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Chapter 1

Introduction

Equilibrium problem is a crucial topic for nonlinear analysis. An equilibrium problem for
a bifunction f: K x K — R is defined by to find a point z € K such that for all y € K, an
inequality f(z,y) > 0 holds. This problem was proposed by Blum and Oettli [1] in 1994, and
this includes various crucial nonlinear problems such as convex minimization problem, fixed
point problem, minimax problem, variational inequality problem, saddle point problem, Nash
equilibria, and so on.

Various researchers have studied the equilibrium problem on complete CAT(x) spaces. A
CAT(x) space is a metric space which has a unique geodesic for each pair of two points and
has a curvature bounded above by x. We know that the class of complete CAT(x) spaces
includes the class of Hilbert spaces.

In 2005, Combettes and Hirstoaga [3] studied the equilibrium problem on Hilbert spaces.
They found that an operator Ry defined by f, which is called a resolvent operator, plays an
important role to solve the equilibrium problem. They show that the set of all solutions to
the equilibrium problem for f coincides with the set of all fixed points of R;. Therefore, that
equilibrium problem can be reduces to the fixed point problem. Note that they consider that
f satisfies the following basic conditions to well-define a resolvent Ry.

(E1) f(z,z)=0forall z € K;

(E2) f(z,y)+f(y,2) <0forall z,y € K;

(E3) f(z,-): K — R is lower semicontinuous and convex for all z € K;
(E4*) f(-,y): K — R is upper hemicontinuous for all y € K.

We often call the mapping which serves to reduce a problem to a fixed point problem a
resolvent of that problem.

In recent years, some researchers showed that resolvent operators for the equilibrium
problem can be defined in complete CAT(0) spaces [12], complete CAT(1) spaces [11], and
complete CAT(-1) spaces [20]. For instance, Kimura and Kishi [12] define a resolvent Ry by a
formula

fo:{zel(

;2}; (f(z,y) + %d(x, y)? - %d(x, z)z) > 0},

where d is a metric. This formula has the form of adding a perturbation d?/2 to the set of all
solutions to the equilibrium problem for f:

Equil f = {z ek

inlgf(z,y) 20} = {zeK|f0r ally ek, f(z,y) 20}.
ye

They also show the following result.



Theorem 1.1 (Kimura and Kishi [12]). Let X be a complete CAT(0) space and suppose that
X has the convex hull finite property. Let K be a nonempty closed convex subset of X, and
f: K xK — R be a bifunction satisfying (E1)-(E4"). Define a resolvent Ry: X — K by

foz{ZEK

}glg (f (2,y) + %d(x,y)z - %d(x, z)2) > 0}

for x e X. Then Ry is well-defined as a single-valued mapping. Moreover, F(Ry) = Equil f, where
F(Ry) stands for the set of all fixed points of Ry.

In 2021, Kimura [11] showed that a resolvent Sy defined by

Sfx:{zeK

inlg (f(z,y) —logcosd(x,y)+logcosd(x,z)) > 0}
ye

is well-defined as a single-valued mapping, and this satisfies F(Sf) = Equil f on admissible
complete CAT(1) spaces. They also proved a A-convergence theorem as follows.

Theorem 1.2 (Kimura [11]). Let X be an admissible complete CAT(1) space, and suppose that
X has the convex hull finite property and sup,, ,.x d(u,v) < n/2. Let K be a nonempty closed
convex subset of X, and f: K x K — R satisfies (E1)—(E4) as follows:

(E1) f(z,2) =0 forall z € K;
(B2) f(z,y)+f(y,2) <0 forall z,y € K;
(E3) f(z,-): K — R is lower semicontinuous and convex for all z € K;

(E4) limsup,. o f(ty® (1 -1)z,y) < f(z,y) forall z,y € K.

Let x be an arbitrary point on X and Sy a resolvent defined in above. Then a sequence {Sfx}
A-converges to some element in Equil f.

Later, Kimura and Ogihara [20] proved a well-definedness of a resolvent T; defined by

fo={Z€K

inlg (f(z,y) +coshd(x,y) —coshd(x,z)) > 0}
ye

on complete CAT(-1) spaces in 2023.

Resolvents Ry, Sy and Ty use perturbation functions d?/2, —log(cosd) and coshd, respec-
tively. We know that we cannot use a perturbation —log(cosd) to define a resolvent on
CAT(-1) spaces generally. Similarly, we cannot use coshd as a perturbation function to de-
fine a resolvent on CAT(1) spaces. This means that available perturbations depend on the
curvature of the space.

In admissible complete CAT(1) spaces, we know that we can use perturbations other
than -log(cosd), such as tandsind, which will be shown in this thesis. By choos-
ing an appropriate perturbation ®, we can R;: X — 2K defined by Rpx = {z € K |
infyex (f(z,y) + @(d(x,y)) —P(d(x,2))) > 0} for each x € X to be a single-valued mapping
from X into K, and F(Ry) can be identical to Equil f.

In this thesis, we show that we can use another perturbations such as tand sind in admis-
sible complete CAT(1) spaces, tanh d sinhd and logcoshd in complete CAT(-1) spaces, and
others. We also give sufficient conditions for perturbations to well-define the resolvent in
general admissible complete CAT(x) spaces.

We know that not all resolvents have exactly the same properties. In fact, the properties of
resolvents depend on perturbations. For instance, a resolvent defined by using a perturba-
tion —log(cosd) has a property named spherically nonspreading of sum type, and a resolvent
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defined by using a perturbation tan d sin d has a property named firmly spherically nonspread-
ing; these two nonspreadingness are independent. This implies that there exists a different
behavior of an approximation sequence to a fixed point of a resolvent for each perturbation.
In this thesis, we prove an approximation theorem of a solution to the equilibrium problem
using a resolvent defined by generalized perturbations by focusing on the characteristics that
resolvents have in common. We also consider a resolvent of convex functions.

In addition, we consider a special type of convex functions.



Chapter 2

Preliminaries

Let X be a nonempty set and T a mapping from X into itself. Then F(T) denotes a set of all
fixed points of T. Let f be a real function on a set X. Then we define an epigraph of f by
epif ={(x,y) e X xR |y > f(x)}. We write argmax, f(x) for the set of all maximizers of f.
Similarly, argmin ., f(x) stands for the set of all minimizers of f. In addition, if a maximizer
(resp. minimizer) of f is unique, then argmax, ., f(x) (resp. argmin, . f(x)) directly denotes
such a unique maximizer (resp. minimizer). Two sets argmax, .y f(x) and argmin ., f(x) are
often abbreviated to argmax f and argmin f, respectively.

Let X, Y be nonempty sets and A a subset of X. For a function g from X into Y, we write
gla: A — Y for the restriction of g to A.

Let (X, d) be a metric space and f a mapping from X into |-, 0]. Let us denote an effective
domain of f by dom(f) = {x € X | f(x) ¥ oo}. A function f is said to be proper if dom(f) % @.

Let (X,d) be a metric space and T a mapping from X into itself. Then T is said to
be asymptotically regular if lim, .., d(T™*'x,T"x) = 0 for every x € X. We say that T is
quasinonexpansive if F(T) % @ and d(Tx, p) < d(x,p) for any x € X and p € F(T).

Let (X,d) be a metric space and {x,} a bounded sequence on X. A point z € X is called
an asymptotic center of {x,} if z is a minimizer of a function limsup,,_,, d(x,,-) on X. {x,} is
said to A-converge to a point z € X if z is the unique asymptotic center of any subsequence of
{xn}. We call such a point z a A-limit of {x,}. A mapping T: X — X is said to be A-demiclosed
if a A-limit of any A-convergent sequences {x,} on X satisfying lim,,_,., d(x,, Tx,) = 0 belongs
to F(T).

2.1 Geodesic spaces

Let (X, d) be a metric space. For two points x,y € X, a mapping y,,: [0,1] — X is called a
geodesic joining x and y if v, ,(0) =y, 7y, (1) = x, and d(yx,(s), yx,(t)) = |s — t|d(x,y) hold for
any s,t € [0,1]. For D € ]0, ], a metric space (X, d) is called a uniquely D-geodesic space if
for any two points x, y € X with d(x, y) < D, there exists a unique geodesic joining x and y. In
particular, a uniquely co-geodesic space is simply called a uniquely geodesic space.

Let (X, d) be a uniquely D-geodesic space. Let x, y € X such that d(x, y) < D and yy,, a unique
geodesic joining x and y. Then we write a point vy, (¢) by tx ® (1 -t)y for every ¢ € [0,1]. We
call this point a convex combination of x and y. It follows that d(x,tx® (1 -t)y) = (1 -t)d(x,y)
and d(y,tx® (1 —t)y) = td(x,y). Furthermore, we can show that tx® (1-t)y =(1-¢t)y dtx
for all r € [0,1]. Put [x,y] = [y,x] = 1x,([0,1]) = {tx® (1 - 1)y | t € [0,1]}. We call it a
geodesic segment joining x and y. Moreover, define partial segments |x, y[, [x, y[, and ]x, y] by
Yy (10, 11), 7, (10, 11), and yx, ([0, 1]), respectively.

Let X be a uniquely D-geodesic space and C a subset of X such that d(u,v) < D for every



u,v € C. Then C is said to be convex if [x,y] c C for every x,y € C. It is equivalent to
tx®(1-t)yeC foreveryx,yeCandte]0,1].

Let X be a uniquely D-geodesic space and C a subset of X such that d(u,v) < D for every
u,v € C. Then a convex hull of C, which is written by co C, is defined by U;,_, C,, where C; =C
and Cpy1 = {tx® (1 —1t)y | x,y € Cpy, t € [0,1]} for every n € N. We know that co C is convex.
Moreover, cl C denotes a closure of C.

Let X be a uniquely D-geodesic space and f a function from X into ]—oo, ]. Then f is said to
be convex if forany x, y € X such thatd(x,y) <Dandt €0, 1[, f(tx&(1-1t)y) <tf(x)+(1-1)f(y)
holds. Note that the inequality f(tx® (1 -1)y) <tf(x)+ (1 -1t)f(y) always holds if x § dom(f)
or y § dom(f). f is said to be upper hemicontinuous if limsup,., f(tx® (1 -1t)y) < f(y) for
any x,y € X such that d(x, y) < D.

Let M, be a 2-dimensional model space with a metric p and a constant curvature x € R
defined by

1

—s?  (if x> 0);
K
MK = Rz (if K= 0);
1 .2 .
——H" (ifx <0),
V-«

where S? is the 2-dimensional unit sphere, R? is the 2-dimensional Euclidean space, and H? is
the 2-dimensional hyperbolic space. Let us denote a diameter of M, by D,, which coincides
with

o (if k < 0);
Dy = % (if x > 0).

Then M, is a complete uniquely D, -geodesic space.

Let X be a metric space and f a function from X into |-oo, c0]. For D € ]0, =], f is said to be
D-coercive if f(y) — o whenever d(x,y) / D for some x € X. We call a co-coercive function
simply a coercive function.

Let x € R and X a uniquely D,-geodesic space. For x,y,z € X such that d(x,y) +d(y, z) +
d(z,x) < 2Dy, define a geodesic triangle with vertices x, y and z by A(x,y,z) = [x,y] U [y, z] U
[z,x]. Then for each geodesic triangle A(x,y,z) on X, there exists X,y,z € M, such that
d(x,y) =p,y), d(y,2) = p(¥,2), and d(z,x) = p(z,x). Thus we define a comparison triangle
A(x,y,z) of A(x,y,2) by [x,7] U[y,z] U [z, x]. For an arbitrary point p € A(x, y, z), there exists a
corresponding point p € A(X,y,z) to p such that the distances from two adjacent vertices are
identical. We call such a point p a comparison point of p.

For x € R, let (X, d) be a uniquely D,-geodesic space and (M, p) a model space. We call
X a CAT(x) space if for any a := a(x,y,z), A := A(X,¥,z), and for any two points p,q € A and
these comparison points p,q € A, an inequality d(p, q) < p(p, q) always holds. The inequality
d(p,q) < p(p,q) is called a CAT(x) inequality. We remark that every CAT(x) space is also a
CAT(x’) space if x < x’, see [2].

A Hilbert space is an example of the complete CAT(0) space, and therefore is a complete
CAT(x) space for any x > 0. It yields that the class of the complete CAT(0) spaces includes
Hilbert spaces, but not Banach spaces in general. Moreover, a model space M, is a complete
CAT(x) space.

A CAT (x) space X is said to be admissible if d(x, y) < D, /2 for every x, y € X. The admissibility
of CAT (x) spaces only makes sense when « > 0, because D, = oo for all x < 0.



Lemma 2.1 (Mayer [24]). Let X be a complete CAT(0) space and f a lower semicontinuous
convex function from X into R. Then there exists L € |—co,0] such that for any u € X,

e f(2)
A A 2

Lemma 2.2 (Kimura and Kohsaka [13]). For x > 0, let X be an admissible complete CAT(x)
space and f a proper lower semicontinuous convex function from X into |—oo,]. Then f is
bounded below.

A sequence {x,} on a CAT(x) space X is said to be x-bounded if an inequality

limsup d(x,, u) < Dx
n—oo 2

holds for some u € X.

Let X be a complete CAT(x) space. If {x,} c X is x-bounded, then an asymptotic center
of {x,} is always unique, see [4,5]. In this thesis, AC({x,}) denotes the unique asymptotic
center of a x-bounded sequence {x,}. Moreover, the A-limit of any A-convergent sequence
{x,} on X is also unique, and therefore we write A-lim,,_, x,, for such a point. We also use
a notation x, = x if {x,} A-converges to x. In addition, if {x,} is convergent, then we get
lim,, 00 X, = A-limy, 00 X5.

Theorem 2.3 ([4,5]). Let X be a complete CAT(x) space and {x,} a x-bounded sequence on X.
Then there exists a A-convergent subsequence of {x,}.

Let X be a complete CAT (k) space. A subset C c X is said to be A-compact if every sequence
{x,} on C has a A-convergent subsequence to a point in C. A subset C c X is said to be
A-closed if a A-limit of every A-convergent sequence on C belongs to C.

Lemma 2.4 (Kirk and Panyanak [21]). Let X be a complete CAT(0) space and M a bounded
closed convex subset of X. Then M is A-compact.

Lemma 2.5 (Kirk and Panyanak [21]). Let X be a complete CAT(0) space and M a closed convex
subset of X. Then M is A-closed.

For the sake of completeness, we give the proof of Lemma 2.5 at Section 2.3.

Lemma 2.6 (He, Fang, Lopez and Li [6]). Let X be a complete CAT(x) space and {x,} a x-
bounded sequence on X such that x, = z € X. Then for any u € X with limsup,_, d(u, x,) <
Dy /2,

d(u,z) < li;lllglf d(u, xy).

Corollary 2.7. Let X be an admissible complete CAT (k) space and {x,} a x-bounded sequence
on X such that x, > z € X. Let u € X and suppose that there exists a limit lim,,_,., d(u, x,,).
Then

d(u,z) < lim d(u, x,).
n—oo

Proof. 1f lim,_,. d(u, x,) < Dy/2, then we have the conclusion from Lemma 2.6. We may
consider the case where lim,_,., d(u, x,) = D/2. Since {x,} is x-bounded, there exists p € X
such that sup,,.y d(x,,p) < Di/2. Assume that x < 0. Then d(u,x,) — o and therefore
d(xp,p) = |d(u, x,) — d(u,p)| — oo, which is a contradiction. Hence we have x > 0. It follows
from the admissibility of X that d(u, z) < Dy/2 =lim,_,. d(u, x,). This is the desired result. O



A complete CAT(x) space X is said to have the convex hull finite property if for any nonempty
finite subset E of X and every continuous mapping T from clco E into itself, T has a fixed
point. The convex hull finite property is defined by [28] for CAT(0) spaces originally. Notice

that all Hilbert spaces have the convex hull finite property.

Let X be a CAT(x) space and let r € [0,1]. Then, the following inequalities hold for any
x,y,z€ X withd(x,y)+d(y,z)+d(z,x) < 2Dy:

e [fx <O,
cosh(vV=xd(tx ® (1 -1t)y, z)) sinh(v-«x D)
< cosh(v=«d(x, z)) sinh(ty=«x D) + cosh(vV=« d(y, z)) sinh((1 — £)V=« D);
e if k=0,

d(tx® (1-1t)y, z)? <td(x,2)*> + (1 - t)d(y, 2)* — t(1 - )d(x, y)?;
e if x >0,
cos(Vkd(tx @ (1 -1)y,z)) sin(vVx D)
> cos(Vxd(x, z)) sin(tVk D) + cos(vkd(y, z)) sin((1 — t)Vk D),

where D = d(x,y). These hold as an equation if CAT(x) space X is just a model space M.
Therefore, we call these inequalities Stewart’s theorem on CAT(x) spaces.
The following are easily obtained by Stewart’s theorem on a CAT(x) space X:

e [fx <O,

cosh(vV=xd(tx ® (1 -1)y,z)) <t cosh(vV—-«kd(x,z)) + (1 —t) cosh(vV=«xd(y, 2));
o if k=0,

dtx® (1-1)y,2)? <td(x,2)*+ (1 -t)d(y, 2)%
e if x>0,

cos(Vkd(tx® (1 -1)y,z)) > t cos(Vxd(x,z)) + (1 —t) cos(vkd(y, z))
for any t € [0,1] and x, y,z € X with d(x,z) < Dx/2, d(y,z) < Dy/2, and d(x,y) < Dy. In this

thesis, we call these inequalities the corollaries of Stewart’s theorem on CAT(x) spaces.

2.2 A function ¢,

For « € R, define a function ¢, : |0, 0] — ]—00, 0] by

}K(cosh(\/_—xd) ~1)= _iK sinh? —V_z"d (if x < 0);
. _n-1/_1\n-1,42n
Ck(d)=ZK (=D"a=" _ 1

2" el T2 (=
1 _ 2. 2Vkd :
;(1 - cos(Vxd)) = —sin” = (if x > 0)



for d € R and ¢y (o) = 0, where «° := 1 if x = 0. The function c, is infinitely differentiable on
R. The first and second derivative c, and c;/ are represented as

1

——sinh(v=«xd) (if x <0);
, 00 Kn—l(_l)n—len—l ﬁ .
=) G =11 (if x = 0);
=l % sin(vVk d) (if x > 0)
and

. cosh(v=«xd) (if x < 0);
C;'(d):Z%:l—xck(d): 1 (if x = 0);

=0 : cos(vVxd) (if x > 0)

for d € R, respectively. Furthermore, for any « € R, we get the following:

cx(0) =0, and ¢ (d) > 0 for any d € |0, Dy];

¢, (0) =0, and c,(d) > 0 for any d € ]0, D« [;

¢’/ (0)=1, and ¢/ (d) > 0 for any d € |0, D,/2[;

if x >0, then ¢/ (d) <0 for any d € [Dy/2, Di[;

¢« is an odd function, and ¢/ is an even function;

cx is strictly increasing on [0, Dy];

¢y is convex on [0, D, /2];

c’(d)? +xcl(d)?> =1 for any d € R;

cr(dy+do) = ci.(dy)c (do) + ¢l (dy)ci(dy) for any dy, ds € R;
cl(dy +do) = cl(dy)cy(dy) — xci(dy)c(do) for any dy, ds € R;
cl(dy)cy(dz) = (¢l (dy +d) +cl(dy — dr))/2 for any d;, dy € R.

Notice that lim,_, ¢ (d)/d = ~ if ¥ < 0. Moreover, we have
oo (ifd <0);
o(Z)= L (ifd>0).

The following figure describes the graphs of ¢, for x <0, x =0, and « > 0.

y
@® ()

1) y=cc(d) (x <0);
(ii) y =cx(d) (x =0);
(iii) y = cx(d) (x > 0).

(iii)




For every t € [0,1], d € [0, D«[, and « € R, put

¢, (1d)
()% =1 cl(d
t (if d = 0).

(if d £ 0);

Then we have
sinh(tvV—«d)/sinh(V-«xd) (f x < 0);
(t)y =1t (if x = 0);
sin(tVxd)/sin(vk d) (if x > 0)

if d ¥ 0. Kimura and Sudo [19] discovered that we can write all Stewart’s theorems on CAT (k)
spaces in the same formula as follows:

c(d(tx @ (1-1)y,2)) < (£)p(ex(d(x,2)) — e ((1 = 1)D)) + (1 = 1) (e (d(y, 2)) — e (D))

foranyt € [0,1] and x,y,z € X with d(x, y) +d(y, z) +d(z, x) < 2Dy, where D = d(x, y). Similarly,
the corollaries of Stewart’s theorem on a CAT(x) space X can be expressed by

e (d(tx @ (1-1)y,2)) < te(d(x, 2)) + (1= 1)ex(d(y, 2))

forany ¢t € [0,1] and x, y, z € X with d(x, z) < D« /2, d(y, z) < Di/2, and d(x,y) < Dy.
Now we show several natures of functions cy, c, and c .

Lemma 2.8. For any x € R and d,, d» € R, an equation
cx(dr) + ¢ (dr)ex(d2) = cx(d2) + ¢ (d2)ci (dy)

1 -/ (di)cy (d)
K

holds. In addition, these are equal to if x%0.

Proof. For any x € R and d;, d» € R, we get

cx(dr) + ¢ (dr)ex(dz) = cx(dr) + (1 = kex (dr))ex(d2)
= cx(d2) + (1 — ke (dz)) e (dr)
= cx(da) + ¢ (d2)ci (dy).

