) : - → - a vicinal mapping
with k . Suppose that k satisfies (P1) or (P2):

(P1) k is nondecreasing;
(P2) sup<∈ℕk (3 (F< ,) F<)) <∞.

Let {U<} ⊂ [0, 1[ such that
∑∞
<=1(1 − U<) = ∞. Take F1 ∈ - arbitrarily and generate {F<} ⊂ - by
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either
F<+1 = U<F< ⊕ (1 − U<)) F<

for < ∈ ℕ or
F<+1 = U<F<

^
⊕ (1 − U<)) F<

for < ∈ ℕ. Let us denote (a) and (b) by the following conditions:

(a) {) F<} is ^-bounded;
(b) sup<∈ℕ 3 (F< ,) F<) < �^/2.

Then the following hold:

(i) Suppose that k satisfies (P1). Then � () ) \= ∅ if (a) and (b) hold. Conversely, � () ) \= ∅
only if (a) and (b) hold when ) is tightly quasinonexpansive.

(i)′ Suppose that k satisfies (P2). Then � () ) \= ∅ if and only if (a) holds.

Theorem 7.4. Let - be an admissible complete CAT(^) space and ) a quasinonexpansive and
Δ-demiclosed mapping from - into itself. Suppose that {U<} and {F<} are the same as the
previous theorem. Then the following hold:

(ii) If ) is tightly quasinonexpansive and lim sup<→∞ U< < 1, then {F<} Δ-converges to some
fixed point of ) .

(iii) If lim inf<∈ℕ U< (1 − U<) > 0, then {F<} Δ-converges to some fixed point of ) .

We also prove Halpern type fixed point approximation theorems for tightly quasinonexpan-
sive mappings on a complete CAT(^) space as follows:

Theorem 7.5. Let - be an admissible complete CAT(^) space and ) : - → - a tightly quasi-
nonexpansive and Δ-demiclosed mapping. Let {U<} ⊂ ]0, 1[ such that lim<→∞ U< = 0 and∑∞
<=1 U< =∞. Let C, F1 ∈ - arbitrarily and define {F<} ⊂ - by

F<+1 = U<C
^
⊕ (1 − U<)) F<

for any < ∈ ℕ. In the case where ^ > 0, suppose that (i) or (ii) holds:

(i) sup<∈ℕ 3 (C,) F<) < �^/2,
(ii)

∑∞
<=1 U

2
< =∞.

Then {F<} converges to %� () )C .

In Chapter 5, we study the equilibrium problem on complete CAT(^) spaces. For a CAT(^)
space - , its nonempty closed convex subset  , and a function i : [0, 2^ (�^/2) [ → ℝ, we
consider a resolvent operator ' 5 : - →  for a bifunction 5 :  ×  → ℝ defined by

' 5 F =

{
H ∈  

���� infG ∈ 
( 5 (H, G ) + i (2^ (3 (F, G )) − i (2^ (3 (F, H)))) ≥ 0

}
(★)

for each F ∈ - . We get sufficient conditions such that ' 5 to be a single-valued mapping as
follows:

Theorem 7.6. Let - be an admissible complete CAT(^) space and suppose that - has the convex
hull finite property. Let  be a nonempty closed convex subset of - and 5 a real function on
 2 with conditions (E1)–(E4). Suppose that a function i : [0, 2^ (�^/2) [ → [0,∞[ is strictly
increasing, differentiable, and i ′ is continuous on [0, 2^ (�^/2) [. In addition, if ^ ≤ 0, then
suppose that i has the following conditions (d1) and at least one of (c1) and (c2):
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(c1) i ′ is nondecreasing;
(c2) i ◦ 2^ is convex on [0,∞[, and i (2^ (3 (F, ·))) is strictly midpoint convex on  for any

F ∈ - ;
(d1)  is bounded; otherwise, an inequality

lim inf
3 (C,H )→∞

H∈ 

5 (C, H)
3 (C, H) + lim3→∞

i (2^ (3))
3

> 0

holds for some C ∈  .

Otherwise, if ^ > 0, then suppose that i has the following conditions (c1) and (d2):

(c1) i ′ is nondecreasing;
(d2) lim3→�^/2 i (2^ (3)) =∞, that is, lim_ →1 i (_/^) =∞.