Moreover, if x £ 0, then

cx(dr) + ¢l (dr)ex(dz) =

1-¢c/(dy) N ¢/ (d)(1—c/(d2)) 1-c/(dr)c;(d2)
I K a I :

Thus we get the conclusion. i

Lemma 2.9. Let X be a CAT(x) space. Then an inequality

ec(306, 1)) + e (Fd0e ) )e(d(3r @ 3y, 2)) < Fen(d(x, 2)) + Ze(d(y, 2)

holds for any x,y, z € X such that d(x,y) +d(y,z) +d(z,x) < 2Dx.



Proof. It holds as an equation if x = y, thus we suppose that x ¥ y. Put D = d(x,y). Then we
obtain 0 < D < Dy since d(x,y) < 2Dy — (d(y, z) +d(z,x)) < 2Dy —d(x,y). Therefore, by Stewart’s
theorem on CAT(x) spaces, we get

ex(alyre52.2)) = (3 (@ ) -ac(F))+ (5), [extatr 0 - 3)

= S e, 2 + a2 - 2 (B

Since ¢ (D) = 2c,(D/2)c;(D/2) and ¢/ (d) > 0 for every d € |0, D, /2[, we obtain

cy (%)CK (d(%x ® %y, z)) < %(ck(d(x, 2))+ ¢ (d(y, 2)) — 2¢x (%))

This is the conclusion. |

Lemma 2.10. Let X be a CAT(x) space and T: X — X a quasinonexpansive mapping. Then
F(T) is closed. Moreover, if d(zi,z2) < Dy for every z1,z, € F(T), then F(T) is convex.

Proof. Let {z,} be a sequence on F(T) converging to zp € X. Then for n € N, we get
0 < d(z9, Tzg) < d(zo,2) +d(zn, Tzp) < 2d(z9, zn) — 0 as n — oo. This means that zy € F(T), and
hence F(T) is closed.

Suppose that d(z1, z2) < Dy for every z;,z, € F(T). Letx,y € F(T) and ¢ € ]0, 1[. Then we can
take a point u = tx & (1 —t)y. Put D =d(x,y) < Dx. Then since ¢ is increasing on [0, D], we
obtain ¢, (d(x,Tu)) < cx(d(x,u)) and ¢, (d(y, Tu)) < cx(d(y,u)). Therefore, since

dx,y)+d(y,Tu) +d(Tu,x) <d(x,y)+d(y,u) +d(u,x) =D+tD+ (1 —t)D =2D < 2Dy,
we obtain

0<cx(du, Tu))=cx(d(tx® (1 -1)y, Tu))
< (O)p(en(d(x, Tu)) = ex (1 = 1)D)) + (1 = t) [ (cx(d(y, Tw)) — e (tD))
= (1)p (ex(d(x, Tu)) = cx(d(x, u))) + (L= 1) (cx(d(y, Tu)) - ex(d(y, u))) < 0.

This means that u = Tu, and hence F(T) is convex. |

2.3 A metric projection

Let X be an admissible complete CAT(x) space and K a nonempty closed convex subset of X.
Then for each x € X, there exists a unique point p, such that p, € K and d(x, px) = inf,cx d(x, y).
It derives a mapping Px from X onto K by x + p, for every x € X. Such a mapping Px is
called a metric projection onto K. Then we obtain F(Px) = K.

Lemma 2.11. Let X be an admissible complete CAT (k) space and K a nonempty closed convex
subset of X. Then inequalities

c(d(x, Pex)) e (d(Pxx, 2)) < cx(d(x, 2)) = cx(d(Pkx, 2)) )

and
cx(d(Pxx, z))c; (d(x, Prx)) < cx(d(x, 2)) — ¢k (d(x, Pk X)) (ii)

hold for any x € X and z € K.
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Proof. Put u =Pxx and D =d(u,z). Then since tz® (1 —t)u € K, we get
c(d(x,u)) <c(d(x,tze (1 -t)u))
< (O)plen(d(x,2)) — ex((L = 1)D)) + (1 = 1) p (e (d(x, u)) — cx(£D))

for any ¢ € 10, 1[. Hence we have

1-(1-1¢)k 1-1)X
L2020 (e w)) < ex(d(,2)) e (1~ 0D) ~ =~ Db (1)
(t)D (t)D
< cx(d(x,2)) —cx((1 =t)D)
for any ¢ € 10, 1[. Letting t — 0, we obtain (i). Indeed, we get
1-(1-1)k
1img =/ (D).
t—0 (t)5
Furthermore, using (i) and Lemma 2.8, we have (ii). O

Corollary 2.12. Let X be an admissible complete CAT (x) space and K a nonempty closed convex
subset of X. Then the metric projection Px is quasinonexpansive.

Proof. From Lemma 2.11 (i), we obtain 0 < ¢, (d(x, z)) — cx(d(Pxx, z)) for any x € X and z € K,
which implies the conclusion. i

Using Corollary 2.12, we can proof Lemma 2.5.

Proof of Lemma 2.5. Let {x,} be a sequence on M such that x, > xo € X. Then x, is the
unique asymptotic center of {x,}. Assume that xo § M, and let P); be a metric projection from
X onto M. Then since Py, is quasinonexpansive, we obtain

lim sup d(x,, xp) < lim sup d(x,, Pyxo) < limsup d(x,, xo),

n—oo n—oo n—oo

which is a contradiction. This follows the conclusion. O

2.4 Equilibrium problems

Let X be a uniquely D-geodesic space and K a nonempty closed convex subset of X. The
equilibrium problem for a bifunction f: K? — R is a problem to find a point z € K satisfying
inf,cx f(z,y) = 0. Then let us denote the set of all solutions to the equilibrium problem by
Equil f. That is, Equil f = {z € K | inf,cx f(z,y) > 0}.

In this thesis, we always assume that f satisfies the following conditions (E1)-(E4):

(E1) f(z,z)=0forall z € K;

(E2) f(z,y)+f(y,2) <Oforall z,y € K;

(E3) f(z,-): K — R is lower semicontinuous and convex for all z € K;
(E4) limsup, o f(ty® (1 -1t)z,y) < f(z,y) forall z,y € K.

The condition (E4) is true when (E4*) is true, see Chapter 1. These conditions are required to
define resolvent operators of equilibrium problems.

As described in Chapter 1, certain convex minimization problems can be attributed to an
equilibrium problem. Let X be a uniquely D-geodesic space, K a nonempty closed convex
subset of X, and g a lower semicontinuous convex function from K into R. Define f: K? - R
by f(z,y) = g(y) — g(z) for each y,z € K. Then f satisfies conditions (E1)-(E4), and we have

Equil f = {z € K | inf,cx(g(y) — g(2)) 2 0} ={z € K | infyex g(y) = g(2)} = argmin g.
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2.5 Other lemmas

Let tanh™': |-1,1[ — R be the inverse of the hyperbolic tangent function. Similarly, let
tan~': R U {+o0} — [0, [ be the extended inverse of the extended trigonometric tangent
function tan: [0, 7[ — R U {xoo}, where we set tan~! (o) = 7/2.

For x € R and D € [0, D[, define a function {f: [0,1] — [0, 1] by

c . (tD)
(5 (t) =4 cx(tD) + cx (1 - 1)D)
t (if D=0)

(if D > 0);

for ¢ € [0, 1]. Then we know that limp_,o {f(¢) =t for any xk € R and ¢ € [0, 1].

Lemma 2.13. For x € R and D € [0, Di[, the function {§: [0,1] — [0, 1] is continuous, strictly
increasing, and bijective. Moreover, the following hold:

* ¢5(0)=0,¢5(1/2) =1/2, and (1) = 1;

* (F()+{f(1—1)=1 foranyt € [0,1];

* ({5)"(1/2) =0, where ({f)"” is the second derivative of (.
In addition, the following hold if D > 0:

e If x>0, then ({f))"(t) <0 forany t €10,1/2[;
e if x>0, then ({})"(t) >0 forany t € 11/2,1[;
* if x <0, then ({f)"(t) >0 forany t € 10,1/2;
* if x <0, then ({f)"(t) <0 forany t € 11/2,1].

Let x € R and D € [0, D«[. Since () is bijective, there exists the inverse of {f. It is obvious
that (¢ ’6)‘1(a) = a for any a € [0, 1]. We also have the following facts.

Lemma 2.14. For x € R and D € 10, D, [, the inverse of (}; is expressed by

(5 Ha)
1 .y __asinh(y=xD) 1 V-xac(D) . )
=0 ™ T avacosh(vexD) - vexp ™ T-avracimy HFSO
B (if x = 0);
1 3 a sin(vk D) 1 1 Vxac, (D) .
\/;Dtan 1—a+acos(\/?D)_\/?Dtan T—a+ac’(D) (if « > 0)
1 .1 _(-asinh(y=xD) 1 1 V-k(1-a)cp (D) . :
=0 M e I wcoshvexD) - verp MM ax(d-awerm) O
=l-ql-a (if x = 0);
1 . (-a)sin(vxkD) 1 _1 Vx(1-a)c,(D) .
VD M ar (- cosVxD)  vxD " ar(I-a)c/(D) (ifx>0)

for a € [0,1]. If D =0, then ({§) ' (a) = a for every a € [0,1]. Therefore, the following hold for
any x € R and D € [0, Di|:

12



J ((g)‘lz [0,1] — [0, 1] is continuous and strictly increasing;

* ({)7H0) =0, (¢8) 1 (1/2) =1/2, and ({F) ™' (D) = 1;

* () Ha)+(¢8)'(1-a) =1 forany a € [0,1].
Moreover, the following hold if D > 0:

 If x>0, then (({5)™1)"(a) > 0 for any a €10,1/2[;

o if x>0, then (({§)™1)"(a) <0 forany a € 11/2,1;

* if x <0, then (({5)™")"(a) <0 for any a €10,1/2[;
| [

 if x <0, then (({5)™")"(a) >0 for any a €11/2,1].
The reason we set the codomain of tan~! as [0, #[ instead of ]-x/2, 7/2[ is to ensure
consistency of Lemma 2.14 when D, /2 < D < Dy.
Corollary 2.15. For x > 0 and D € |0, D[, the following hold.
* {;(t) >t forany t €]0,1/2];
* {;(t) <t foranyte]1/2,1];
e ((8) Ha) < a forany a €10,1/2[;
o ({8) (@) > a forany a €11/2,1].
Corollary 2.16. For x <0 and D € )0, [, the following hold.
* (;(t) <t foranyt €]0,1/2[;
* ((t)>t forany t €]1/2,1][;
e (&) Ha) > a for any a €10,1/2[;
o ({8) (@) <aforany a €]1/2,1].

For D > 0, the first derivative of {f is expressed by

D¢, (D)
(ck(tD) + ¢ ((1 - 1)D))?

({p)' (1) =
for £ € 10, 1[. Then there exist limits lim;_,o({})’(¢) and lim,_,; ({})"(¢). Thus we have

By noting Lemma 2.13, we also get ({f)’(¢) = (¢f)’(1 —1) for all z € ]0, 1[. Therefore, we obtain
the following facts.

Lemma 2.17. For x >0 and D € )0, D[, the following hold.

1 K
o Et < CD([) <—F= K(D)

. %(1—1:) <1-¢5(0) < —2—
cy (D)

D

o & (D)(l —a) <1- ({8 Ha)<2(1-a) forany a € [0,1].

———t forany t€]0,1];

K(D) (1-1¢) forany t € [0,1];

a < (Cg)_l(a) <2a forany a €]10,1];
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Lemma 2.18. For x <0 and D € |0, o[, the following hold.

K(DD)t< {5(t) <2t foranyt €]0,1];
K(D)(l—t)<1—CD(t)<2(1—t) foranyt € [0,1[;

Lo <@ i@ < 22

 21-@) <1- () @) <

The following are graphs of the functlon (}, for some D > 0.

———a forany a €10,1];

Ce(D )(l—a)foranyae[o 1[.

a a a
a =50 a=g50) a=p0)
Lp------mmmm-- 1 R 1f----------
N - | 2 f e S
0 | | ¢ 0 | ¢ O | | ¢
0 1/2 1 0 1 0 1/2 1
x>0 k=0 k<0

For x e R and ¢ € [0, 1], define a function n}: [0, D[ — [0, 1] by

¢y (tD)
ns(D) = {(r) = cx(tD) + ¢, ((1 —1)D)
t Gif D=0)

(if D > 0);

for D € [0, Di[. Furthermore, for x € R and « € [0, 1], define a function 7, : [0, D[ — [0, 1] by
s (D) = ()~ (@)

for D € [0,D«[. Then we have n%(D) = r, na(D) = a, 7,(0) = a, nJ(D) +n}_,(D) = 1, and
Na(D)+77_,(D) =1 for every x € R, r € [0,1], @ € [0,1], and D € [0, Dy].

Lemma 2.19. For x >0 and t € |0, 1[, the following hold:

(i) limd—)O ﬂ;(d) =1

(i) limg—p, ny(d) =1/2;
(iii) if t <1/2, then nf is strictly increasing;
(iv) if t > 1/2, then ny is strictly decreasing.

Lemma 2.20. For x <0 and t € 0, 1[, the following hold:

i) limg—o ntK(d) =1
(i) if t <1/2, then limy_,. n¥(d) =0,
(iii) if t > 1/2, then limy_,., n¥(d) = 1;
(iv) if t < 1/2, then ny is strictly decreasing;
(V) if t > 1/2, then nY is strictly increasing.
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The following figures show graphs of n} for several ¢.

¢ n=n(D) (1/2<r<1)

1="15,(D)
n=n;(D) (0<t<1/2)

k<0

We give several natures of the function 7, in Section 3.1.
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Chapter 3

Convex combinations

3.1 x-convex combination on geodesic spaces

As described in the Preliminaries, on a uniquely D-geodesic space, a convex combination
tx ® (1 — t)y stands for the unique point on the geodesic segment [x,y] such that d(x,z) :
d(z,y) =(1-1t):t. Now we introduce the following fact.

Fact 3.1. Let X be a uniquely D-geodesic space and take x,y € X such that d(x,y) < D. Then
forany t € [0,1], tx @ (1 — 1)y = argmin,_y (td(x, 2)> + (1 - 1)d(y, 2)?).

For the sake of completeness, we show this. We prepare a lemma to prove the above fact.

Lemma 3.2. Let X be a uniquely D-geodesic space. Take x,y € X such that d(x,y) < D. For a
given t € [0, 1] and a strictly increasing function H: [0, — [0, o[, define g: X — [0, o[ by

g()=tH(d(x,-))+ (1 - t)H(d(y,")).

Assume that there exists a unique minimizer zo of glixy): [x,y] = [0,[. Then zy is a unique
minimizer of g.

Proof of Lemma 3.2. If x = y, then we obtain zy = x = argmin__, H(d(x, z)) = argmin,_y g(2),
which is the conclusion. Suppose that x % y and take w € X \ {zp} arbitrarily. From the
assumption, we obtain g(zp) < g(w) if w € [x,y]. In what follows, assume that w & [x,y].
Put ¢ = d(y,w)/(d(x,w) + d(y,w)) and z; = ox ® (1 — 0)y. Then we have o € ]0,1[ and
d(x,z1) : d(y,z1) = d(x,w) : d(y,w). Moreover, we obtain g(zp) < g(z1), especially we get
g(20) < g(z1) if zp % 21.

Suppose that zp = z;. Then we get w % z; and hence w & [x,y]. Thus we have d(x, z;) +
d(y,z1) =d(x,y) < d(x,w)+d(y,w). It implies that d(x,z) < d(x,w) and d(y, z1) < d(y, w).
Therefore we get g(z1) < g(w), and this follows g(zp) < g(w).

Next we assume zy % z1. Then we obtain d(x, z;) < d(x,w) and d(y, z1) < d(y, w), and hence
g(z1) < g(w). It implies g(zp) < g(w) and thus we get the conclusion. ]

Proof of Fact 3.1. Define a function g: X — [0,c0[ by g(-) = td(x,-)?> + (1 - t)d(y, -)?>. Then for
any « € [0, 1], we have
glax® (1 -a)y) =td(x,ax® (1 - a)y)®>+ (1 -1)d(y, ax & (1 - a)y)?
=t((1 - a)d(x,y))* + (1 - ) (ad(x,y))*
=(t(1-)?+(1-t)a®)d(x,y)*
=((a-t)*+t(1-1))d(x,y)%
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This follows that a restriction g|,,,) has the unique minimizer zo = tx ® (1 - t)y. Therefore,
from Lemma 3.2, zj is also the unique minimizer of g. O

Next, we consider a different type of internally dividing points of geodesic segments named
k-convex combination. We hereinafter assume that {5, n}, and 1., are functions defined in
Section 2.5.

Lemma 3.3. Let x € R, D € |0, D[, and a € [0, 1]. Define a function f: R — R by
F) = ac((1-2)D) + (1 - a)cx(AD)

for A € R. Then a set argmin, (o f (1) consists exactly one point t, and it satisfies f’(to) = 0.

Proof. First, we consider the case where a = 0. Then we have f (1) = ¢x(AD) for every A € [0, 1]
and hence argmin, ., f(1) = {0}. Similarly, we get argmin, ., f(1) = {1} if a = 1. We can
verify easily that f’(argmin, (o, f (1)) = 0 holds.

Next, assume that « € |0, 1[. Then we obtain

"D /D =-ac,((1-1)D) + (1 — a)c, (AD)
= —a(c,(D)cy (AD) = ¢/ (D), (AD)) + (1 — @) ¢, (AD)
=—ac,(D)c; (AD) + (1 —a+ac/(D))c,(AD)
and
7 (M)/D? = ac (1= VD) + (1 - a)c}/(AD)

for any A € [0, 1]. It follows that f’(0)/D = —ac, (D) < 0 and f’'(1)/D = (1 — a)c(D) > 0. Thus
there exists t € [0, 1] such that f’(¢) =0.

If D < D,/2, then f”(1)/D? > 0 holds for every A € [0,1]. Hence the set argmin, g 17 f (1)
consists exactly one point if D < D, /2.

Consider the case where D, /2 < D < D,. Then we get x > 0 by the definition of Dy, and thus
there exists 6y € R such that

Vi f'(A1)/D = —a sin(Vx D) cos(VkAD) + (1 — @ + @ cos(Vx D)) sin(vk AD)

= \/az +2a(1 —a)cos(Vk D) + (1 — a)?sin(VxAD + 6p).

This shows that the zeros of a function A — f’(1) appear exactly =/(y/x D) apart. Therefore,
since n/(vVxD) > n/(\/x Dy) = 1, there exists a unique t € [0, 1] such that f’(f) = 0, which is
the unique element of the set argmin, .4 1, f(1). O

Let x € R and X a uniquely D,-geodesic space. Define a function ¢, : [0, co[ — [0, co[ by

c(d)  (f x <0);

¢ (d) (if x > 0 and d < D,);
2

Ve

for d € [0, o[. Then ¢y is strictly increasing on [0, o[. Fix x,y € X such that d(x, y) < Dy, and
define a function g: X — R by

Cx(d) =

d (ifx>0andd> D,)

g() = acc(d(x,-)) + (1 - a)cc(d(y, ).
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We show that g has the unique minimizer zp. It is clearly concluded if x = y. Assume that
x ¥ y, and define a function g,: [0,1] — R by

&) =gAx @ (1-1)y)
= ack((1=A)d(x,y)) + (1 - a)ex(Ad(x, y))
for A € [0,1]. Then a set argmin, .|, ;| §y (1) consists exactly one point f from Lemma 3.3. This
means that a restriction g|[,,,| has the unique minimizer zy = fox ® (1 - fo)y € [x,y]. We also

have g has the same unique minimizer zo form Lemma 3.2. Then we give such a point z; a
specific notation as follows:

Definition 3.4 ([17], [18], [19]). Let X be a uniquely D,-geodesic space and take x,y € X such
;[)l;at d(x,y) < Dy. Then we say that the unique minimizer of a function g: X — [0, o[ defined
g() =ac(d(x,-)) + (1 —a)cc(d(y,))

is x-convex combination of x and y with the ratio a € [0, 1], and write it by ax & (1-a)y.
Then we can get the following easily.
.« ax ® (1-a)ye[xyl;
o ax®(1-a)y=tx®(1-1)y, where = argmin, oy (acx ((1-1)d(x, y)) +(1-a)ce(Ad(x, y)));
K K
* lx®0y=x,0x® 1y =y,
.« ax® (1-a)x =xforevery a € [0,1];
. axé%(l—a)y=ax€9(1 -a)y;
. axé(l—a)y: (l—a)yéax.

Note that papers [17], [18] and [19] define a x-convex combination only when d(x, y) < D, /2.
But actually, as shown above, the definition can be extended to include the cases where
Dy /2 <d(x,y) < Dx.

Lemma 3.5. Let x € R, D €10, D[, and a € [0, 1]. Then the following conditions are equivalent:
(@) ¢=argmin; (o j(ack((1=A)D) + (1 - a)ck(AD));
(b) (1-a+ac)(D))c,(tD)=ac,(D)cy(tD);
© a={p(0);
@ =5 (a).

Proof. Define a function f: R — R by f(1) = ack((1 = A)D) + (1 — a@)ck(AD) for A € R. Then we
obtain from Lemma 3.3 that there exists a unique minimizer ¢ € [0, 1] of f|[o1], and it satisfies
f’(¢t) =0. Since

[ (t)/D = —ac,(D)c/ (tD) + (1 - a +ac, (D))c, (tD),

we obtain that (a) is equivalent to (b). Moreover, the condition (b) is equivalent to
¢ (tD) + (=c (tD) + ¢/ (D) ¢ (tD))a = ¢ (D)c)/ (tD)a,
which is also equivalent to

_ c,(tD) B ¢ (tD)
4= T(tD) + cL(D)c/ (iD) — ¢/ (D)cL(tD) . c.(tD) + cL((1 - 1)D)

= 15(0).
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Thus (b) and (c) are equivalent. Since conditions (c) and (d) are equivalent obviously, we get
the conclusion. O

Lemma 3.5 (a) and (d) follow that, for any x € R, a € [0, 1], and D € 0, D[,

(¢5)"Y (@) = argmin(ac, (1 - A)D) + (1 — a)cc (AD)).
A€[0,1]

We can describe a relationship between x-convex combinations and usual convex combi-
nations as follows.

Lemma 3.6. For x € R, let X be a uniquely D.-geodesic space and take x,y € X such that
0<d(x,y) <Dx. Let a € 0, 1], and take a unique t € [0, 1] such that ax® (I-a)y=txo(1-1)y.
Then the following hold, where D = d(x, y).
() (1-a+ac/(D))c.(tD) = ac.(D)c!(tD);

(i) a={p(0);

(iii) = ({5~ (a).
Proof. We get t = argmin, o, (ack((1 = 1)D) + (1 - a)cx(AD)) by the definition of x-convex
combination. Therefore, from Lemma 3.5, we get the conclusion. O

For every x,y € X such that 0 < D =d(x,y) < D, we get from Lemma 3.6 that ax & 1-a)y=
(8) Ma)yx @ (¢5)"1(1 - a)y for any a € [0,1] and tx & (1 —t)y = {5(t)x & (¥(1-r1)y for any
te[0,1].

Corollary 3.7. For x € R, let X be a uniquely D,-geodesic space and take x,y € X such that
d(x,y) < Dx. Then
gl 1 51
ExEBEy— 2x€B 2y
Conversely, if x %y, a€10,1[ and ax® (1 —a)y = ax S (1-a)y, then a=1/2.

Proof. An equation %x ® %y = %x & %y is clear if x = y. Suppose that x ¥ y. By Lemma 3.6, we
get

11 I HE L ME PR P
2

2=\ D) T2 c(Dj2)+c.(Dj2) )Y =2 %27

Next, assume that ax ® (1 - a)y = ax ® (1 -a)y. Then a = {§(a), and this implies a = 1/2 by
Lemma 2.13. O
The x-convex combination has basic properties that make it worthy of the name convex

combination as follows. From Lemma 3.6, we have ax & (1 - a)y = (S Ha)xe (51 (1-a)y
for any a € [0,1]. Since ((g)‘lz [0,1] — [0, 1] is surjective and strictly increasing, we get the
following three lemmas.

Lemma 3.8. For x € R, let X be a uniquely D,-geodesic space and take x,y € X such that
0 <d(x,y) < Dx. Then for any t € [0, 1], there exists a unique a € [0, 1] such that tx® (1 -t)y =

ax & (1-a)y, and then a = {;(t).

Lemma 3.9. For « € R, let X be a uniquely D.-geodesic space and take x,y € X such that
d(x,y) < Dy. Then {ax® (1-a)y |ae[0,1]}={tx® (1-1)y |t €[0,1]} =[x, y].
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Lemma 3.10. For « € R, let X be a uniquely D,-geodesic space and take x,y € X such that
0<d(x,y) < Dy. Then d(y,tix® (1 —11)y) < d(y,txx & (1 - 2)y) holds if 0 < t; <, < 1.

Now we will introduce a difference between two points ax ® (1-a)y and ax @ (1 — a)y with
respect to the distance from the midpoint (1/2)x @ (1/2)y.

Lemma 3.11. For x € R, let X be a uniquely D,-geodesic space and take x,y € X such that

0 <d(x,y) < Dx. Take a € 10,1[\ {1/2} and put m = (1/2)x & (1/2)y, ux = ax & (1-a)y, and
uy=ax® (1 -a)y. Then the following hold.

e If x >0, then a point u, is farther from the midpoint m than u.
e If x <0, then a point u, is closer to the midpoint m than u.

Proof. Put D =d(x,y). Then Lemma 3.6 deduces that d(ug, m) = |a — 1/2| and

d(ue, m) =d({5) Ha)x e ()1 A -a)y, m) = () (a) - 1/2].
Therefore, Lemma 2.13 implies the conclusion. O

Lemma 3.12. For x € R, let X be a uniquely D.-geodesic space and take x,y € X such that
0 <d(x,y) < Dy. Take a,t € [0, 1] and suppose that ax & l1-a)y=txa(1-1t)y. Then

C;(D) = ’”
c.(tD)+c,((1-t)D) \/az +2a(l-a)cl(D)+(1-a)?,

where D =d(x,y).
Proof. By Lemma 3.6, we have a = ¢, (tD)/(c,(tD) + c,((1 —t)D)). Thus we obtain

Ve (tD)? +2¢; (tD)cy (1 = 1)D)cf (D) + ¢4 (1 - 1) D)?

Ja? +2a(1 - a)cf (D) + (1 - a)? = cx(tD) +c((1-1)D)

Since 1 - xc,(d)? = ¢/’ (d)? for any d € R, we get

¢/ (tD)? +2c.(tD)c.((1 —t)D)c’ (D) +c.((1 - t)D)?

=/ (tD)? +2c.(tD)c.((1 - t)D)c” (tD + (1 — t)D) + ¢, ((1 - t)D)?

=/ (tD)? +2c.(tD)c.((1 - t)D)c/ (tD)c/ ((1 - t)D)
—x2c.(tD)?*c.((1 - t)D)? + c.((1 - t)D)?

=/ (tD)? +2c.(tD)c.((1 = t)D)c/ (tD)c/ ((1 - t)D)
+(1-x2c.(tD)*)cl((1 - t)D)?

= ¢ (tD)? +2c.(tD)c,((1 — t)D)c” (tD)c’ ((1 - t)D)
+(c{ (tD)* — xcy (tD)*)cy (1 - 1)D)?

= (1 - ey (1= 1)D)*)cx (tD)? +2¢, (tD)cy (1 = £)D)cy (tD)ey (1 - 1) D)
+c/(tD)%c.((1 -t)D)?

= ¢/ (1 - 1)D)?c, (tD)* + 2, (tD)c, ((1 - t)D)cy (tD)cy (1 - t)D)
+c/(tD)%c.((1 -t)D)?

= (c/((1 = £)D)cL(tD) +c/ (tD)c,((1 - 1) D))*

20



=/ (tD+ (1 - t)D)?
= ¢, (D).
Since ci (D) > 0, we get the desired result. O

Lemma 3.13. For x € R, let X be a uniquely D.-geodesic space and take x,y € X such that

0 < d(x,y) < Dx. Take a,t € [0,1] and suppose that ax ® (1-a)y=tx® (1-1t)y. Then two
equations

K _ a d (1-1~ = l-«a
D5 vaz +2a(l —a)c/ (D) + (1 - a)? and (105 VvaZ+2a(l - a)c/ (D) + (1 - a)?

hold, where D =d(x,y).
Proof. From Lemma 3.6 (ii) and Lemma 3.12, we obtain the first equation by
¢ (tD) ¢ (tD) + ¢, ((1 - 1)D) a
7 =Qq- , = .
cx(D) (D) Va2 +2a(1 — a)c/ (D) + (1 - a)?

()p =

Similarly, we can get the other by

Qg < G=0D) (G (D) +6(1-0D) 1-a
b cv(D) cx(D) VaZ+2a(l-a)c/(D)+ (L -a)?
This is the conclusion. O

Theorem 3.14 (Stewart’s theorem for é). For x %0, let X be a CAT (x) space and take x,y,z € X
such that d(x,y)+d(y, z) +d(z,x) < 2Dy. Then

1, K 1 ac/(d(x,2)) + (1 —a)c/(d(y, 2))
2e"(d 1-a)y,2) > —-

K o (d(ax® (1= a)y,2)) 2 K \/a2 +2a(1 - a)cl(d(x,y)) + (1 — a)?
forany a € [0,1].

Proof. Fix a € [0,1] and put D = d(x,y). It is enough to show the case where D % 0. Take

t € [0,1] such that tx & (1 - 1)y = ax ® (1 -a)y, and put S = va? +2a(1l - a)c/ (D) + (1 — a)2.
Then we have (1)f = a/S and (1 -1);, = (1 — @)/S from Lemma 3.13, and therefore

%(1 —cl(d(ax & (1-a)y,2)))
= c(d(ax & (1- )y, 2))
=c(d(tx® (1 -1)y,z))
< (1) (ex(d(x,2)) = cx (1 =1)D)) + (1 = 1)} (cx (d(y, 2)) — cx (tD))
= (O~ (e/(1= D) = ¢ (d(x, 2))) + (1= D - = (e} (¢D) - ¢/ (d(y, 2)))
_Ope(A-0D)+ A - )/ (D) ()pey (d(x,2) + (1 - 1)l (d(y, 2))
K K
_ac/(1-1)D)+ (1 —a)c/(tD) ac/(d(x,z))+(1-a)c/(d(y,z))
B xS B xS '
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Using Lemma 3.6 (ii) and Lemma 3.12, we get

cx(tD)c (1 =£)D) +c; ((1 = #)D)ey (¢D)
cx(tD) +ci ((1 - 1)D)

_ c(tD+(1-1)D)

~ cx(tD) +c (1 -1)D)

_ cx(D)

e (tD) +cx((1 - 1)D)

=S.

ac((1=1)D)+ (1 - a)c/(¢tD) =

This follows that

%c,’('(d(ax & 1-a)y, z) >

1 ac/(d(x,2)) + (1 -a)c/(d(y, 2))
K S ’
which is the conclusion. O

If a CAT(x) space X coincides with M,, then the inequality in Theorem 3.14 holds as an
equation.

Theorem 3.15. For x € R, let X be a CAT(x) space and take x,y,z € X such that d(x,y) +
d(y,z)+d(z,x) < 2Dyx. Then
cx(d(ax ® (I1-a)y,z)) <ack(d(x,2)) +(1 - a)ee(d(y, 2))

2a(1 —a)ex(d(x,y)) acl(d(x,2)+(1—a)c/(d(y,z))
B 1+S ' S

for any a € [0,1], where S = \Ja?2 +2a(1 — a)c/ (d(x,y)) + (1 — a)2.

Proof. Fix a € [0, 1]. First, we suppose that x = 0. Then we have S =1 and thus

2a(1 - a)e(d(x,y)) . acl(d(x,z))+ (1 -a)cl(d(y, z))

_ _ 2
1+S S =a(l-a)d(x,y)".

0
Therefore, since ax® (1 —a)y = ax ® (1 — a)y, we obtain the conclusion from Stewart’s theorem
on CAT(0) spaces. Next, we consider the case where x % 0. Then we get

celd(ax ® (1-a)y, 2)) — (ace(d(x, 2)) + (1 - @)e (d(y, 2)))

= l(1 —c’(d(ax & (1-a)y, 2))) — (ac(d(x,2)) + (1 — a)ex(d(y, 2)))

K
- %(1 _ac/(d(x,2) + (é —a)cl(d(y, Z))) — (@ce(d(x, 2)) + (1 — @)cx (d(y, 2)))
_ %(1  1-x(acc(d(x, 2)) 4;(1 —a)ci (d(y, z)))) — (ace(d(x, 2)) + (1 - @) e (d(y, 2)))

- (aex(d(x, 2) + (1= @ec(d(,20) ) (1 - ¢

-2 1- —c’(d ,
—(“Cx(d(x»z))+(1—a)cK(d(y,z))))- a( "284_;‘;( (x,¥)))

B _2a(1 —a)ce(d(x,y)) . 1 - x(ack(d(x,2)) + (1 - a)ee(d(y, 2)))

—_—
[= ==

K

1+S S
_ 2a(1-a)e(d(x,y) ac/(d(x,2))+(1-a)c/(d(y,2))
T 1+S ' S ’
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which is the desired result. O

Corollary 3.16. For « € R, let X be a CAT(x) space. Take x,y,z € X and «a € [0,1] such that
d(x,y)+d(y,z) +d(z,x) <2Dy and acl(d(x,z))+ (1 —a)c/(d(y,z)) > 0. Then

ce(d(ax ® (1-a)y, 2)) < acy(d(x,2)) + (1 - @) (d(y, 2)).

Proof. By the assumption, we get d(x,y) < D, and hence c¢,(d(x,y)) > 0. Thus we get the
conclusion by Theorem 3.15. O

If d(x,z),d(y, z) € [0,Dy/2], then a condition
acy (d(x,2))+(1-a)cy (d(y,z)) >0 (%)

is always true. It means that, if x < 0, then («) always holds. However, in the case where « > 0,
ifd(x,z) > Dy/2 and d(y, z) < D«/2, then () does not always hold. Indeed, (x) is true only when
0<ac<cl(dy,=z)/(cl(d(y, z)) —cl(d(x,z))). Similarly, if d(x,z) < D,/2 and d(y, z) > Dy/2,
then (x) ifand only if 1 > a > ¢/ (d(y,2))/(c{(d(y,z)) — c(d(x,z))). Moreover, if d(x,z) and
d(y, z) are both greater than D, /2, then (x) is false for all a € [0, 1].

If a CAT(x) space X is admissible, then (x) is true for any x,y,z € X and a € [0, 1]. That is,
the following holds.

Corollary 3.17 (Sudo [29]). For x € R, let X be an admissible CAT (k) space. Take x,y,z € X and
a € [0, 1] arbitrarily. Then

c(d(ax é (1-a)y,2)) <ac(d(x,2)+ (1 —a)e(d(y, 2)).

Next, we consider natures of the function 7.

Lemma 3.18. Let k € ]0, 1[ and define f: 10, n[ — R by f(x) = (sin kx)/sinx for x € 10, z[. Then
f is strictly increasing.

Lemma 3.19. For « >0 and a € 0, 1{, the following hold:

(i) limg_o7,(d) = a;
(ii) if a <1/2, thenlimy_p_75(d) =0;
(iii) if a>1/2, then limg_,p, 7,(d) =1;
(iv) if a <1/2, then 7, is strictly decreasing;
() if a > 1/2, then 7, is strictly increasing.

Proof. 1t suffices to show the case where x = 1. Hence we hereinafter assume that « = 1.
Lettan™!': RU{+c} — [0, 7| be the inverse of tan: [0, 7[ — RU{+oo}, see Section 2.5. Define
a function g: |-, n[ — |-, n[ by

-1 asind : .
g(d) = tan l-a+acosd (if d > 0);
_g+tan~! —@sind (if d < 0)

l-a+acosd
for d € ]-n, n[. Then g is differentiable on ]-x, z[, and we get 77, (d) = g(d)/d and

a(a+ (1 -a)cosd)

/d —
§'(d) a’+2a(l -a)cosd + (1 —a)?
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for every d € |-n, n[. Therefore, the limit (i) is obtained by

g(d) _ . 8(d)-g(0)

N g (d) =lim == = lim =—7—3

g’ (0) =a.

Next, we show (ii) and (iii). We know that

. in
thd: .
d’rn1l—a+acosd

for every a € 10, 1[ \ {1/2}.
Assume that a < 1/2. Then since 1 — a + @ cosd > 0 for every d € |0, n[, we obtain

1 asind

bim g(d) = lim tan ™ === cosa =

a’n
This means that lim,_,, 77, (d) = 0, therefore we get (ii).

To show (iii), assume that @ > 1/2. Let cos™!': [-1,1] — [0, x] be the inverse of the
trigonometric cosine function. Then, 1 - a + acosd < 0 for every d € Jcos™!(-(1 - a)/a), 7|.
Therefore we have

. ERT -1 asind _
yfmng(d) —}ilfmntan l-a+tacosd "
Hence lim,_,, 77, (d) = 1, which concludes that (iii) holds.

We show (iv). Let x =1, @ € ]0,1/2[, d1, d» € 10, z[ and suppose d; < d». Put oy =7,(d;) and
o2 =14 (d2). Then we get 01,07 € 10,1/2[ by Lemma 2.14. Furthermore, we obtain from the
definition of 77, that

SiIl(Ugdz)
Sin(Ugdg) + sin((l - (Tg)dg) '

a={5(00) = (%)
Define a strictly concave function g: [0,1] — R by
g(t)=acos((1-1t)dy) + (1 - a)cos(tdr)

for t € [0,1]. Then o) is a unique maximizer of g by Lemma 3.5. We also have

_sin(o2dp) cos((1 - t)dy) +sin((1 — 02)d>) cos(td,)
- sin(oado) +sin((1 — 02)d>)

g (1)

for any ¢ € [0, 1] from the formula (xx). Hence

di (sin(o2dy) sin((1 - t)d;) — sin((1 — 02)do) sin(td,))
sin(oydy) +sin((1 — 02)d>)

g'(t) =
for any ¢t €10, 1[. Put C = d,/(sin(o2d>) + sin((1 — 02)d>)). Then we obtain C > 0 and
1g'(02) = sin(0p7dy) sin((1 - 02)dh) = sin((1 - 02)cl) sin(ordh).
Putp=(di+d>)/2, q=(dr—dy)/2, and k =1 - 20>. Then, since

sin((a+b)(c —d)) sin((a —b)(c+d)) —sin((a+b)(c+d))sin((a—-b)(c—d))
= —sin2acsin2bd + sin 2ad sin 2bc
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for any a, b, c,d € R, we get

=-sinkpsing +sinkgsinp

sinkg _ sin kp)

- smpsmq( sing sinp

Since 0 < g <p <mand 0 < k <1, we have g’(02) > 0 from Lemma 3.18. Therefore we obtain
o1 > 0. This implies 77, (d;) > 7,(d2), and hence we get (iv). Furthermore, from (iv) and
Ne(d) +71_,(d) =1 for every d € [0, z[, we also have (v). O

For x > 0, Lemma 3.19 implies that the greater the distance between two points x and y,
the farther the point ax & (1 — @)y is from the midpoint of x and y as a ratio than the point
ax @ (1 — a)y. In the same fashion, we get natures of 77, for x < 0 as follows.

Lemma 3.20. For x <0 and « € 0, 1[, the following hold:

(1) limg—07q(d) = a;

(i) limg—e0 7q(d) =1/2;
(iii) if a <1/2, then n, is strictly increasing;
(iv) if a > 1/2, then 7, is strictly decreasing.

This implies the following fact: For x < 0, the greater the distance between two points x and

y, the closer the point ax ® (1 — @)y is from the midpoint of x and y as a ratio than the point
ax® (1-a)y.
The following figures show graphs of 77, for several a.

n
1 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
n=7,(D) (1/2<a<1),
1/2 o
ﬁ:ﬁf/z(D) |
7=75(D) (0<a<1/2)
0 : D
0 Dy
x>0
n
1 ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
N=T(D) (1/2<a<1)
1/2 —
7="1/2(D)
N=1(D) (0<a<1/2)
0 D
0

k<0
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Lemma 3.21. Let X be a uniquely D, -geodesic space and take x,y € X such that d(x,y) < Dx.
Then limg_o(ax ® (1 - a)y) = y. Similarly, limy_1 (ax & (1 - a)y) = x.

Proof. 1t is obvious if x = y, thus suppose that x ¥ y. By symmetry, it suffices to show that
lim,_o(ax S (1 -a)y) =y. We assume that x % 0 since the case where x = 0 is obvious. Put

D =d(x,y). Then for every a € ]0,1[, we have ax & (1-a)y = ((L’;)‘l(a)x ) ((}5)‘1(1 —-a)y.
Therefore we obtain

d(ax & (1-a)y,y) =d((5) N@xe () (1-a)y,y) = (5 (@)D
for every a € ]0, 1[. If x < 0, then we obtain from Lemma 2.18 that

e ¢ (D)
(5 Ha) < S5 —a—0
as a — 0. Otherwise, if ¥ > 0, then we have ((}3)‘1(@) < a for any a € ]0, 1/2[ by Corollary 2.15,

and hence (¢ I’;)‘l(a) — 0 as a — 0. Thus we get the conclusion. |

Lemma 3.22. Let X be a uniquely D, -geodesic space and x,y € X such that 0 < d(x,y) < Dx.

Take {a,} c [0, 1] and define a sequence {y,} on X by y, = anx ® (1-ay)y forevery n e N. Then
yn — y if and only if a, — 0.

Proof. The if part is immediately obtained by Lemma 3.21, thus we show the only if part.
Suppose that y, — y. Put D = d(x,y) and B, = ({§)"!(a,) for every n € N. Then we have
VYn = Bnx ® (1 - B,)y for every n € N. Since y, — y, we get B, = d(yn,y)/d(x,y) — 0 as n — co.
This implies a, = {£(B,) — ¢F(0) =0. O

Lemma 3.23. Let X be a uniquely D,-geodesic space and x,y € X such that x % y. Take
{an} c [0,1]. Suppose that a sequence {y,} on X satisfies d(x,y,) < Dy for all n € N,

limsup,,_, d(x,yn) < Dy, and y = anx ® (1 = an)yn for all n e N. Then y, — y if and only if
a, — 0.