Define a set-valued mapping ' 5 : - → 2 by the formula (★). Then the following hold:

• ' 5 is well-defined as a single-valued mapping from - into  ;
• ' 5 is firmly vicinal with i ′ ◦ 2^ : [0, �^/2[ → ]0,∞[;
• ' 5 is tightly quasinonexpansive and Δ-demiclosed;
• the set of all fixed points of ' 5 and the set of all solutions to an equilibrium problem for
5 are identical.

We also consider a resolvent operator of a convex function. For a proper convex function
5 : - → ]−∞,∞], we consider a resolvent operator ( 5 : - → dom( 5 ) defined by

( 5 F = argmin
G ∈-

(
5 (G ) + i (2^ (3 (F, G )))

)
(★★)

for each F ∈ - . We get the following result which gives a sufficient condition such that ( 5 to
be single-valued.

Theorem 7.7. Let - be an admissible complete CAT(^) space and 5 a proper lower semicontin-
uous convex function from - into ]−∞,∞]. Suppose that a function i : [0, 2^ (�^/2) [ → [0,∞[
is nondecreasing, differentiable, and i ′ is continuous on [0, 2^ (�^/2) [. Furthermore, suppose
that (c1) or (c3) hold:

(c1) i ′ is nondecreasing;
(c3) i (2^ (3 (F, ·))) is strictly midpoint convex for any F ∈ - .

Suppose the following:

• If ^ ≤ 0, then suppose that

lim inf
3 (C,H )→∞

5 (H)
3 (C, H) + lim3→∞

i (2^ (3))
3

> 0

for some C ∈ - .
• If ^ > 0, then suppose that lim3→�^/2 i (2^ (3)) =∞.

Define a set-valued mapping ( 5 : - → 2dom( 5 ) by the formula (★★). Then the following hold.

• ( 5 is well-defined as a single-valued mapping from - into dom( 5 );
• ( 5 is firmly vicinal with i ′ ◦ 2^ : [0, �^/2[ → ]0,∞[;
• ( 5 is tightly quasinonexpansive and Δ-demiclosed;
• the set of all fixed points of ( 5 and the set of all minimizers of 5 are identical.
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We also obtain the following convergence theorem of a solution to the equilibrium problem
and the convex minimization problem. In what follows, Equil 5 denotes a set of all solutions
to an equilibrium problem for a bifunction 5 .

Theorem 7.8. Let - ,  , and 5 be the same as Theorem 7.6. Let i : [0, 2^ (�^/2) [ → [0,∞[
be a nondecreasing and differentiable function such that i ′ is continuous on [0, 2^ (�^/2) [.
Let ' 5 : - →  be a resolvent well defined by the formula (★). Let {U<} ⊂ [0, 1[ such that∑∞
<=1(1 − U<) =∞. Take F1 ∈ - arbitrarily and generate {F<} ⊂ - by either

F<+1 = U<F< ⊕ (1 − U<)' 5 F<

for < ∈ ℕ or
F<+1 = U<F<

^
⊕ (1 − U<)' 5 F<

for < ∈ ℕ. Let us denote (a) and (b) by the following conditions:

(a) {' 5 F<} is ^-bounded;
(b) sup<∈ℕ 3 (F< , ' 5 F<) < �^/2.

Suppose that ' 5 is vicinal with k : [0, �^/2[ → ]0,∞[, and define conditions (P1) and (P2) as
follows:

(P1) k is nondecreasing;
(P2) sup<∈ℕk (3 (F< , ' 5 F<)) <∞.

Then the following hold:

(i) Suppose that k satisfies (P1). Then Equil 5 \= ∅ if and only if (a) and (b) hold.
(i)′ Suppose that k satisfies (P2). Then Equil 5 \= ∅ if and only if (a) holds.

Theorem 7.9. Let - ,  , 5 , i , and ' 5 be the same as Theorem 7.8, and suppose that Equil 5 \=∅.
Let {U<} ⊂ [0, 1[ such that lim sup<→∞ U< < 1 and

∑∞
<=1(1 − U<) = ∞. Take F1 ∈ - and generate

{F<} ⊂ - by either
F<+1 = U<F< ⊕ (1 − U<)' 5 F<

for < ∈ ℕ or
F<+1 = U<F<

^
⊕ (1 − U<)' 5 F<

for < ∈ ℕ. Then {F<} Δ-converges to some solution to the equilibrium problem for 5 .