Proof. It is obvious if x = 0; hence we assume that x % 0. Put d,, = d(x, y,) and B, = ((gn)‘l(an)
for every n € N. Then y = ,x® (1 — B,)y, for any n € N. Note that 0 < d(x,y) < d(x,y,) and
d(y,yn) = d(x,yn) B, hold for all n € N. Thus y, — y if and only if 8, — 0. Therefore, we prove
Bn — 0 if and only if a;,, — 0.

First, we consider the case where x > 0. Assume that «,, — 0. Then there exists ng € N such
that sup,,»,, @» < 1/2. Hence, we obtain from Corollary 2.15 that 0 < 8, < a, for n > ny, which
implies 8, — 0.

Conversely, suppose that §, — 0. Then, since limsup,,_,., d, < Dy, we get
d, Vxdy

¢ (dn) Pn= sin(vxd,,) Pn =0

0<a,= (gn(ﬁn) <

by Lemma 2.17.
Next, we consider the case where x < 0. Suppose that a, — 0. Then, from Lemma 2.18 and
limsup,,_, . d, < o, we have

cr(dy) sinh(v-«d,,)
Ay =——F———"0p
dn \/—Kdn
which implies 8, — 0. Conversely, assume that 8, — 0. Then there exists ny € N such that
SUp,;5 », Bn < 1/2. It implies from Corollary 2.16 that 0 < a, = ¢ (Bn) < B, for any n > ng, which
is the conclusion. O

0<Bn= (L) (an) < -0,
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Lemma 3.24. Let X be a uniquely D,-geodesic space and {x,}, {yn} sequences on X such
that d(xp,yn) < Dy for all n € N. In addition, suppose that limsup,_, . d(x,,y,) < Di. Take

{a,} c [0,1] such that lim,_ . a, = 0. Then lim,_,«(a,x, & Q—ap)yn) =y if yn >y € X.
Similarly, lim,,—, (anxy, & (1-an)yn) =xif x, > x € X.

Proof. Suppose that y, — y. Then

A(@nXn ® (1 = @)Yy ¥) < d(@nXn & (1= @n) Y, Yn) + Ay y)
= ((;(xmyn))_l(an)d(xn; J/n) + d(yn» y)

for any n € N. Put S =limsup,,_,, d(xn, yn) < Dx.

First, consider the case where x > 0. Then there exists ¢ > 0 and ny € N such that
Sup,sp, @n < 1/2 and SUP,5 yy A(Xn, Yn) < S+ € < Dx. Thus we get (C";(xmyn))‘l(an) < a, for any
n > ng by Corollary 2.15. It deduces

lim Sup((Cg(xn,yn))_l(an)d(xn» ) +d(yn, ,V)) < rlli_r)rolo(and(xnr ) +d(yn, .V)) =0,

n—oo

which implies lim,,_., d(a,x, ® (I -an)yn,y)=0.

Next, we assume that x < 0. Then there exists no € N such that sup,,, a, < 1/2 and
SUP,;5 , A(Xn, Yn) < 0. Put M = sup,,.,,. d(xn, yn) < co. We divide into the following cases: (i)
x =0; (ii) ¥ <O0.

(i) If x =0, then we have

lim sup((C;(xn'yw)_l(an)d(xn,yn) +d(yn,y)) = %i_r}olo(and(xn,yn) +d(yn,y)) =0

n—oo

and hence we get lim,,_,., d(a,x, & (1-an)yn,y)=0.
(ii) Let x < 0. From Lemma 3.20 (iii), we get

(S (@) = T, (A, y)) < g, (M) = (G) 7 (@n)

for any n > no. We also obtain ({},) "1 (a,) — (¢¥)71(0) = 0 as n — o by Lemma 2.14. Hence

we have ((;l((xn,yn))_l(“”) — 0 as n — . Therefore,
0 < limsup d(a,x, ®(1- an)yn,y) <limsup ((¢&) " (@)M +d(yn,y)) = 0.
n—oo n—oo
This implies the conclusion. O

The next lemma and its corollary are used so as to prove a Mann type fixed point approxi-
mation theorem.

Lemma 3.25. For x € R, let {d,} be a nonnegative real sequence such that M = sup, .y dn < Dy.
Let {a,} be a real sequence on [0, 1], and put B, = C:i‘n(a,,) forevery n eN. Thenliminf, . a, >0
if and only if liminf,_. B, > 0.

Proof. Assume that M > 0 since it is clear if M = 0. If x = 0, then we have 8, = a,, forall n e N
and thus we assume « % 0.

First, we consider the case where x < 0. Put ¢ = liminf,_,., @, € ]0,1]. Then there exists
no € N such that a, > ¢/2 for all n > no. We also have n; (d) > 1/2 if and only if a;,, > 1/2 for
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each d € 10, D,[. Hence

Bn =g, (dn) 2 min{an, N (dn), %}
> min{am N, (M), %} = min{an, Oy (an), %} > min{%, Cz@(%)} -0

for any n > no from Lemma 2.20 (iv) and the strict increasingness of ¢},. Thus liminf, .. 6, >0
holds.

Conversely, suppose that ¢’ := liminf,_,. 8, > 0. Then there exists ny € N such that g, > ¢'/2
for all n > ny. It implies

’

@ = (¢5,)71(Bn) 2 min{p,, 2, (¢5)7 (B} =min{pn, 2} > &> 0

for any n > ny by using Lemma 3.20 (iii) and hence lim inf,_,., @, > 0 holds.
Next, we consider the case where « > 0. Suppose that ¢ := liminf, ,, a, > 0. Then there
exists ng € N such that a,, > ¢/2 for all n > ny. It follows that

i x 1 i 1l ¢
Bn = mln{an, q,(an), 2} > mm{an, 2} > 5 > 0
for any n € N by Corollary 2.15. This concludes lim inf,,_,., £, > 0.

Finally, we suppose ¢’ := liminf,_,. f, > 0. Then there exists ny € N such that g, > /2 for
all n > ng. Thus, using Lemma 2.17, we obtain

P (if dy, = 0);

— K \-1 ’
@ =4,)" (P 2 c“;d")ﬁn (if dy % 0)
S c,’(](VIM)ﬁn 5 c,’<2(]\];[/1)£>0

for any n > ng since c.(d)/d = sin(vxd)/(v'xd) > 0 for d € 10,D,[. Therefore we get
liminf,_ . a, > 0, which is the desired result. O

Corollary 3.26. For x € R, let {d,} be a nonnegative real sequence such that M = sup,,.\ dn <
Dy. Let {a,} be a real sequence on [0,1], and put B, = an(a") for every n € N.  Then
liminf, , a,(1 — a,) > 0 if and only if liminf,_,., B,(1 - B,) > 0.

Proof. We obtain that liminf, . a,(1 — a,) > 0 is equivalent to the conjunction of
liminf, . a, > 0 and liminf, (1 - a,) > 0, and so is {B,}. Therefore, by Lemma 3.25, we get
the conclusion. ]

3.2 «x-convex combination on model spaces

In this section, we consider a behavior of the x-convex combination on geodesic spaces with
a constant curvature 1 or —1.

3.2.1 1-convex combination on the unit sphere in Hilbert spaces

We observe the nature of the 1-convex combination on a unit sphere of a Hilbert space to

. 1
know a relation between @ and &.
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Let Sy be a unit sphere embedded in a real Hilbert space H, that is, S = {x € H | ||x]| = 1}.
Define d: Sy — [0, n] by d(x,y) = cos™'{x, y) for each x,y € Sy, where cos™': [-1,1] — [0, n].
Then (S#, d) is a metric space. Moreover, for any two points x,y € Sy such that d(x,y) < =,
there exists a unique geodesic joining x and y. Indeed, for x,y € Sy such that d(x,y) < =, a
function vy, : [0, 1] — Sy defined by

sin(td(x,y)) N sin((1-1t)d(x,y))

. x ,
Yay(t) = (t)cli(x,y)x +(1- t)cli(x,y)y ={ sind(x,y) sind(x,y)
X (ifx=y)

if x % y);

for t € [0, 1] is a unique geodesic joining x and y. Thus (S#, d) is a uniquely 7-geodesic space.

We also know that Sy is a complete CAT(1) space. If H = R3, then Sy represents a model of
the unit sphere S?, which has a constant curvature 1.

In what follows, a symbol & denotes a convex combination on S, [x, y] denotes a geodesic
segment on Sy joining x, y € Sx, and [x, y]« denotes a geodesic segment on # joining x,y € H.
That is, [x,y] ={tx® (1 -t)y € S | t € [0,1]}, and [x,ylp = {tx+ (1 —¢t)y € H | ¢t € [0,1]}.
Furthermore, 0+ stands for the origin of H.

1
Now we consider the 1-convex combination on Sx. Suppose that ax® (1-a)y =tx® (1-1t)y
for some x,y € Si, t € [0,1], and «a € [0, 1]. Then from Lemma 3.13, we get

axela 1-a)y-= (t)ll)x+ (1 —t)})y
3 ax+(l1-a)y
VaZ+2a(l-a)cosD+(L—a)?

where D = d(x,y). We also have
lax + (1 - a)yll® = a®||lx]|* + 2a(1 - a){x, y) + (1 - )?|y|I?
=a’+2a(l-a)cosD+(1-a).
Therefore, we get the following.
Theorem 3.27. Let x,y € Sy such that d(x,y) < n. Then for any a € [0, 1],

ax+(1-a)y
lax+(1-a)yll’

axé(l—a)y:

Actually, it is also verified by the definition of 1-convex combination (Definition 3.4). Indeed,
putting p =tx+ (1 —t)y and w = p/||p||, we have

(tx+(1-t)y,w) =pll = (p,z) = {tx+ (1 - 1)y, 2)
for any z € S, and hence
1
ax @ (1-a)y =argmax (rcosd(x,z) + (1 —t) cosd(y,z)) = argmax (tx+ (1 - 1)y, z) = w.
zZE€Sy ZE€Sy
Corollary 3.28. Take x,y € S such that d(x,y) <n. For a € [0,1],let u=ax+(1-a)y € H and
1
v=ax® (1l -a)y € [x,y]. Then three points u, v, and 04 are on a straight line.
1
Theorem 3.27 implies that a point ax @ (1 — a)y € S is a projection of ax + (1 — a)y € H onto

the unit sphere Sx.
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Lemma 3.29. Take x,y € Sy such that d(x,y) < n. Let k,1€10,1] and put x’ =kx,y’ =ly. Then
the geodesic segment |x,y]| C Su is expressed by

tx’+(1-1)y
lex"+ (1 =1)y’|l

telo, 1]} - {i” ' pe [x',y']«H}.

Loyl = { Ip

Proof. Take u € [x,y] arbitrarily. Then there exists ¢ € [0,1] such that u = tx ela (1 -1t)y by
Lemma 3.9. Thus, putting ¢’ =¢1/(tl+ (1 -t)k), we get
= tx+(1-t)y  t'xX'+(1-t")y
lex+(L-0yll le'x"+ (A -t)y'|l’

On the other hand, take s € [0, 1] and let ' = (sx’" + (1 —s)y")/||sx” + (1 — s)y’||. Then putting
s’ =sk/(sk +(1-s)l), we obtain

,  sx'+(1-ys)y s'x+(1-s")y , 1 ,
u' = 7 — = Vi =s'x®(1-s)yelxyl
T+ (1o Tsxr -y S F@Uveloyl
which implies the conclusion. O

Corollary 3.30. Take x,y € S such that d(x,y) < n. Let k,l € 10,1] and put x’ = kx, y’ = ly.
Then v/|[v|| € [x,y] for any v € [x',y'].

Using the 1-convex combination and the fact above, we can get a result which can be said
to be Ceva’s theorem on the unit sphere.

Theorem 3.31. Let S be a nonempty convex subspace of Sy such that d(u,v) < n for any
u,veS. Let aA(x,y,z) be a geodesic triangle on S such that [x,y] N [y,z] N [z,x] = @. For

a,B,y€l0,1], takep = (1-a)x 619 ay,q=(1 —,B)yEIBﬁz, andr=(1- y)zé yx. Then the following
are equivalent:

* [x,qln[y,rIn[zpl % 2;
* afy/(1-a)(1-B)(1-7)) =1

To prove this theorem, we prepare some lemmas.

Lemma 3.32. Let S be a nonempty convex subspace of Sy such that d(u,v) < m for any
u,ves. Let x,y,z € S. Suppose that there exist ki, k», k3 € R such that kix + kyy + ksz =0 and
(k1, k2, k3) % (0,0,0). Then [x,y] N[y, z] N[z, x] ¥ @.

Proof. Assume that k; = 0. Then we have k,y = —ksz. Since ||y|| = ||z|| = 1, we obtain |kz| = |k3].
If k» = k3, then we have y = —z. It follows d(y, z) = cos~!(y, z) = mn, which is a contradiction.
Therefore we get k» = —k3. Thus we obtain y = z, which implies y € [x, y] N [y, 2] N [z, x].
In the same way, we have x € [x,y] N[y, z] N [z, x] in the case where k =0 or k3 = 0.
Next, we assume that ki, k2, k3 > 0. Then we have z = —(ky/ks)x — (k2/ks)y. Since ||z|| =1, we
get ||(k1/ks)x + (k2/ks3)y|| = 1. Hence we obtain
(k1/k3)x + (k2/ks)y Ax+(1-1)y

1
= T R + (oo Ry~ s L=yl X @ A=Ay,

where A = k1/(k; + k2). It means that d(Ax 619 (1-21)y,z) = cos ' (-z,z) = n. This implies a

1

contradiction since Ax @ (1 — 1)y € S. Similarly, we also get a contradiction if &y, k», k3 < 0.
Finally, suppose that there exists i, j € {1, 2,3} such that k; > 0 and k; < 0. Without loss of

generality, we may assume that k; =1 and k, < 0. We divide into the following cases:
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(i) k3 <0;
(i) k3 > 0.

Assume that (i) holds. Put I, := —k», and I3 := —k3. Then we have l,,I3 > 0, x = by + I3z, and
|y +13z|| =1. Put u=1I/(l> +I3). Then we obtain

by + B3z py +(1-pz

1
X = = = e (l-pz
oy + bzl ~ Tay+ (I =wa MY &0—H

and thus x € [x,y] N [y,z] N [z, x]. Next, we consider the case where (ii) holds. Put I, := —k».
Then we have I, > 0 and y = (1/l2)x + (k3/l2)z. Therefore, putting v =1/(1 + k3), we get

1ok,
b I v+ (l1-v)z 1
= = =vx®(1-v)z.
VAR e 1 vx s (L=l (1=
=xX+-z
b I

This implies y € [x,y] N [y, z] N [z, x].
Consequently, we obtain the conclusion. O

Corollary 3.33. Let S be a nonempty convex subspace of Sy such that d(u,v) < n for any
u,veSs. Let A(x,y,z) be a geodesic triangle on S such that [x,y] N [y,z] N[z,x] = @. Suppose
that there exist ki, k», ks € R such that kix + koy + ksz =0. Then (k, k2, k3) = (0,0,0).

Fact 3.34 (Ceva’s theorem in plane geometry). Let V be a real vector space and x,y,z € V.
For a,B,y € 10,1[, take p = (1-a)x+ay, g = (1-B)y+pz and r = (1 — y)z+ yx. Put
[u,vly ={tu+ (1 -t)v |t €[0,1]} for each u,v € V. Suppose that [x,yly N [y, z]ly N [z, x]y = @.
Then the following are equivalent:

® [x’ q]V N [y’ r]V N [Z»P]V AF ®;
e [x,q]lv N[y, rlv N[z plv is a singleton;

* afy/(1-a)(1-p)(1-7))=1.
Now we show Theorem 3.31.

Proof of Theorem 3.31. Let au(x,y,2) = [x,¥]n VU [y, 2lu U [z, x]» be a geodesic triangle on H.
Take three pointsp=(1-a)x+ay, g=(1-B)y+pz, and 7 = (1 -vy)z+yx. From Theorem 3.27,
these points satisty p = p/|pll, g =q/llqll, r =7/||7ll, and p, q, 7 € Ax(x, ¥, z). Then, the following
are equivalent by Fact 3.34:

* [, qlun [y, Tlun 2, Plu % D;
* afy/(1-a)(1-p)(1-7y))=1.

Thus, it is sufficient to show that (i) and (ii):

(@) If [x,qls N [y, Tl N [2, Pl % @, then [x,q] N [y, r] N [z, p] ¥ ;
(i) if [x,g] N [y,r1 N[z, p] %@, then afy/(1 -a)(1-p)(1-7y)) =1.

First, assume that u € [x, q]lx N [y, 7]lx N [z, p]ly. Then there exist &, €, { € [0, 1] such that

u=0x+(1-90)g=ey+(1-e)r=¢{z+(1-p
=6x+(1-0)llgllg=ey+ A —-e)llrllr=¢z+(1-Olplip

Therefore, from Corollary 3.30, we get u/||u|| € [x,q] N [y,r] N [z, p]. Hence (i) holds.
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Next, suppose that v € [x,q] N [y,r] N [z, p]. Then there exist n, 6, ¢ € [0, 1] such that

v=1]x€|19(1—1])6]:GyEIB(l—H)r:LZGIB(l—L)p
_onx+(1-nqg  Oy+(1-0)r  wz+(1-1)p
Cnx+ A =-mgll N6y +A=0)rll  lliz+ (1 - 0)pll
_ nl@lx+(-mg _ OlFlly+(1-07F _ upllz+(1-0p
[nllgllx+ @ -nygl| ||6I7lly+Q-6)7 [plz+ Q-5
_ _nliglix+A-mA-py+{1-npz
[nllglx+ Q1 =n)(1-B)y+ (1 —n)pz||
A-0)yx+0|rlly+(1-6)1-y)z
[(1=0)yx+06l7lly + (1~ 60)(1-7)7|
1I-0A-a)yx+(Q-vay+t||pllz

A= 00 -a)x+1-vay+ple]

It follows that

nllgl:A-m@A-p):(1-n)p
=1 -0)y:0[r]l: (1-6)(1-7)
=(1-9d-a):(1-va:pll
by Corollary 3.33. Therefore we have

a Y d-va A-6y __ nl4l d-mB_1-8

l-a 1-y (1-0(0-a) (1-01-y) A-n1-p qlgl B’

which is the desired result.

Remark 3.35. In Sy, if we use a usual convex combination instead of 1-convex combination,
then we cannot obtain the result like Ceva’s theorem. We introduce an counterexample. We
consider the case where H = R3, and put S = {(x,y,2) € R®| x,y,z > 0}. Let x,y,z € S such
that x = (1,0,0), y = (1/2,V3/2,0), z = (1/2,0,V3/2). Then d(x,y) = d(x,z) = n/3, and d(y,z) =
cos1(1/4) ~ 1.318. Let a =2/5, B =3/8, y = 5/7, which satisfy afy/((1-a)(1-8)(1-7)) = 1.
Takep=ax® (1-a)y,g=Py®d(1-p)zand r = yz& (1 — y)x. Then geodesic segments [x, q]

and [y, r] intersect at exactly one point u. However, the point u is not on [z, p].

Let x1,x2,...,%n € H and a1, a2, ...,y € [0, 1] such that 3", a; = 1. Then we have
m m
Z a;ix; = argminz a;llxi — 2|2
i=1 zeH 3

Indeed, it is obtained by

m
> aillxi - z))* =
i=1

2

m 2 m m
2
Z—Zaixi +Z“i”xi|| - Zaixi
-1 -1 -1

for z € H. Based on this fact, we generalize the 1-convex combination to be defined for a
finite number of points. Let S be a nonempty convex subspace of Sy such that d(u, v) < = for
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any u,v € S. For x1,x2,...,%, € Sand a1, ay, ..., a, € [0,00[ such that 37", a; > 0, we define a
point B(x1,X2,...,Xm; @1, Q2 ..., &) ON S by

m

B(x1,X2,...,Xm; a1, Q2...,Qm) = argrnaxz a; cosd(x;, z).
z€eS ;
i=1

We hereinafter write B({x;}, {a;}) for this point simply. We call the point B({x;}, {a;}) a
balanced 1-convex combination of x1,x»,...,x, on S. The 1-convex combination is the case
where m =2 and a; + a, = 1 for the balanced 1-convex combination. Namely, for each x;,x, € S
and a € [0,1],

1
ax; ® (1 —a)xy = B(x1,x2; a, 1 — a).

Theorem 3.36. Let S be a nonempty convex subspace of Sy such that d(u,v) < n forany u,v € S.
Take x1,x2,...,xm € S and let ay,ay,...,an € [0,00[ such that 31", a; > 0. Then a balanced
1-convex combination B({x;},{a;}) € S is well-defined, and

B({xi}, {ai}) = i aixi/ Zml @;X;
i1 i-1

Proof. By the definition of B({x;}, {a;}), we have

B({x;},{a;}) =argmax ) a;cosd(x;, z) =argmax <Z a;x;, z> .
1 -

zeS i= zeS§ i=1

Then putting p = 2.7, a;x; and w = p/||p|| € S, we obtain

<Z iXi, W> =llpll > <p, 2) = <Z aixi, Z>
i=1 i=1

for any z € S\ {p}. This is the conclusion. |
Theorem 3.36 is a generalization of Theorem 3.27.

Theorem 3.37. Let S be a nonempty convex subspace of Sy such that d(u,v) < n forany u,v €S,
and let A(x,y,z) be a geodesic triangle on S. Take ay, az, a3 € 10, [ and put = az/(a2 + as).

Let u=B(x,y, z; a1, az, a3) and w =,6y619(1 - B)z. Then u € [x,w].

Proof. Putp=py+(1-p)z and g = a;x + a2y + azz. Then, from Theorems 3.27 and 3.36, we
obtain w = p/||p|| and u = q/||q||. Since 1 — a; = a2 + a3, we also have g = a;x + (1 — a;)p. Thus,

putting y = ar/(a1 + (1 - ap)|pll), we get g = (a1 + (1 - a)l[pl) (yx + (1 - y)w). It implies

qg  yx+(1-yw

1
u = = = x@ 1— w € x’w
gl llyx+(1-y)w| yxe(l-y) [x, w]

from Lemma 3.9. O

We consider that Theorem 3.37 is a crucial result that shows the suitability of the 1-convex
combination on the unit sphere. Indeed, if we only use the usual convex combination &, then
we do not obtain a simple result such as Theorem 3.37.
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3.2.2 (-1)-convex combination on the hyperbolic plane

Next, we consider natures of the (-1)-convex combination on the hyperbolic plane. We
consider the hyperboloid model of the hyperbolic plane. Define a function B: R3 x R® —» R
by B(u,v) = 2122 — x1X2 — y1y> for each u = (z1,x1,y1) € R and v = (2, x2, )2) € R3, and define
Q:R3 - R by Q(u) = B(u,u) = 22 —x*> —y?> for u = (z,x,y) € R3. Let H = {(z,x,y) € R3 |
Z2—x2-y?=1,2z>0} and d: Hx H — [0,0[ by d(u,v) = cosh™ B(u,v) for u,v € H. Then
(H, d) is a metric space, and it behaves as a two-dimensional hyperbolic space. (H,d) is also
a uniquely geodesic space. Indeed, for every u, v € H, a mapping v,,,: [0,1] — H defined by

sinh(td(w,v) | sinh((1 - d(w,v))
y(t) = ([);(lu’v)u +(1- t);(lu,y)v ={ sinhd(u,v) sinhd(u,v)
u (f u=v)

(f u % v);

for t € [0,1] is a unique geodesic joining u and v. This means that a convex combination
tud (1-t)v on H is expressed by

tud (1-tv= (t);(lu'v)u +(1- t);(lu,y)v

forany u,v € H and ¢ € [0, 1].
Functions B and Q are called the Minkowski bilinear form, and the Minkowski quadratic
form, respectively. We know that these have the following properties.

e B(u,v) = B(v,u) for any u,v € R3;

e B(su+tv,w)=sB(u,w)+tB(v,w) for any u,v,w € R3 and s,t € R;

e Q(su+tv) =s?Q(u)+2stB(u,v) +t*>Q(v) for any u,v € R and s, € R;
* Q(u)=1foranyu € H.

-1
Forx,yeH,t€[0,1]and a € [0,1], letax & (1 -a)y =tx® (1 —1t)y. Then we have

ax+(1-a)y
Va2 +2a(1 - a)coshd(x,y)+ (1 -a)?

ax@(l—a)yz

by Lemma 3.13. We also obtain
Q(ax+(1-a)y) =a’Q(x) +2a(1-a)B(x,y) + (1 - 0)*Q(y)
=a?+2a(1 - a) coshd(x,y) + (1 - a)?.
Consequently, we get an explicit expression of the (—1)-convex combination on H as follows.
Theorem 3.38. Let x,y € H. Then for any a € [0,1],

ax+(1-a)y

-1
ax ® (1-a)y = .
VQ(ax+(1-a)y)
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Chapter 4

Fixed point problems

Int this chapter, we consider a fixed point problem for a quasinonexpansive mapping.

4.1 Natures of vicinal mappings

The notion of vicinal mappings is first proposed by Kohsaka [22]. Motivated by this study,
Kajimura and Kimura [9] proposed the notion of vicinal mappings with .

Definition 4.1 (Kajimura and Kimura [9]). Let X be an admissible CAT(x) space and suppose
w: [0,Dy/2[ — ]0, oo is right continuous at 0. A mapping T: X — X is said to be vicinal with

w if
(w(d(x, Tx)) +yw(d(y, Ty)))ex(d(Tx, Ty)) < y(d(x,Tx))ex(d(x, Ty)) +w(d(y, Ty))ce(d(y, Tx))

for any x,y € X. A mapping T: X — X is said to be firmly vicinal with v if

(w(d(x, Tx))ex(d(x, Tx)) + w(d(y, Ty))ec(d(y, Ty))) el (d(Tx, Ty))
+ (w(d(x, Tx)) + y(d(y, Ty))) ex(d(Tx, Ty))
< y(d(x,Tx))e(d(x, Ty)) +w(d(y, Ty))cx(d(y, Tx))

for any x,y € X.

It can be easily obtained that every firmly vicinal mapping with v is vicinal with .

Lemma 4.2 (Kajimura and Kimura [9]). Let X be an admissible CAT(x) space. Suppose that
T: X — X is vicinal with w. Then T is A-demiclosed. Moreover, if F(T) is nonempty, then T is
quasinonexpansive.

Lemma 4.3. Let X be an admissible CAT(x) space and let w: [0, D, /2] — ]0, o[ such that v is
right continuous at 0. Then for a mapping T: X — X, the following are equivalent:

() T is firmly vicinal with v;
(ii) forany x,y € X,

(w(d(x, Tx))c/ (d(x, Tx)) + v (d(y, Ty)) el (d(y, Ty))) ex(d(Tx, Ty))
< y(d(x, Tx))(cx(d(x, Ty)) = cx(d(x, Tx)))
+y(d(y, Ty)) (ex(d(y, Tx)) = cx(d(y, Ty)));
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(iii) forany x,y € X,

(g (e, ) (dx, T2)) + Y (d(y, Ty)ey (d(y, Ty) ef (d(Tx,Ty))
> L(y(a(e, T)el (d(x, Ty) + y(d(y, Ty) el (d(y, To)),

where (iii) is considered only when « % 0.

Proof. Using Lemma 2.8, we get

T is firmly vicinal with y
= y(d(x,Tx))(ck(d(x, Tx))cy (d(Tx,Ty)) +cx(d(Tx, Ty)))
+w(d(y, Ty))(ex(d(y, Ty))e (d(Tx, Ty)) + cx(d(Tx, Ty)))
<y(d(x,Tx))e(d(x, Ty)) +y(d(y, Ty))cex(d(y, Tx))
& w(d(x,Tx))(cx(d(Tx, Ty))cy (d(x,Tx)) + ¢ (d(x, Tx)))
+y(d(y,Ty)) (ex(d(Tx, Ty)) ey (d(y, Ty)) + cx(d(y, Ty)))
< y(d(x, Tx))e(d(x, Ty)) +p(d(y, Ty))ex(d(y, Tx))
= (p(d(x,Tx))c/(d(x, Tx)) +y(d(y, Ty))cl (d(y, Ty))) cx(d(Tx, Ty))
< y(d(x,Tx)) (cx(d(x,Ty)) — cx(d(x, Tx)))
+y(d(y,Ty)) (ex(d(y, Tx)) — cx(d(y, Ty)))

for x, y € X and thus (i) and (ii) are equivalent. In addition, if x % 0, then (ii) is equivalent to

1-c¢/(d(Tx,Ty))

(w(d(x, Tx))c/ (d(x, Tx)) +y(d(y, Ty))cl (d(y, Ty))) -

K
< w(d(x,Tx)) 1- C;'(i(xy Ty)) B 1- C,’{(cf((x, Tx)))

1-c/(d(y,Tx)) 1-¢/(d(y,Ty))
K K

S y(d(y, Ty) (
and so is

%(w(d(x, Tx))cy (d(x, Tx)) +y(d(y, Ty)) el (d(y, Ty))) ¢ (d(Tx, Ty))

> Liy(ac, 1) @, ty) + y(aty, Ty @iy, o)
for x,y € X. Hence we get (ii) and (iii) are equivalent if « % 0. O

Lemma 4.4. For « % 0, let X be an admissible CAT (x) space and let y: [0, Dyx/2[ — ]0, co[ such
that vy is right continuous at 0. Then for a mapping T: X — X, the following are equivalent:

(i) T is vicinal with v;
(ii) forany x,y € X,

L ((d(x, T2) + y(d(y, Ty)) e/ (d(Tx, Ty)

> L(y(a(x, Tx)el (d(x, Ty) + w(d(y, Ty))el (d(y, Tx))).

=~ |
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Proof. We obtain the conclusion easily by using an equation ¢, (d) = (1-c/(d))/x ford e R. O

The notion of firm vicinity with y unifies a definition of some type of nonspreading map-
pings as follows. Let X be a CAT(0) space and T a mapping from X into itself. T is said to be
firmly metrically nonspreading (23] if

2d(Tx, Ty)2 <d(x, Ty)2 —d(x,Tx)* + a(y, Tx)? - a(y, Ty)2

for every x,y € X. It is equivalent to the firm vicinity of T with y: [0,c0[ 3¢ > 1.
Let X be an admissible CAT(1) space and T a mapping from X into itself. T is said to be
spherically nonspreading of sum type [10] if

2cosd(Tx,Ty) = cosd(x,Ty)+cosd(y, Tx)

for every x,y € X. It is equivalent to the firm vicinity of T with y: [0, 7/2[ 5 ¢ — 1.

4.2 Tightly quasinonexpansive mappings
In this section, we define a new notion of a special quasinonexpansive mapping.

Definition 4.5. Let X be an admissible CAT(x) space and T: X — X a mapping such that
F(T) ¥ @. Then we call T a tightly quasinonexpansive mapping for « if for any x € X and
z € F(T), an inequality

ex(d(x, Tx)) ey (d(Tx, 2)) < ex(d(x,2)) = ex(d(Tx, 2)) (+1)
holds. Or equivalently from Lemma 2.8, for any x € X and z € F(T),

c(d(Tx, 2))c (d(x, Tx)) < cx(d(x,2)) = exc(d(x, Tx)) (x2)
holds.

Note that inequalities (x;) and (+,) always hold if x € F(T). Therefore, we obtain that T is
tightly quasinonexpansive if and only if (x1) or (x2) holds for any x € X \ F(T) and z € F(T).
From Lemma 2.8, T is tightly quasinonexpansive for « % 0 if and only if

]- 124

Lo (d(x, Tx) ey (d(Tx, 2)) 2 Lo (d(x, 2)

forany x € X \ F(T) and z € F(T); T is tightly quasinonexpansive for x = 0 if and only if
d(x,Tx)? +d(Tx,z)? < d(x,z)?

for any x € X \ F(T) and z € F(T).
We hereinafter omit words ‘for «’ if such « is clear from context.

Example 4.6. Let X be an admissible complete CAT(x) space. Then the identity mapping on
X is tightly quasinonexpansive.

Example 4.7. Let X be an admissible complete CAT(x) space and K a nonempty closed convex
subset of X. Then a metric projection Px from X onto K is tightly quasinonexpansive from
Lemma 2.11.

Example 4.8. Let X be an admissible complete CAT(x) space and K a nonempty closed convex
subset of X. Let f be a function from X into [0, 1] such that f(X \ K) c [0, 1[. Then a mapping
T: X — X defined by Tx = f(x)x @ (1 — f(x))Pxx is tightly quasinonexpansive.
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Proof. 1t is obvious that F(T) = K. Take x € X \ F(T) and z € F(T) = K arbitrarily. Then we
have Tx € |x, Pxx].

We consider the case where Tx = Pxx. Then, since Px is tightly quasinonexpansive, we
obtain

cx(d(x,Tx))cy (d(Tx,2))+cx(d(Tx, z)) = ¢, (d(x, Ppx))cy (d(Pgx, 2)) + cx (d(Pk X, 2)) < e (d(x, 2)).

Henceforth, suppose that Tx % Pgx. Put p = Pgx. For a model space (My,p), take
a comparison triangle A(x,z,p) ¢ M, of A(x,z,p) and a comparison point m € |x,p[ of
Tx € [x, Pxx].

Assume that m € |x,z[. Then there exists a € ]0, 1] such that m = ax @ (1 — a)z. This follows
that

d(x,Tx)* +d(Tx,z)? < p(x,m)* + p(M, Z)*
=(1-a)’p(x,2)* +a’p(%,2)°
= (1-2a(1-a))p(%,2)*

< p(%,2)* =d(x, 2)*

if x =0, and
L e (d(x, ) (d(Tx, 2)) = - e/ (p(E,7)ef (p(7, 2)

= L (1~ @p(E 2)e (ap(F 2)
= S (p(E2) + ¢ (1-200p(%, )
> (6 (0, 2) + e (07 )
= e/ (p(%,9)
= L ey(d(x,2))

if x %0.

Finally, assume that m & |x,z[. Then we easily have p & |x,z[. Put 6 = /Xxpz € [0, [ and
¢ =/xmz € [0, n[. The angle 0 is determined by the formula

ex(pE D)l (0B 2) + cx(p(F.2) - cx(p(F. 2)
c(p(x,p))c(p(p, z))
_ olp(B 2 (p(E,P) + ex(p(E, P) — cx (X, 7))
L (p D)L 0P 2)
p()_c, ﬁ)2+p(’_7»2)2 —p(f,Z)Z 3 _ .
20(x,p)p(7.2) (if x = 0);
(P2 - pEP 0BT
<, (P PN (p(P. D) (if 1 % 0)
cosh(VRp(x,)) cosh(y%p(p. ) - coshVTD(®ED) (3¢ x <
sinh(V=xp(x, p)) sinh(v—xp(7, 2)) ’

cos 0 =

— P(f»ﬁ)2+P(l_7yz)2 —P(f’z)z 3 _ .
= 20(%, P)p(p,2) (i x=0)
COS(\/?P(J_C, E)) — COS(\/;p()_C, ﬁ)) COS(\/?P(F_% Z)) (lf x> 0)

sin(Vkp(x, p)) sin(Vkp(p, 2))
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This formula is just consistent with the law of cosines. Similarly, the angle ¢ is determined by
e (p(x, m))ci/ (p(m, 2)) + e (p(1, 2)) — ex (p(X, 2))
ci(p(x,m))cy(p(m, 2)) ’

We divide into the following cases: (i) x = 0; (ii) x % 0.
(i) Let x = 0. Since Py is tightly quasinonexpansive, we obtain

p(%,P)* +p(p,2)* - p(X,2)* = d(x,p)* +d(p,2)* — d(x,2)* <0,

which implies 7/2 < 6 < 7. Therefore, since m € |, p[, we obtain 6 < ¢ < 7. This implies that

cos ¢ =

d(x, Tx)* +d(Tx, z)* - d(x,2)* < p(X, m)* + p(M,2)* - p(X,2)* < 0.

(ii) Assume that « ¥ 0. Then we get

1 /l 144 7 144 4
< (p(x, ) (p(P,2) = —C (d(x,p))c(d(p,2)) = —C (d(x,2)) = —C (p(x,2)),
by tight quasinonexpansiveness of Px. This follows that 7/2 < 0 < 7. We also have 6 < ¢ <7
from m € X, p[. Hence we obtain

1 —C(d(x, Tx))e (d(Tx, 2) 2 — ¢l (p(x,m)e (p(M, 2)) = — C”(p(f 2)) = C”(d(x z)).

Consequently, we get the conclusion. i
Next, we show natures for tightly quasinonexpansive mappings.

Lemma 4.9. Let X be an admissible CAT (x) space. Then every firmly vicinal mapping with v
such that F(T) % @ is tightly quasinonexpansive.

Proof. Let T: X — X be a firmly vicinal mapping with y such that F(T) ¥ @. Take x € X and
z € F(T) arbitrarily. Then, using the definition of firmly vicinal mapping with vy, we get

y(d(x, Tx))ex(d(x, Tx))cl (d(Tx, 2) + (y(d(x, Tx)) + 9(0)) cx (d(Tx, 2))
< y(d(x, Tx))c(d(x, 2)) + p(0)ci (d(Tx, 2)).

Dividing by w(d(x, Tx)) > 0, we get the conclusion. O

Lemma 4.10. Let X be an admissible CAT(x) space. Then every tightly quasinonexpansive
mapping is quasinonexpansive.

Proof. Let T: X — X be tightly quasinonexpansive, and take x € X and z € F(T). Then, since X
is admissible, we obtain ¢/ (d(Tx, z)) > 0. Consequently, we have 0 < ¢, (d(x, z)) — cx(d(Tx, z)),
which is the desired result. |

Lemma 4.11. Let X be an admissible CAT(x) space. Then every tightly quasinonexpansive
mapping is asymptotically regular.

Proof. Let T: X — X be tightly quasinonexpansive, and take x € X and z € F(T). Then we
have ¢, (d(T"x, T x))c/ (d(T"x, z)) < ¢ (d(T"x,2)) — ¢ (d(T™'x, z)) for any n € N. We also
have {d(T"x, z)} converges to some A € [0, D,/2[ by the previous lemma. This implies that
infren ¢ (d(T*'x, z)) > 0 and hence

e (d(T"x, 2)) — ¢, (d(T" x, 2)) CK(d(T”x 2)) — ¢ (d(T™ 1 x, 2))
c(d(T"x, z)) : infyen ¢ (d(T*x, z))

as n — oo, which is the desired result. O

-0

0 < ci(d(T"x, T"'x)) <
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The above three lemmas immediately prove the following.

Corollary 4.12. Let X be an admissible CAT(x) space. Then every firmly vicinal mapping with
w such that F(T) ¥ @ is quasinonexpansive and asymptotically regular.

Now we consider an example of quasinonexpansive mappings and tightly quasinonex-
pansive mappings on the Euclidean space R"”. Let X = R” and d a metric on X such
that d(-,-) = || = ‘|lrn. Fix ¢ € X and set F = {z € X | d(z,c) < 1}. Let T be a map-
ping from X into itself such that F(T) = F. Then T is quasinonexpansive if and only if
Tx € Nsep{w e X |d(w,z) <d(x,z)} for any x € X. Namely, the quasinonexpansiveness of T is
equivalent to the fact that Tx always belongs to the closed ball that z and x are its center and
its boundary, respectively. Since

ﬂ {w eX | d(w,z) <d(x, z)} = {w eX ’ d(x,c)> —d(w,c)® > Zd(w,x)}

zeF

holds for any x € X, we obtain that T is quasinonexpansive if and only if
d(x,c)> —d(Tx,c)? > 2d(Tx, x)

for any x € X. Put Dgn(x) = {w € X | d(x,¢)? - d(w,c)? > 2d(w,x)} for each x € X. It is the
domain that Tx should be placed so that T is quasinonexpansive.

Next, we consider the tight quasinonexpansiveness of T. The mapping T: X — X is tightly
quasinonexpansive for « = 0 if and only if d(x, Tx)?+d(Tx, z)?> < d(x, z)?> forany x € X and z € F.
Then a inequality d(x, Tx)? + d(Tx, z)*> < d(x, z)? is equivalent to d(Tx, (x + 2)/2) < d(x,z)/2.
Hence, the tight quasinonexpansiveness of T is equivalent to the fact that Tx always belongs
to the closed ball whose diameter is the segment joining x and z, in other words, an angle
between two vectors (Tx)x and (Tx)z is obtuse or right for any x € X and z € F. Therefore, T
is tightly quasinonexpansive if and only if

Tx € ﬂ {w eX ’ d(w, xzi) < %d(x, z)} = {w eX ’ id(x, c)z—d(w, x;c)z > d(w,x)}

zeF

for all x € X, that is,

c+x
2

2
id(x, c)? - d(Tx, ) >d(Tx, x)

for all x € X. Put

Dign(x) = {w eX ’ id(x, c)? - d(w, x;c)z > d(w,x)}

for each x € X, which is the domain that Tx should be placed so that T is tightly quasinonex-
pansive.
By basic calculations, we have

d(x,c)? —d(w,c)?® > 2d(w,x) = |lw-x|?+2||lw-x| <2(w-x,c-x)

e 0 R
2 2 - 2’

and

2
%d(x,c)z—d<w,x;d_c) >dw,x) = |lw-x|?+]|lw-x| <{(w-x,c-x).
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Hence, Din(x) and Dgn(x) are similar, and their homothetic ratio is 1 : 2. We also get
Dign(x) C Dgn(x) and Dign(x) N F = {Prx} for any x € X.

For the sake of simplicity, let X = R%. Then the following figures show domains Dgn(x) and
Dign(x) for some x € R?.

F={ZGR2|d(z,C)S1}

F={zeR?|d(z,c) <1}

These represent the case where d(x,c) =12/5.

4.3 Mann type fixed point approximations

In this section, we show fixed point approximation theorems using Mann type iterative se-
quence for tightly quasinonexpansive mappings. For a uniquely D-geodesic space X and a
mapping T: X — X with F(T) ¥ @, Mann type iterative scheme generates a sequence {x,} on
X by an iteration x,4; = apx, ® (1 — a,)Tx, for n € N. Our aim is to investigate a convergence
of such {x,} to a fixed point of T.

Lemma 4.13 (Kajimura and Kimura [8], Kimura and Kohsaka [14, 15]). Let X be a complete
CAT(x) space and K an admissible closed convex subset of X. Let {z,} be a x-bounded sequence
on K. Take {f,} c [0, o[ such that B, > 0. Define g: K — [0, ] by

. 1 <
-1 (d(y,
g(y) = lim sup ST ;ﬁkc (d(y, zk))

for y e K. Then g has a unique minimizer on K.