Theorem 7.10. Let - ,  , 5 , i , and ' 5 be the same as Theorem 7.8, and suppose that Equil 5 \=∅.
Let {U<} ⊂ ]0, 1[ such that lim<→∞ U< = 0 and

∑∞
<=1 U< = ∞. Let C, F1 ∈ - arbitrarily and define

{F<} ⊂ - by
F<+1 = U<C

^
⊕ (1 − U<)' 5 F<

for any < ∈ ℕ. In the case where ^ > 0, suppose that (i) or (ii) holds:

(i) sup<∈ℕ 3 (C,' 5 F<) < �^/2,
(ii)

∑∞
<=1 U

2
< =∞.

Then {F<} converges to some solution to the equilibrium problem for 5 .

Theorem 7.11. Let - and 5 be the same as Theorem 7.7. Let i : [0, 2^ (�^/2) [ → [0,∞[ be
a nondecreasing and differentiable function such that i ′ is continuous on [0, 2^ (�^/2) [. Let
( 5 : - → 2dom( 5 ) be a resolvent well defined by the formula (★★). Let {U<} ⊂ [0, 1[ such that
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∑∞
<=1(1 − U<) =∞. Take F1 ∈ - arbitrarily and generate {F<} ⊂ - by either

F<+1 = U<F< ⊕ (1 − U<)( 5 F<

for < ∈ ℕ or
F<+1 = U<F<

^
⊕ (1 − U<)( 5 F<

for < ∈ ℕ. Let us denote (a) and (b) by the following conditions:

(a) {( 5 F<} is ^-bounded;
(b) sup<∈ℕ 3 (F< , ( 5 F<) < �^/2.

Suppose that ( 5 is vicinal with k : [0, �^/2[ → ]0,∞[, and define conditions (P1) and (P2) as
follows:

(P1) k is nondecreasing;
(P2) sup<∈ℕk (3 (F< , ( 5 F<)) <∞.

Then the following hold:

(i) Suppose that k satisfies (P1). Then argmin 5 \= ∅ if and only if (a) and (b) hold.
(i)′ Suppose that k satisfies (P2). Then argmin 5 \= ∅ if and only if (a) holds.

Theorem 7.12. Let - , 5 , i , and ( 5 be the same as Theorem 7.11, and suppose that argmin 5 \=∅.
Let {U<} ⊂ [0, 1[ such that lim sup<→∞ U< < 1 and

∑∞
<=1(1 − U<) = ∞. Take F1 ∈ - and generate

{F<} ⊂ - by either
F<+1 = U<F< ⊕ (1 − U<)( 5 F<

for < ∈ ℕ or
F<+1 = U<F<

^
⊕ (1 − U<)( 5 F<

for < ∈ ℕ. Then {F<} Δ-converges to some minimizer of 5 .

Theorem 7.13. Let - , 5 , i , and ( 5 be the same as Theorem 7.11, and suppose that argmin 5 \=∅.
Let {U<} ⊂ ]0, 1[ such that lim<→∞ U< = 0 and

∑∞
<=1 U< = ∞. Let C, F1 ∈ - arbitrarily and define

{F<} ⊂ - by
F<+1 = U<C

^
⊕ (1 − U<)( 5 F<

for any < ∈ ℕ. In the case where ^ > 0, suppose that (i) or (ii) holds:

(i) sup<∈ℕ 3 (C, ( 5 F<) < �^/2,
(ii)

∑∞
<=1 U

2
< =∞.

Then {F<} converges to some minimizer of 5 .

In Section 6.2, we study a special convex function named a (−1)-convex function. Let - be
a uniquely metric space. We show that a (−1)-convex function 5 : - → ℝ is convex on dom( 5 ).
We also prove that a (−1)-convex function 5 : ℝ→ ℝ satisfies

lim inf
3 (C,D )→∞

5 (C)
3 (C,D ) ≥ 0

for all D ∈ ℝ, where 3 (·, ·) = |· − ·|. By doing numerical experiments, we consider the behavior
and properties of (−1)-convex functions.
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