Proof. Kajimura and Kimura [8] showed the case where x = —1 with the assumption X7, i =
co. In addition, Kimura and Kohsaka [14, 15] showed the case where ¥ = 0 and x = 1 with
o1 Bx = co. Now we give the proof for all ¥ € R without the assumption 7, fi = .
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Take u € K such that sup, . d(z,, u) < Di/2, and put M = sup, .y d(zn, u). Then we have
cx(d(zr,u)) < e (M) for all k € N. It deduces that 0 < inf,cx g(y) < g(u) < cx(M) < co.
Fix x1, x» € K arbitrarily. Then we get

o (3ar, ) + e (R e, x0) )ou (331 @ 322,21 ) ) < Tec(dr, 20) + S (d 2, 20))

for each k € N by Lemma 2.9. It follows that

ck(%d(xl,xg))+c,’<’(%d(x1,xg)) S 1,6 Z,Bkc,(( ( =x1 ® lxz,Zk))

- sz 1Bk £ Zﬁch(d(xl’zk))+ zzk B £ Zﬁkcx(d(XZ;Zk))

for any n € N. Hence we have

ck(%d(xl,xg)) +cy ( d(xl,xg)) (—x1 @%xg) < 2g(xl) + 2g(x2)

for every x;, x2 € K.

Put L = inf,cx g(y), which satisfies 0 < L < ¢, (M) < co. Then we can take {y,} ¢ K such that
g(yn) = g(yns1) for all n e N and lim,,_,, g(y,) = L. Suppose that n, m € N satisfies n < m. From
the inequality above, we get

§(n) = 38(n) +78(vm)
> CK(%d(J/n’J/m)) +cy (%d(J/n,ym))L
=L+(1- LK)CK(%d(J/n»,Vm))-

Therefore we obtain
1
(1= Lx)ew (5 ym)) < gym) =L = 0
as n — oco. Note that 1 — Lk > 0 holds without regard to x € R. Indeed, if x > 0 then we have

1- Lk = (ck(%) —L)K > (ex (M) = L)k > 0.

Otherwise, if x <0 then 1-Lx > 1> 0. Hence we get d(y,, ym) — 0 as m, n — oo. It follows that
{yn} is a Cauchy sequence on the closed set K and thus it converges to some p € K. Since g is
continuous, we have g(p) =lim, . g(y,) = L. Therefore, p is a minimizer of g.

Let g be another minimizer of g. Then we get

1 1 1
L+(1- LK)ck(zd(p, q)) <58(p)+58(q) =
and thus p = g holds, which is the conclusion. i

Corollary 4.14. Let X be a complete CAT (x) space and K an admissible closed convex subset of
X. Take z1,zy,...,2, € K and y1,v2,...,Yn € 10,0[. Define g: K — [0, by

n
g) =) yee(d(y, z))
k=1
for y € K. Then g has a unique minimizer on K.
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Proof. Using Lemma 4.13 for {f,} c ]0, [ defined by §; = y; fori =1,2,...,n and B; = 0 for
i > n, we obtain the conclusion. O

Lemma 4.15. Let X be a CAT(x) space and T a quasinonexpansive mapping from X into itself
such that d(x,Tx) < Dy for every x € X. Let {a,} c [0,1]. Take x\ € X arbitrarily and generate
{xn} € X by the following iteration:

Xne1 = WXy ® (1 —a,)Tx,
for n e N. Then {d(x,, p)} is nonincreasing for any p € F(T).
Proof. Let p € F(T), then we get

Cx(d(xn+1» P)) < ancx(d(xm P)) + (1 - an)ck(d(Txnr p))
< ancx(d(xn, p)) + (1 — an)ex(d(xn, p))
= cx(d(xn, p))

for any n € N and hence we get the conclusion. O

Lemma 4.16. Let X be an admissible CAT (x) space and T: X — X a tightly quasinonexpansive
mapping. Let {a,} c [0,1] such that limsup,,_, . a, < 1. Take x1 € X arbitrarily and generate
{xp} € X by

Xnsl = X ® (1 - an)Txy
for n e N. Then d(x,, Tx,) — 0.
Proof. Let p € F(T). Then {d(x,,p)} is nonincreasing from Lemma 4.15, and hence there

exists a limit ¢ > 0 of {d(x,,p)}. If c =0, then x, — p, which implies the conclusion. In what
follows, we assume that ¢ > 0. Then we obtain ¢ < D, /2 and

e (d(Txy, p))c,';(d(xn, Txn)) < ci(d(xp, P)) — ¢ (d(xp, Txy))

for any n € N by the definition of tightly quasinonexpansive mappings. Since X is admissible,
we have ¢/ (d(xy,, Tx,)) > 0 and hence

¢k (d(Xns1,p))
< ancx(d(xp, p)) + (1 — an) e (d(Tx,, p))
K d n» — Cx d ny n
< anCK(d(xn,p)) + (1 - len) ) c ( (TxCrI?C)i)(XnCT(Xn();C = ))
) cK(d(Txn, P)) - CK(d(xn, Txn)) — CK(d(xn, P))C,’(’(d(xn, Txn))
¢ (d(xp, Txy))

=cx(d(xp,p)) + (1 —ay)
holds for any n € N. Thus we get

¢ (d(Xn, p)) = Cic(d(Xns1, p))
—Cx(d(TXp, p)) + Cx(d(Xn, Txn)) + cx(d(Xn, p)) i/ (d(Xn, Txn))

z(1-an): & (A, T))
> (1-ay) —Cx (d(Txn, p)) + e (d(xn, p)) + e (d(xn, Txn))c (d(xn, p))
= " ¢ (d(xn, Txn))
CK(d(xn’ Txn)) 142
>(1-ap)- Ao Txn)) * (d(xn, p))
>0
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for any n € N by Lemma 2.8. Since lim,_,c (¢ (d(xp, p)) — cx(d(xp+1,p))) =0 and ¢/ (d(xp, p)) —
¢y (c) > 0, we obtain
llm (1 _ an) . CK(d(xnr Txﬂ)) _

— | =0.
s ¢ (@, Txy))

Put € = liminf, ,»(1 — a,) > 0. Then there exists ny € N such that 1 - a, > ¢/2 for any n > ny.
Thus we have
. cx(d(xp, Txy))
lim =~ - —,
n—eo ¢/ (d(xn, Txp))

It means that lim,,_,., d(x,, Tx,) = 0. In fact, if x > 0, then

0= %1_{1010 ¢ (d(xp, Txp)) noeo K

e (d(xp, Txp)) T 1 1 _
fim (cos(x/?d(xn,Txn)) 1)

and hence cos(vVxd(x,, Tx,)) — 1; if « < 0 then

. C(d(xn, Txn)) .1 1
0= llm i Sl L il = llm —1- )
n—co ¢ (d(xn, Txp)) n—oew —K cosh(v=xd(x,, Tx,))

which implies cosh(v=«xd(x,, Tx,)) — 1. Therefore we get the desired result. ]

Lemma 4.17. Let X be an admissible CAT(x) space and T: X — X a quasinonexpansive
mapping. Let {B,} c [0,1] such that liminf,_,. 8,(1 — B,) > 0. Take x; € X arbitrarily and
generate {x,} c X by

Xn+l = ,ann é (1 - ﬁn)Txn
for n e N. Then d(x,, Tx,) — 0.
Proof. Let p € F(T) and put

S = B2 +2B(1 = B) e (d(n, Txa)) + (1= )2

for each n € N. Then, from Theorem 3.15,

i (d(Xns1,P)) < Brcx(d(Xn, p)) + (1 = Br)cx(d(TXp, p))

_ zﬁn(l - ,Bn)ck(d(xm Txp)) ] ,Bnc;;(d(xn» P)) +(1- ,Bn)cg(d(Txn’ P))
1+S, Su

holds for any n € N. It follows from quasinonexpansiveness of T that

0< 2Bn(1 = Bp)ex (d(xn, Txy)) . Bre (d(xn, p)) + (1= Bp)cd (d(Txy, p))
= 1+8S, Sn
< ﬁnck(d(xmp)) +(1- ﬁn)c,((d(Txn,p)) = cx(d(Xp41, P))
< Ck(d(xnr P)) - CK(d(xVH'l’p))

for any n € N. We know that {d(x,, p)} is nonincreasing from Lemma 4.15, which implies
lim, e (cx (d(xpn, p)) — cx(d(xn41, p))) = 0. Therefore we obtain

’ll_l}go Bn(1 - ,Bn)ck(d(xn, Txn))(ﬁnc;,(d(xm P)) +(1- ﬁn)c;’(d(Txn, p))) =0.
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Note that ¢/ (d(x,, p)) and ¢/ (d(Tx,, p)) do not converge to 0. Indeed, if x > 0 then we have
Sup,,en € (d(Txy, p)) = Sup,,cy C (d(xp, p)) = ¢ (d(x1,p)) > 0. On the other hand, if x < 0 then
¢/ (d(x,, p)) = 1 for every n € N. This follows that

1515130 ﬁn(l - ﬁn)ck(d('xﬂr Txn)) =0.
Consequently we obtain lim, .« ¢«(d(xn, Tx,)) = 0, which is the desired result. O

Corollary 4.18. Let X and T: X — X be the same as Lemma 4.17. Let {a,} c [0, 1] such that
liminf, .. a,(1 — a,) > 0. Take x, € X arbitrarily and generate {x,} c X by

Xnil = nXn ® (1 — ay)Txy
for n eN. Then d(x,, Tx,) — 0.
Proof. Letp € F(T), and put 8, = (Zi((x,,,Tx,,)(an) for each n € N. Then we have
Bun ® (1= B) Ty = nXn & (1 - )T,
for any n € N. From Lemma 4.15, we get sup,,.x d(x,, p) < D, /2. It deduces that
sup d(xp, Tx,) < sup(d(x,, p) +d(Txp, p)) < Dx.

neN neN

Therefore we obtain liminf,_,., 8,(1 — 8,) > 0 by Corollary 3.26, which implies the conclusion
from Lemma 4.17. ]

Lemma 4.19. Let X be an admissible complete CAT (x) space and F a nonempty subset of X.
Let {x,} be a x-bounded sequence on X. Suppose that (i) and (ii) hold: For any subsequence
{xn, } of {xn} with wo = AC({xy,}),

(i) wo € F;

(ii) {d(xn, wo)} is convergent.

Then {x,} A-converges to some element in F.

Proof. Let xo = AC({x,}) and take its subsequence {x,,} arbitrarily. Put wy = AC({x,,}). Then
wp € F, and {d(x,, wp)} is convergent. It follows that

lim d(x,, wo) = lim d(x,,, wo) < limsup d(x,,,x0) < limsup d(x,, xo) < lim d(x,, wp).
n—oo 1—00 n—-oo

i—o00 n—oo
Thus xo = wo = AC({x,,}) € F, which implies x,, = xo. O

Lemma 4.20. Let X be an admissible complete CAT (k) space and T a A-demiclosed mapping
from X into itself. Suppose that a x-bounded sequence {x,} C X satisfies (i) and (ii):

(@) d(xp, Txn) — 0;
(i) {d(x,,p)} is convergent if p is a fixed point of T.

Then {x,} A-converges to some fixed point of T.

Proof. Let {x,,} be a subsequence of {x,} and take wy = AC({x,,}). We show wy is a fixed point
of T. Take a A-convergent subsequence {xnij} C {x,,} and put zo = A-lim;_,. Xy, - Since T is
A-demiclosed, we have zy € F(T). Then {d(x,, zo)} is convergent and hence
lim sup d(x,,, wo) < lim d(xp,, zo)
i—c0 i—00
= lim d(xnij ,20) < limsup d(xnij, wp) < limsup d(x,,, wo).

J—> Jjooo i—o0
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It implies wy = zp € F(T). Therefore, from Lemma 4.19, we get the conclusion. O
Now we show main results.

Theorem 4.21. Let X be an admissible complete CAT (x) space and T: X — X a vicinal mapping
with v. Let {a,} C [0,1[ such that 3, (1 - a,) = . Take x\ € X arbitrarily and generate
{xn} c X by

Xn+l = AnXn ® (1 — ap)Txy
for n e N. Let us denote (a) and (b) by the following conditions:
(a) {Tx,} is x-bounded;
(b) sup,,cn d(xn, Txp) < Dy /2.
Let = ¢’ ocy: [0,Dy/2[ — 10, | and define conditions (P1) and (P2) as follows:

(P1) v is nondecreasing;
(P2) sup,,en w(d(xn, Txp)) < 0.

Then the following hold:

(i) Suppose that v satisfies (P1). Then F(T) % @ if (a) and (b) hold. Conversely, F(T) ¥ @
only if (a) and (b) hold when T is tightly quasinonexpansive.
(i)" Suppose that v satisfies (P2). Then F(T) % @ if and only if (a) holds.

Theorem 4.22. Let X be an admissible complete CAT (k) space and T a quasinonexpansive and
A-demiclosed mapping from X into itself. Suppose that {a,} and {x,} are the same as the
previous theorem. Then the following hold:

(i) If T is tightly quasinonexpansive and limsup,,_, ., a, < 1, then {x,} A-converges to some
fixed point of T.
@(iii) If liminf,en an(1 — ay) > 0, then {x,} A-converges to some fixed point of T.

Proof of Theorem 4.21. Let T be a vicinal mapping with y from X into itself. Then, T is
A-demiclosed from Lemma 4.2.

First we show the only if part of (i) and (i)’ simultaneously. = Suppose that F(T) is
nonempty, and fix p € F(T). Then {d(x,, p)} is nonincreasing from Lemma 4.15. It im-
plies sup, .y d(Tx,, p) < sup,cnd(xn,p) = d(x1,p) < Di/2 and thus (a) holds. Moreover,
considering the case where (i) and assuming that T is tightly quasinonexpansive, we have

cx(d(xn, Txp)) < ¢ (d(Xn, Txy)) + i (A(Txp, p))cy (d(xn, Txp))
< ¢ (d(xp, p))
< ¢(d(x1, p))
for any n € N, and then (b) holds.
Next, consider the if part of (i) and (i)’. Let y € X and k € N. Then we have
e (d (X1, Ty)) < awe(d(xi, Ty)) + (1 = ar)ex (d(Txe, Ty))
= ci(d(x, Ty)) + (1 = a) (cx (d(Txk, Ty)) = cx(d(xk, Ty))).

Therefore, since T is vicinal with v, we obtain

(1 —a)y(d(y, Ty)) (cx(d(Txx, y)) — ¢ (d(Txx, Ty)))
> (1 - ax)y(d(xx, Txr)) (cx(d(Txx, Ty)) — cic(d(xx, Ty)))
> y(d(xx, Txi)) (cx(d(xpes1, TY)) — ¢ (d(xx, Ty))).
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Hence we get

(I —ax)y(d(y, Ty))cx(d(Txk, Ty))
<A —ap)y(d(y, Ty))ex(d(Txi, y)) — w(d(xk, Txi)) (cx (d(xks1, Ty)) — e (d(xx, Ty))),

which implies

1-—a
w(d(xk, Txi))

<y(d(y Ty)) -

v(d(y,Ty))- “C(d(Txe, Ty))

1- Ak
v (d(xg, Txy))

since v (d(xx, Txx)) ¥ 0. It concludes

e (d(Tx, ) + (ex(d(xk, Ty)) = ex(d (X1, T)))

w(d(y,Ty)) Z cx(d(Txx, Ty))

W(d(xk Txk))

<y(d(y,Ty)) Z cx(d(Txe, y)) + (e (d(x1, TY)) = e (d(xn41, TY))) ()

W(d(xk»Tx )

for any y € X.
Put W, = 3/_; (1 — ax)/w(d(xr, Txy)) for each n € N. Then we have lim,_,., W, = co. Indeed,
if (P1) and (b) is true, then

. - 1-a
lim w,, >
n—oo kz: Y (supyen d(xk, Txk))

if (P2) is true, then

8

. 1 —ag
lim W, >
n—co £ SUpjey w(d(xk,Txk))

Define g: X — R by

n

1 1—ag
=i «(d(Tx,
g(y) =lim sup - ; St 1) S AT y)

for y € X. Then g has a unique minimizer p € X from Lemma 4.13 and (a). It satisfies
g(p) < g(Tp) obviously. We also have

K d l} - bk d n+l
V(@0 TNE(TY) < (A, T)E() +lim sup LTI = Bt 1)

i (d(x1,Ty))
Wy

<y(d(y,Ty))g(y)+ lim
=y(d(y,Ty))g(y)

for all y € X by the inequality (). It implies g(Tp) < g(p) and hence p = Tp, which implies
F(T) % Q. O

47



Proof of Theorem 4.22. We first show (iii). Take p € F(T), and suppose that liminf,_,., a,(1 -
a,) > 0. Then we obtain d(x,, Tx,) — 0 from Corollary 4.18. We also have the convergence of
{d(xn, p)} from Lemma 4.15. These imply the desired result from Lemma 4.20.

Next, we show (ii). Suppose that T is tightly quasinonexpansive and limsup,,_,,, a, < 1.
Then we have d(x,, Tx,) — 0 from Lemma 4.16. Hence {x,} A-converges to some xy € F(T)
from Lemma 4.15 and Lemma 4.20. i

In Theorem 4.21, the condition (P2) always holds if ¢ is bounded above. Related to
Theorems 4.21 and 4.22, we can use k-convex combinations instead of usual convex combi-
nations as follows:

Theorem 4.23. Let X be an admissible complete CAT (x) space and T: X — X a vicinal mapping
with v. Let {B,} C [0,1[ such that 3, (1 - B,) = co. Take x1 € X arbitrarily and generate
{xn} c X by

Xp+1 = PnXn é (1= Bn)Txy
for n e N. Let us denote (a) and (b) by the following conditions:

(a) {Tx,} is x-bounded;
(b) sup,,cn d(xn, Txp) < Dy /2.

Let w = ¢’ ocy: [0,Dy /2] — |0, o[ and define conditions (P1) and (P2) as follows:

(P1) v is nondecreasing;
(PZ) SUpP;en W(d(xn, Txn)) < .

Then the following hold:

(i) Suppose that vy satisfies (P1). Then F(T) % @ if (a) and (b) hold. Conversely, F(T) % @
only if (a) and (b) hold when T is tightly quasinonexpansive.
()" Suppose that vy satisfies (P2). Then F(T) % @ if and only if (a) holds.

Theorem 4.24. Let X be an admissible complete CAT (x) space and T a quasinonexpansive and
A-demiclosed mapping from X into itself. Let {f,} c [0, 1] such that ¥} (1 - B,) = . Take
x1 € X arbitrarily and generate {x,} c X by

Xn+1 = PnXn é (1= Bn)Txn
for n e N. Then the following hold:

(i) If T is tightly quasinonexpansive and limsup,,_, ., B, < 1, then {x,} A-converges to some
fixed point of T.
(iii) If liminf,en Br(1 — Br) > 0, then {x,} A-converges to some fixed point of T.

Proof of Theorems 4.23 and 4.24. 1If x = 0, then it is obvious from Theorems 4.21 and 4.22

0 K
since B,x, ® (1 — B,)Tx, = Pnxn ® (1 — B,)Tx,. Therefore, we hereinafter assume that x ¥ 0.
Let ¢f be a function defined in Section 2.5 for each D > 0. Put D, = d(x,,Tx,) for every
n € N, and define a real sequence {a,} on [0,1] by a, = ((]:;n)‘l(ﬁn) for every n € N. Then

Brxn & (1-Bn)Txp =anx, ® (1 -a,)Tx, for all n e N by Lemma 3.6. Therefore, to prove desired
theorems, we know that it is sufficient to show the following:

(@ If 220:1(1 — Bn) = oo, then 220:1(1 - ay) = oo;
(b) iflimsup,_,. Bn <1, then limsup,,_,, a, < 1;
(c) ifliminf,cn B, (1 - B,) > 0, then lim inf,cy a, (1 — ;) > 0.
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We obtain (b) and (c) by Lemma 3.25 and Corollary 3.26, respectively. Thus we only need to
show (a). Suppose that 3}>" (1 - B,) = .
If x < 0, then we have

1
F1=B) <1-ay
for all n € N from Lemma 2.18, and hence

(o)

2 (1—an) >

n=1

N~

i(l = Pn) = .
n=1

We consider the case where « > 0. Fix n € N such that x,, ¥ Tx,. Then using Lemma 2.17, we
obtain

K Dy,
1-6p=1- CDn(an) < ¢ (Dy) (1-apn).

Since X is admissible and a function |0, D[ 3 ¢ + t/cL(t) € ]1, o] is strictly increasing, we get

Dn DK/2 T

ct(Dp) ~ cp(Di/2) ~ 2

and hence
1= pn < 5 (1~ an).

It also holds even if x,, = Tx,. Consequently, we have

ZJL“MZ%;¥LWH=”

Therefore we get the conclusion. i

4.4 Halpern type fixed point approximations

For a uniquely D-geodesic space X and a mapping T: X — X, Halpern type iterative scheme
generates a sequence {x,} on X by an iteration x,,; = a,u ® (1 — @,)Tx, for n € N and some
fixed u € X. We consider the convergence of such {x,} to a fixed point of T.

To prove approximation theorems of a fixed point using Halpern type approximation
scheme, we use the following lemma.

Lemma 4.25 (Kimura and Saejung [16]; Saejung and Yotkaew [26]). Let {B,} c 10, 1[ such that
Yoy Bn=00. Take {a,} C [0, 00| and {b,} C R which satisfies an.1 < (1-Bp)an+pnby forall n e N.
If liminf;_,« (ag(i)+1 — apay) = 0 implies limsup,_, t,i) < 0 for any nondecreasing function
¢: N — N such that lim;_,., ¢(i) = co, then a, — 0. Suppose that limsup;_,. b, < 0 for any
nondecreasing function ¢: N — N such that iminf;_,., (@ i)+1 — @y (i)) = 0 andlim;_,. ¢ (i) = co.
Then {a,} converges to 0.

Lemma 4.26. For x % 0, let X be a CAT(x) space. Take x,y,z € X such that d(x,y) +d(y,z) +
d(z,x) < 2Dy, and let a € [0,1]. Put

l-«a
VvaZ +2a(1 -a)cl(d(x,y)) + (1 - a)z'

p=1-
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Then
cx(d(ax ® (1- @)y, 2))
< (1-p)ec(d(y, 2))
(1 —a++a?+2a(l—a)c/(d(x,y) + (1 —a)? )c;'(d(x, 2))
a+2(1-a)c(d(x,)) '

+ﬁ._ 1-

Proof. Set S =+/a?+2a(1-a)c/(d(x,y))+ (1 - a?). By using Theorem 3.14, we obtain

co(d(ax & (1-a)y,z)) = %(1 —c’(d(ax & (1-a)y, z)))
_1 1 ac/(d(x,2) +(1- ) (d(y, 2))
T K K S
= - L, 2) - el (d(x,2)
- % - IK‘S“ (1= xec(d(y, 2))) - % (d(x,2)
= (1= 15+ 15 e d(y, 2) - S (d(x,2)

==+ (1= B ex(d(y, 2)) - e (d(x, 2))

= (1= pex(d(y, ) + B (1~ s el (d(x, 2).

We also have

a _ a :CZ(S+(1—(Z)): 1—-a+S
pS S-(1-a) $2-(1-a)® a+2(1-a)c((d(x,y))
Therefore we get the conclusion. O

Lemma 4.27. Let x € R and {a,}, C [0,1] such that lim,,_,., a, = 0. Let {d,} C [0,D/2[ be a

sequence and put
1-qa,

) \/alg +2an(1 - ap)cd (dy) + (1 - an)z
forall n eN. Then {g,} c [0,1].

Proof. The inequality 8, < 1 is obvious for any n € N. Put M = sup,,.y d,. First, we assume
that x > 0. Then we have ¢/ (M) > 0 since {d,} c [0, D«/2[, and hence

Bn=1

B l1-qa,
VaZ +2a,(1-ay)cl (M) + (1 - ay)?
_ Vag+2an(1 - an)ey (M) + (1 - an)? - (1 - an)
Vaz +2a,(1 - ay)cy (M) + (1 - ay)?
_ aZ+2a,(1-ap)cy (M)
Vaz +2a,(1-ay)cl (M) + (1 - ay)? (Ja,% +2an(1—ap)cl (M) +(1-ay)2+1- an)
. a2 +2a,(1—ay)c! (M)

CVaZr2a,(1—an) + (1 - an)? (\/a,g 2a,(l—ay) +(1—ay)?+ 1)

Bn 21
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2

a 144
= Tn"' a’n(l - al’l)CK (M)

for any n € N. It implies 8, > 0 for any n € N.
Next we assume that x < 0. Then, since c//(d,) > 1 for any n € N, we have

1_an

IBnZI_ =
Vaz+2a,(1-ay) -1+ (1 - ay)?

a, >0

for any n e N. O
Lemma 4.28. Let x € R and {a,} C [0,1] such that },_, a, = co. Let {d,} C [0, D,/2[ and put

Vaz +2a,(1 - ay)cy (dn) + (1 - ay)?

pn=1

for all n e N. In the case where x > 0, suppose that (i) or (ii) holds:

(i) sup,,en dn < Dx/2,
(i) X%, a2 = .
Then 3,7 | Bn = co.
Proof. 1f x <0, then ¢/(d,) > 1 for any n € N. Hence we get

iﬁnzi(l L—an )zian=oo.

\/a,%+2an(l—an)-1+(1—an)2 n=1

Assume that x > 0. Put M =sup,,.\ dn < Dx/2. Then we have c;/ (M) > 0 and

i ﬁn 2 i (%3"' an(l - an)C;(I(M))

n=1 n=1

by the same calculation as Lemma 4.27. If (i) is true, then ¢/ (M) > 0. Hence ;| B, = o holds
if (i) or (ii) is true, which is the desired result. O

Theorem 4.29. Let X be an admissible complete CAT(x) space and T: X — X a tightly quasi-
nonexpansive and A-demiclosed mapping. Let {a,} c 10,1[ such that lim,_,. a, = 0 and
Yoy @ = 0. Let u, x1 € X arbitrarily and define {x,} c X by

Xptl = Qpll & (1-a,)Tx,
for any n € N. In the case where x > 0, suppose that (i) or (ii) holds:
(i) sup,,en d(u, Tx,) < Dy /2,
(ii) Zc::l a,% = 0o0.
Then {x,} converges to Pg(r)u.

To prove the above theorem, we divide the two cases, x % 0 and « = 0.
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Proof of Theorem 4.29 when x £ 0. Put p = Pp(ryu and
an = cx(d(xn, p));
Pn=1-

l-a,
Vaz+2a,(1 - ay)c)(d(u, Tx,)) + (1 - an)z
[ (V- an+ VaZ+2an(T = @) (@, Txn) + (1 - an)? e (d(w, p)

bn=|1- an+2(1—an)c (@(w, Txy)

for each n € N. Then we get a,,1 < (1 - B,)a, + Bub, for any n € N by Lemmas 4.10, 4.26, and
4.27. Moreover, we obtain };7" , B, = co by Lemma 4.28.
Note the quasinonexpansiveness of S and T. Since ¢, is nondecreasing, we obtain

cx(d(xn+1,p)) < anck(d(u, p)) + (1 = ap)ex (d(Txn, p))
< anck(d(u, p)) + (1 — an)cx(d(xn, p))

for any n € N, and it deduces that

¢ (d(xp, p)) < minfci(d(u, p)), cx(d(x1,p))} < (D /2)

for any n € N. Thus we get sup,,n d(Txy, p) < Sup,,cn d(Xn, p) < Dy /2.
Let ¢: N — N be a nondecreasing function such that lim;_,., ¢(i) = co. Put n; = ¢(i) for each
i € N and suppose that liminf;_,.(an;+1 — a,,) > 0. Then we get

0< hm 1nf(ani+1 - ap,)
= llm inf (¢ (d(Xn41, p)) = €x(d(Xn;, p)))
< hgr_l)glf( n:Cx (d(w, p)) + (1 = an,) e (d(Txp;, p)) = Cic(d(Xn;s p)))
= lim inf (e, (d(Txy,, p)) = &5 (d (i, P)))
< limsup (¢ (d(Txn,, p)) = cx(d(xn;, p))) < 0.

Therefore, lim;_, (¢ (d(TXp;, p)) — cx(d(xp,;, p))) = 0 holds.
Put L =infjen ¢/ (d(Txy,, p)). Then we obtain L > 0. Indeed, if x <0, we have L > 1 obviously;
if ¥ > 0, then

L> 1nfc”(d(xnl,p)) = c”(sup d(xn,»P)) > ¢y (g ) =0.
ieN

Since T is tightly quasinonexpansive, we have

Cic(d(Xn;, Txn;)) € (A(Txny, ) < (A%, p)) = Cx(d(T Xy, p))

for any i € N, which yields

CK(d(xni’ P)) - CK(d(Txni! p))
¢ (d(Txp,, p))

< Ck(d(xn,-, P)) - CK(d(Tlei’ p))

- L

Cx(d(xp;, Txy,)) <

— 0.

as i — co. Thus we get d(x,,, Tx,,) — 0.
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Take a subsequence {xni]_} of {x,,} and its subsequence {xni]_k} such that

0 =liminfd(u, Tx,,) = hm d(u, Txn )

1—00

and Xn, A z e X. Then we obtain z € F(T) since T is A-demiclosed.

Note that 8 < Dy /2 always holds if x < 0. Indeed, we have sup;. d(u,Txp,,) < d(u,p) +
sup; ey d(Txy, p) <0 =D, /2 if x <0.
In what follows, {k} denotes {ni, }. Then we get from Corollary 2.7 that

6= I}im d(u,Tx;) = I}im d(u,xi) > d(u,z) > d(u,p).

Moreover, using lim,,_,, @, = 0, we obtain

. (l—ani+\/an +2apn,(1 —ay)cl (d(u, Txy,)) + (1 - oanl)2 c/(d(u,p))
limsup b,,, =limsup =|1 -
P =P i, +2(1 = )0 (A(1t, Txn,))

1 1 c/(d(u,p))
‘hr?_)s;lp —(l‘c;’(d(u—,Txn,.)))
1)y (@)
x k_>oo C (d(u Txk))

If § < D, /2, then we have

1 (1 i ¢ @ p)) ) 1 (1 _ c,'g(d(u,p))) _
K k—oo C (d(u, Txy)) c!(d(u,p))

Otherwise, if 6 = D, /2, which occurs only if « > 0, then we obtain limy_,. ¢/ (d(u, Tx;)) =0 and
¢ (d(u, p)) > 0; this follows that

c(d(u, p)
K(l‘,}%m) o0 <0.

Consequently, we get the conclusion from Lemma 4.25. O

Proof of Theorem 4.29 when x =0. Take a point p = Pgyu, and put a, = d(x,,p)?> and
b, = d(u,p)®> - (1 — ap)d(u,Tx,)> for n € N.  Then we get a,, < a,d(u,p)® + (1 -
an)d(Txp, p)? — an(l — ap)d(u, Tx,)?> < (1 - ay)a, + azb, for any n € N.  We also have
d(xps1,p)? < and(u, p)? + (1 — ap)d(xn, p)? < max{d(u, p)?,d(x,, p)*} for any n € N, and thus
sup,,cn d(x,, p) < max{d(u, p),d(x1,p)} < co. It means that sequences {d(x,,p)}, {d(Tx,,p)},
{d(u, x,)} and {d(u,Tx,)} are bounded.

Let ¢: N — N be a nondecreasing function such that lim;_,., ¢ (i) = 0. Put n; = ¢(i) for each
i € N and suppose that lim inf; (@41 —ap,) > 0. Then we get lim;_,« (d(Txp;, p)* — d(xn;, p)?) =
0 by the same calculation as the proof of Theorem 4.29. Therefore we obtain

d(xp,, Txni)2 < d(xnl.,p)2 - d(Txm,p)2 -0

as i — oo by the tight quasinonexpansiveness of T, which implies lim;_, d(xy,;, TXp,) =
Take subsequences {xnl } C {xn, } € {xy,} such that liminf; ., d(u, Tx,,) =lim;_ d(u Txnl )

and Xy = 2 € X. Then z e F(T). Let us denote {n,] } by {k} simply. Then, since a, — 0 as
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n — oo, we have limsup,_,, by, = d(u, p)? —liminf; (1 - ap,)d(u, Tx,,)? = d(u, p)? —limy_e (1 -
ak)d(ur Txk)z = d(u! p)z _limk—mo d(u) Txk)2 = d(u, p)z _limk—mo d(u, xk’)z < d(u) p)z _d(u! Z)2 < 0
by Lemma 2.6. Therefore we get the desired result from Lemma 4.25. i

By Theorem 4.29, we obtain an Halpern type approximation theorem for a firmly vicinal
mapping with ¢ an admissible complete CAT(x) space as follows.

Corollary 4.30. Let X be an admissible complete CAT (k) space and T: X — X a firmly vicinal
mapping with v such that F(T) ¥ @. Suppose that {a,}, u, and {x,} are the same as
Theorem 4.29. In the case where x > 0, suppose that (i) or (ii) holds:

(i) sup,en d(u, Tx,) < Dy /2,

(i) I, aZ = co.
Then {x,} converges to Pr(r)u.

Proof. By Lemmas 4.2 and 4.9, T is A-demiclosed and tightly quasinonexpansive. Therefore,
from Theorem 4.29, we get the conclusion. O
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Chapter 5

Equilibrium problems

Let X be a CAT(x) space, K a nonempty closed convex subset of X, and f: K> — R. Then
a mapping Ry is called a resolvent operator of the equilibrium problem for f if the set of all
fixed points of Ry coincides with the set of all solutions to the equilibrium problem for f, that
is, F(Ry) = Equil f. Resolvents of the equilibrium problem play an important role in reducing
the equilibrium problem to a fixed point problem.

In 2018, Kimura and Kishi [12] proposed the resolvent Qs: X — 2K of the equilibrium
problem for f: K? — R defined by

e ={z e nf(rten + Jatw - Lt o7) o)

on a complete CAT(0) space X and a nonempty closed convex subset K of X. They assumed
that X has the convex hull finite property, and f satisfies conditions (E1)-(E4) when proving
that Q is well-defined as a single-valued mapping. This mapping Q; can be expressed by

Qrx = {z €K ylgf; (f(z,y) + @(co(d(x,y))) — ¢(co(d(x, 2)))) = 0},

where ¢(t) =t for t € [0, oo].
Later, in 2021, Kimura [11] showed the resolvent Ry defined by the following is a single-
valued mapping under the appropriate conditions on an admissible complete CAT(1) space:

Rpx = {z €K ylglg (f(z,y) —logcosd(x,y)+logcosd(x,z)) > 0}
= {Z €K yllel}g (f(z, )+ p(a(d(x,y))) - p(c1(d(x,2)))) = 0},

where ¢(t) =-log(1-1t) for ¢ € [0, 1].
Similarly, the resolvent Sy on a complete CAT(-1) space was proposed by Kimura and
Ogihara [20]. It is defined by

Spx = {z €K inIt; (f(z,y) +coshd(x,y)—coshd(x,z)) > 0}
ye
- {z € K | inf (£(2,9)+ p(ca1(d(x, ) = g(e-1(d(x,2))) 2 0},

where ¢(t) =t for t € [0, oo].
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In the same fashion, in general CAT(x) spaces, we expect a resolvent defined by using a
perturbation ¢(cx(d)) to be a single-valued mapping with the appropriate conditions. In this
chapter, we consider the sufficient conditions for the function ¢ to define the resolvent as a
single-valued mapping on an admissible CAT(x) space.

5.1 Resolvents of the equilibrium problem
In what follows, put [n] ={1,2,...,n} for each n e N.

Lemma 5.1. Let X be a uniquely geodesic space and E = {y1,¥2,...,yn} a subset of X. For a
nonempty set A, let h be a bifunction from AxX into R. Suppose that the function h(z,-): X - R
is convex for any z € A. Then, for any v € co E, there exists {u1, 42, ..., un} C [0, 1] such that
i mi=1and h(z,v) <Y, pih(z,y;) forall z € A.

Proof. Put Fy =E and Fj,1 ={tu® (1 -0)u’ |u,u’ € X, t € [0,1]} for j € N. Then co E = e Fj-
Therefore, we need to show that the existence of such {u1, y2, ..., un} € [0, 1] for any j € N and
v € F;. We show it by induction for j € N.

Suppose j =1 and let v € F; = E. Then there exists i, € [n] such that v = y;,. Thus, putting
pi, =1 and p; =0 for i € [n] \ {io}, we get h(z,v) = X1, h(z,y;) for any z € A.

Next, assume that is true for some j e N. Let v € F;,1. Then there exists r € [0,1] and u, u’ € F;
such that v = tu & (1 — r)u’. Hence, from the assumption, there exists {u1, u2,..., un} C [0,1]
such that 37", y; =1and h(z,u) < 3.7, pih(z,y;) for any z € A. Similarly, we have the existence
of {u}, uy, ..., uy} € [0,1] such that i, ui =1and h(z,u’) < 3., pih(z,y;) for any z € A. Take
z € A arbitrarily. Then

n

h(z,v) < th(z,u) + (1= Dh(z,w) < " (tpi+ (1= O}) h(z, yi)
i=1

and »7', (tp; + (1 —1)p’) =1 hold and thus we get the conclusion. O

Lemma 5.2 (Kimura [11]). For x > 0, let X be an admissible complete CAT(x) space having the
convex hull finite property and C a nonempty subset of X. Suppose that a mapping M : C — 2%
satisfies that M(y) is closed for any y € X. If clcoE c Uycg M(y) holds for any finite subset E
of X, then {M(y) | y € C} has the finite intersection property.

Lemma 5.3 (Niculescu and Roventa [25]). Let X be a complete CAT(0) space having the convex
hull finite property and C a nonempty subset of X. Suppose that a mapping M: C — 2%
satisfies that M(y) is nonempty closed convex for any y € X. If clcoE c Uycg M(y) holds for
any finite subset E of X, then {M(y) | y € C} has the finite intersection property.

Lemma 5.4 (Kimura [11]). For x > 0, let X be an admissible complete CAT (x) space and C a
nonempty closed convex subset of X satisfying inf,cc sup,.c d(x,y) < Di/2. Let M be a family
of closed convex subsets of X and suppose that M has the finite intersection property. Then,
NM=x@.

Lemma 5.5 (Kimura and Kishi [12]). Let X be a complete CAT(0) space and C a A-compact
subset of X. Let M be a family of A-closed subsets of X and suppose that M has the finite
intersection property. Then, "M % @.

Lemma 5.6. Let X be an admissible complete CAT(x) space. Suppose that X has the convex
hull finite property. Let K be a nonempty closed convex subset of X and suppose that a function
h: K? — R satisfies (E1), (E2) and (E3). Let C be a nonempty closed convex subset of K and
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define a set M(y) by M(y) ={z € C | h(y,z) <0} for each y € C. Then the following properties
hold:

(i) M(y) is nonempty closed convex for any y € C,
(i) aset {M(y) |y € C} has the finite intersection property,
(iii) if infyec sup,cc d(x,y) < Dx/2, then (,ec M(y) % @.

Proof. (i) Let y € C. Since h satisfies (E1), we get y € M(y) and hence M(y) is nonempty.
Therefore, since h satisfies (E3), we obtain M (y) is closed and convex.

(i) Let E = {y1,¥2,...,¥n} € C. We show coE c UL, M(y;). Assume that it is false, and let
vecoE\UL, M(y;). Then we get h(y;,v) >0 for any i € [n]. From v € coE and Lemma 5.1,
there exists {u1, p2,..., pn} € [0,1] such that 7 | p; =1 and h(yx,v) < 27, pih(yr, y;) for any
k € [n]. Thus we obtain

n n n n n
1
0< § prh(yk, v) < Z Z prpih(ye, yi) = 52 Z pi i (R (Y, i) + h(yi, yx)) < 0,
=1

k=1 i=1 k=1 i=1

which is a contradiction. Hence we get co E c ., M(y;). It implies that
n n
clcoE ccl U M(y,) = U M(y:)
i=1 i=1

and thus {M(y) | y € C} has the finite intersection property by Lemma 5.2 or Lemma 5.3.

(iii) First we consider the case of x > 0. By the result of (ii), {M(y) | y € C} has the finite
intersection property. Hence we get (,.c M (y) ¥ @ by using Lemma 5.4. We consider the case
of x < 0. Suppose inf,cc sup,.. d(x,y) < D/2 = co. It means that C is bounded and hence C is
A-compact by Lemma 2.4. Furthermore, M (y) is A-closed for any y € C since M(y) c C from
Lemma 2.5. Thus, from Lemma 5.5 and (ii), we have Nyec M(y) ¥ @. O

Lemma 5.7. Let X be an admissible complete CAT(x) space. Suppose that X has the convex
hull finite property. Let K be a nonempty closed convex subset of X and h a real function on K?
with conditions (E1)-(E4). Suppose that there exist u € K and R € 10, D, /2| such that h(z,u) <0
for any z € K satisfying d(u,z) = R. Then Equilh ¥ @.

Proof. Put C ={z € K |d(u,z) <R}, and let M(y) ={z € C | h(y,z) < 0} for each y € C. We
know that C is a nonempty closed convex subset of K, and we have
Dy

inf supd(x,y) <supd(u,z) <R< >

yeC xeC zeC

Therefore, from Lemma 5.6 (iii), we obtain Nyec M(y) ¥ @.
Let zg € (Nyec M(y). Then we get h(y,zo) < 0 for any y € C. We also have d(u, zp) < R. Let
w e Cand ¢ €0, 1] arbitrarily. Then tw & (1 — t)z9 € C, and this implies

O=h(twad(1-1t)zp,twd (1 -1t)z9) <th(tw o (1 —1t)z9, w)

by using the condition (E3). It follows that h(rw & (1 — f)zp,w) > 0. Since h satisfies the
condition (E4), we obtain

h(zp,w) > limsup h(tw & (1 —t)zp, w) > 0.
t—0

Therefore h(zy, w) > 0 holds for any w € C.
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We show that h(zg, y) > 0 holds for each y € K. Let y € K and put

_Ju  (ifd(u, z0) = R);
0=V 2 (ifd(u, 20) < R).

Then we have d(u, up) < R. In fact, if d(u, z9) = R, then we get d(u, up) = d(u,u) = 0. On the
other hand, if d(u, zy) < R, then we have d(u, ug) = d(u, zy) < R.
Since d(u, up) < R, we can take a sufficiently small #, € ]0, 1[ satisfying

tocx (d(u, y)) + (1 = to)cx(d(u, ug)) < ¢ (R).

Then we get
c(d(u, toy ® (1 = to)up)) < tocx(d(u, y)) + (1 = to) e (d(u, up)) < cx(R)

and thus d(u, tpy ® (1 —to)up) < R. Since K is convex, we get tpy & (1 — fp)up € K. Hence, by the
definition of C, we obtain ty & (1 — tp)uy € C. Therefore

0< h(Z(), hy © (1 — to)uo) < l()h(Zo,y) +(1- to)h(ZO, u()).

Incidentally, we also have h(zy, up) < 0 and hence h(zp, y) > 0. Indeed, if d(u, zp) = R, then
h(zp, up) = h(zp, u) < 0 holds by the assumption, and if d(u, zp) < R then h(zp, up) = h(z9, z0) = 0.
Thus we get the conclusion. i

Remark 5.8. In the assumptions of Lemma 5.7, there need not exist z € K such that d(u, z) = R.
This means that, we can adapt this lemma even when d(u, z) < R for all z € K.

In what follows for a function ®: [0, D, /2] — [0, [, let us write ®(d) as ®d for every
d e [0,D,/2].

Theorem 5.9. Let X be an admissible complete CAT(x) space. Suppose that X has the convex
hull finite property. Let K be a nonempty closed convex subset of X and let f: K> — R with
conditions (E1)—(E4). Let ®@: [0, D,/2[ — [0, o[ be a continuous convex function. Suppose the
following:

* If x <0 and K is unbounded, then

.. fuz) . ®d
lim inf +lim —==>0
d(u,z)—oo d(u, Z) d—co d
zeK
for some u € K.

* If x>0, then suppose that @ is strictly increasing and limg_,p,_j, ®d = co.

For x € X, define a function h,: K> — R by

hx(Z»J’) :f(Z»J’) +CDd(X»J’) - ®d(x, z)
for any (z,y) € K?. Then Equil h, ¥ @ for any x € X.

Proof. Take x € X arbitrarily, and put & := h, for simplicity. Since ® is continuous and convex,
h satisfies the conditions (E1)-(E4).

First, we consider the case where x < 0. Take a point u € K satisfying the assumption. We
show the following condition (x) holds:

(x) there exists R > 0 such that for any z € K with d(u, z) = R, an inequality h(u, z) < 0 holds.
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If K is bounded, then we can take R > 0 such that d(u, z) < R, thus (x) holds. Suppose that K
is unbounded. Then we have

h(z,u) = f(z,u) + ®d(x, u) — dd(x, z)
<—f(u,z)+dd(x,u) - dd(x, z)
=Dd(x,u) - (f(u, z) + ®d(x, z))

for any z € K. We also obtain

i inf f(u, z) +dd(x, z)

d(u,z)—co d(u,z)
zeK

> 0.

In fact, in case (a), we have

liminf L2+ PAX2) g 9 PA(X2) _ dd

> = —>0
d(u,z)—oo d(u,z) d(u,z)—co d(u,z) d—o d
zeK zeK
since u € Equil f; otherwise, in case (b),
.o fuz2)+@d(x,2) . . o f(u,2) . ®d(x,2)
1 f > 1 f 1 f ——~
d(%)lgoo d(u, z) - d(lbrtg)lgoo d(u, z) " d(%)lgoo d(u, z)
zeK zeK zeK
.. fluz) . Dd
=1 f lim == > 0.
d(lﬂ)lgoo d(u, z) +d1_r>£10 d >
zeK

Hence we get f(u, z) + ®d(x,z) — co when d(u,z) — o, and it means that h(z,u) — —co if
d(u,z) — oo. Therefore we can take R > 0 such that h(z, u) < 0 for any z € K with d(u, z) = R.
This implies that («) holds regardless of whether the set K is bounded or not. Consequently,
from Lemma 5.7, there exists zg € C such that inf,cx h(zo,y) > 0. Thus we get the conclusion
if «x <0.

Next, we consider the case where x > 0. By the assumptions for ®, we can assume that @ is
bijective onto [k, oo[ for k := ®(0). Thus there exists the inverse ®1: [k, o[ — [0, D, /2[ of ®.

Let u = Pxx and put L = inf,cx f(u,y) — ®d(x,u). Since f satisfies the condition (E3), we
obtain that f(u, -) is bounded below by Lemma 2.2. Hence we have

—0 <L < f(u,u) —®d(x,u) =-dd(x,u) < —k.
If L = —k, then we obtain
h(u,y)=f(u,y) +®d(x,y) - Pd(x,u) > -k +Dd(x,y) >0

for all y € K and thus we get the conclusion.
Suppose L < —k. Using Corollary 2.12, we get d(u,z) < d(x,z) and it implies ®d(u,z) <
@d(x, z). Thus we have

h(z,u) = f(z,u) + ®d(x,u) - ®d(x, z)
< —f(u,z) +®d(x,u) - Pd(u, z)
<-L-®d(u,z)
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for any z € K. Put R = ®~!(~L) < D, /2. Then we obtain
-L-®d(u,z) =0 < d(u,z) =R

for any z € K. It implies that h(z,u) < 0 for any z € K with d(u,z) = R. Therefore, from
Lemma 5.7, we get the conclusion. O

Remark 5.10. If ®: [0,D, /2] — [0, o[ is continuous and convex, then there exists a limit
limg_,, ®d/d € [0, o].

Remark 5.11. Consider the case where x < 0 in Theorem 5.9. Then we have

..o fu,z)
>
dlg,r;)lggo d(u,z) ~ 0
zeK

for all u € Equil f by the definition of Equil f. Therefore, if Equil f ¥ @ and lim,_,., ®d/d > 0,
then

.o fuz) L Dd
gminf 70—+ him = >0
zeK

holds for all u € Equil f c K.

Remark 5.12. Consider the case where x < 0 in Theorem 5.9 again. If lim;_,., ®d/d = =, then
we obtain
... fluz) . @d
dl(lﬂ)lgi d(u, z) +(§1_r}1010 d >0
zeK
for all u € K. In fact, by Lemma 2.1, there exists L € |0, 0] such that for any u € K,

o [ 2)
| f > L.
d(lﬂfiloo d(u,z) ~
zeK

This implies that

lim inf f(u 2) + lim 24 > L+ lim @d _
d(u,z)—oco d(u,Z) d—oo d—oo
zeK

for all u e K.

Remark 5.13. In this thesis, we say that a real function f: [a, b[ — R is differentiable if f is
differentiable on ]a, b[ and f is right differentiable at a. Then we write a right derivative of f
at a simply by f’(a). Thatis, f'(a) = lim,,(f(t) — f(a))/(t — a). In addition, f is said to be
continuous on [a, b[ if f is continuous at ]a, b[ and f is right continuous at a.

Similarly, g: ]a, b] — R is said to be differentiable if g is differentiable on |a, b[ and g is left
differentiable at b. Moreover, g is said to be continuous on |a, b] if g is continuous at |a, b|
and g is left continuous at b.

Lemma 5.14. Let X be an admissible CAT(x) space and K a nonempty convex subset of
X. Let ¢: [0,cx(Dx/2)[ — [0, be a differentiable function such that ¢’ is continuous on
[0, cx(Dx/2)[. Take x € X and z,w € K such that z % w, and put D = d(z,w). Define a function
Y from [0, 1] into [0, cx(D«/2)[ by

Y(1) = ()p(cx(d(x, w)) = e (L= 1)D)) + (1 = 1), (ex (d(x, 2)) — cx(tD))
for t € [0,1[. Then

i LO00) = g(e(d(x,2) _
t—0 t

¢’ (ck(d(x, 2))) -%(Cx(d(x, w)) = cx(D) = ¢/ (D)ex(d(x, 2))).
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Proof. Define L: [0,
differentiable on |0,

[ » R by L(t) = ¢(Y(t)) — ¢(ck(d(x,2))) for every t € [0, 1].

1
1[, and L(0) = 0. In fact, since

D 2 (tD Dc!((1-1t)D
for any ¢ € 10, 1[, we get

D P exldx,w) = (1= Dd(w, 2)) + DD (1~ )D)

Dc/((1-t)D)
)

Y () =
(cx(d(x,2)) — cx(td(w, 2))) — D(1 =)} e (¢ D).

This follows that

HmY'(r) = K(D)(C"(d(x yw)) = cx(D) = ¢ (D)ex(d(x, 2))).

since t — (t)l,? is continuous at 0 and 1. Furthermore, since ¢’ is continuous,
}133 @' (Y(2)) = ¢"(Y(0)) = ¢’ (cx(d(x, 2))).
Hence we obtain

. dL, . ., ,
%l_r}(}ﬁ(t) = }1_{% @' (Y (2))Y'(1)

= ¢’ (cx(d(x, 2))) - (D) — 7 (ex(d(x,w)) = ex(D) = ¢/ (D)cx (d(x, 2))).
Consequently, we get
g T = 00D _pyy LD _ iy L
t—0 t t—0 I 0 dt

which is the desired result.

Then L is

O

Lemma 5.15. Let X be an admissible complete CAT(x) space. Suppose that X has the convex
hull finite property. Let K be a nonempty closed convex subset of X and f a real function
on K? with conditions (E1)-(E4). Let ¢: [0,c(Dyx/2)[ — [0,00[ be a nondecreasing and
differentiable function such that ¢’ is continuous on [0, ¢, (D /2)[. Define ®@: [0, D, /2] — [0, oo[

by ®d = ¢(c«(d)) for d € [0,D,/2[. Fix x € X and define a subset Ryx of K by

fo:{zeK

inIt; (f(z,y) +@d(x,y) - @d(x,z)) = 0}.
NS
Suppose that Ryx is nonempty. Then

0< f(z,w)+ ¢'(c(d(x,2))) - (D)

holds for any z € Ryx and w € K \ {z}, where D = d(z, w).
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Proof. Letz € Rrx, w € K, t €]0,1[ and suppose that w % z. Since tw & (1 - t)z € K, we have

0<f(z,twd(1-1)z)+Dd(x,tw d (1 -1)z) — Pd(x, z)
<tf(z,w)+(1-1t)f(z,2) +Pd(x,tw e (1 -t)z) — Pd(x,z)
=tf(z,w)+Pd(x,tw e (1 -1t)z) - Pd(x, 2),

and thus

Dd(x,tw e (1 -1)z) —Pd(x, z)
” .

0< f(z,w)+
Put D =d(z,w) > 0 and
Y(t) = (t)p (cx(d(x, w)) = cx (1 = £)D)) + (1 = ) (cx (d(x, 2)) = e (¢D)).
Then, from Stewart’s theorem on CAT(x) spaces and the nondecreasingness of ¢, we obtain

Dd(x,twd (1 -1t)z) —DPd(x,2) = p(cx(d(x,twd (1 —1)z))) — Pd(x, z)
< o(Y(t)) - Dd(x, z).

Therefore, using Lemma 5.14, we get

N Od(x,tw e (1 -1)z) —Dd(x, z)

0<f(z,w) ”
< flzw) + p(Y(2)) —tq)d(x, z)
— f(z,w) + ¢’ (ck(d(x,2))) - %(Cx(d(x, w)) = cx(D) = ¢/ (D)cx(d(x, 2)))
ast\, 0 forany z € Ryx and w € K \ {z}, where D =d(z, w). |

Theorem 5.16. Let X, K, f, ¢, ®, and Ry are same as Lemma 5.15. Suppose that Rgx is
nonempty for all x € X. Then for any x1,x2 € X, z1 € Ryx1, and zp € Ryx»,

(@' (cx(D1))e (D1) + @' (ex(D2)) ey (D2)) exc(d (21, 22))

< ¢/ (e (D) (cx(d(x1, 22)) — cx(D1)) + @' (cx(D2)) (ex(d(xzn 1)) — e (D) O

holds, where Dy = d(x1,z1), and D> = d(x2,z2). In addition, if Ry is well-defined as a single-
valued mapping from X into K, then the following hold:

() Ry is firmly vicinal with ¢’ o ¢, [0,Dy/2[ — ]0, o[;
(i) F(Ry) =Equil f holds, and Equil f is closed and convex.

Proof. Let x1,x2 € X, z1 € Ryx1 and zp € Rpxp, and put D = d(z1,22). If z1 = 22, then (x) holds
obviously. Considering the case where z; % z,, we have

0 < f(z1,22) + @' (ck(d(x1,21))) - %(Cx(d(xh 22)) — cx(D) — ¢ (D) ek (d(x1, 21)))

and

0 < f(22,21) + @' (ck (d(x2, 22))) - %(Cx(d(xz, z1)) — cx(D) — ¢ (D) e (d(x2, 22)))
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from Lemma 5.15. Summing up these inequalities and dividing by D/c (D), we obtain

0 < @' (cx(d(x1,21))) (e (d(x1, 22)) — cx(D) — ¢ (D) ey (d(x1, 21)))
+ @' (cx(d(x2, 22))) (e (d(x2, 21)) — cx (D) — ¢ (D) ¢y (d(x2, 22))).

Let H be the right-hand side of the above inequality. Since ¢/ (d) = 1 — xc,(d) holds for any
d € R, we have

H = ¢’ (¢ (d(x1,21))) (cx(d(x1, 22)) = ¢ (D) — cx(d(x1, 21)) + k¢ (D) e (d(x1, 21)))
+ @' (e (d(x2, 22))) (cx (d(x2, 21)) — € (D) — ¢, (d(x2, 22)) + KCx (D) e (d(x2, 22)))
= ¢’ (cx(d(x1, 21))) (e (d(x1, 22)) — i (d(x1, 21))) + @’ (cx (d(x2, 22))) (cx (A (X2, 21)) = Cx(d(X2, 22)))

- (<P'(C1<(d(x1, 21))) (1 = kex(d(x1,21))) + @ (cx (d(x2, 22))) (1 = xCic(d(x2, ZZ))))CK(D)

= ¢’ (cx(d(x1, 21))) (e (d(x1, 22)) = Cc (d(x1, 21))) + @ (cx (d(X2, 22))) (cx (A (X2, 21)) = Cx(d(x2, 22)))
— (@' (cx(d(x1,21))) ¢ (d(x1,21)) + @' (i (d(x2, 22))) €7 (d(X2, 22))) cx (D),

which is the conclusion of (x).

Henceforth, assume that Ry is single-valued. Take x;,x» € X arbitrarily. Then, substituting
z1 = Ryxy and zp == Ryxp to (x), we get (i) from Lemma 4.3.

We show F(Ry) c Equil f. Suppose that z € F(Ry), namely, z = Rrz. Let y € K and put
D =d(z,y). Then from Lemma 5.15,

02 f(2,7)+ ' (c(d(22))) 755 (ex(D) = ex(D) = €/ (D)e(d(z, 2)))
D

=f(z,y)+ ¢’ (0) - m(cK(D) —cx(D) — ¢/ (D) - 0)
=f(z,y)

if z% y. We also have f(z,y) > 0 even if z = y by (E2). Thus we get f(z,y) > 0 for all y € K.
This implies z € Equil f, and thus F(Ry) c Equil f.

Finally, we show F(Ry) > Equil f. Take z € Equil f. Since ® is strictly increasing on [0, D /2],
we obtain

inf (f(z,y)+®d(z,y) — ®d(z,2)) > inf f(z,y) >0
yeK yek

and hence z = Ryz, that is, z € F(Ry). It concludes that F(Ry) = Equil f.
If F(Ry) is nonempty, then Ry is quasinonexpansive by (iv). Thus the set F(Ry) is closed and
convex, and so is Equil f. Consequently, we get the conclusion. i

We consider a condition for Ryx % @ to hold.

Lemma 5.17. Let X be an admissible complete CAT(x) space. Suppose that X has the convex
hull finite property. Let K be a nonempty closed convex subset of X and f a real function
on K? with conditions (E1)-(E4). Let ¢: [0,c(Dyx/2)[ — [0,00[ be a nondecreasing and
differentiable function such that ¢’ is continuous on [0, ¢, (D« /2)[. Define ®@: [0, D, /2[ — [0, oo
by ®d = ¢(c(d)) for d € [0, Dc/2[. Suppose the following:

o @ js convex.
e If x <0 and K is unbounded, then
lim inf M+ lim @4 >0

d(u,z)—oo d(u, .Z) d—oco d
zeK
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for some u € K.
* If x>0, then suppose that ¢ is strictly increasing and lim,_,p, /o, ®d = co.

Fix x € X and define a subset Rrx of K by

fo={Z€K

inIt; (f(z,y)+@d(x,y) —@d(x,z)) > 0}.
ye

Then Ryx is nonempty.

Proof. By the assumption, @ is continuous and convex. In addition, when x > 0, then @ is
strictly increasing on [0, D,/2[ since so are ¢ and c|[o,p,]. Thus, from Theorem 5.9, we get
Rrx % @ for every x € X. i

Now we show two main results for the well-definedness of the resolvent for equilibrium
problems with a perturbation function ® = ¢ o ¢,.

Theorem 5.18. Let X be an admissible complete CAT (k) space. Suppose that X has the convex
hull finite property. Let K be a nonempty closed convex subset of X and f a real function
on K? with conditions (E1)—(E4). Let ¢: [0,cc(Dx/2)[ — [0, [ be a strictly increasing and
differentiable function such that ¢’ is continuous on [0, cx(Dy/2)| and nondecreasing. Define
D: [0, Dy /2] — [0,00[ by ®@d = @p(ck(d)) for d € [0, Dy /2[. Suppose the following:

* If x <0 and K is unbounded, then

. . flu,z) . Ddd
dminf T2 T dm = >0
zeK

for some u € K.
* If x >0, then suppose that lim,_,p_j» ®d = co.

Define a subset Ryrx of K by

fo:{zeK

yilellg (f(z,y) + @d(x,y) - Pd(x, 2)) 2 0}

for each x € X. Then the following hold:

() Ryx consists of exactly one point for every x € X, and thus Ry: X — K is defined as a
single-valued mapping;

(i) Ry is firmly vicinal with ¢’ o c¢x: [0, Dy /2] — ]0, oo[;

(iii) F(Rf) =Equilf.
Proof. The nondecreasingness of ¢’ yields the convexity of ¢. Furthermore, since c is convex
on [0, Dy/2[, @ is also convex. Therefore, from Lemma 5.17, Ryx is nonempty for all x € X. We
also have ¢’(t) > 0 for any t € |0, ¢, (D, /2)[ since ¢ is strictly increasing.

Let x € X and z;, z2 € Ryx. Then we obtain from Theorem 5.16 that

cx(d(z1, 22))
o ' eld(x, 21))) (e (d(x, 22)) — cx (d(x, 21))) + @' (i (d(x, 22))) (cx (d(x, 21)) = cx(d(x, 22)))
- @' (cx(d(x, 21))) e (d(x,21)) + ¢’ (cx(d(x, 22))) ¢} (d(x, 22))
(@' (ex(d(x,21))) = @' (cx(d(x, 22)))) (cx(d(x, 22)) = cx(d(x, 21)))
@’ (cx(d(x,21)))c (d(x, 21)) + @ (e (d(x, 22))) ¢ (d(x, 22))
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Since we are now assuming that ¢’ is nondecreasing, we obtain c,(d(z1,z2)) < 0 and thus
z1 = zz. Therefore we can consider Ry to be a single-valued mapping from X into K.
Conditions (ii) and (iii) are obtained from Theorem 5.16. O

Theorem 5.19. For x < 0, let X be an admissible complete CAT (x) space and suppose that X
has the convex hull finite property. Let K be a nonempty closed convex subset of X and f
a real function on K? with conditions (E1)—(E4). Let ¢: [0,00[ — [0, 00| be a nondecreasing
and differentiable function such that ¢’ is continuous on [0, «[. Define ®: [0, co[ — [0, o[ by
@d = p(ck(d)) for d € [0,[. If K is unbounded, then assume that

..o flu,z) . dd
giminf 7oy dim = >0
zeK

for some u € K. Furthermore, suppose that the following two conditions hold:

e &= @ocy is convex on [0,00[;
* dd(x, ) is strictly midpoint convex on K for any x € X, namely,

11 1 1
de(x, Ine Eyg) < Z®d(x, 1) + 5 Pd(x,y2)

holds for any x € X and y1, y» € K with y; % y».
Define a subset Rx of K by

foz{ZEK

inf (f(z,y) + @d(x,y) - @d(x,2)) 2 0}

for each x € X. Then the following hold:

() Ryx consists of exactly one point for every x € X, and thus Ry: X — K is defined as a
single-valued mapping;
(i) Ry is firmly vicinal with ¢’ o ¢x: [0, 00[ — ]0, 00];
(iii) F(Ry) =Equil f.

Proof. (i) Take x € X and z € K arbitrarily, and put g,(-) = f(z,:) + ®d(x,-). Then g,: K — R is
lower semicontinuous and convex. By the assumptions for f and ®, we get

b)) o o B
1 1
<580 +58:(y2)

for any y1, y» € K with y; ¥ y». Moreover, we obtain

g0) e [(2Y) d(x,y)

lim inf > + liminf
d(zy)—e0 d(2,y) ~ d(zy)>e d(2,y)  d(zy)—o d(z,Y)
yeK YEK YeK
. flzy) . Dd
_,}(IZI,I;)IEEO d(z,y)+(}l—r>rolo d >0
yeK

and hence g,(y) — ~ if d(z,y) — oo, that is, g, is coercive. It concludes that g, has the unique
minimizer by Lemma 6.7 (in Chapter 6).
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Puty, = argrninyeK g:(y) for each z € K. Let z1, zo € Ryx. Then we have f(z1, y,,) +®d(x, y,) -
Dd(x,z1) > 0 and f(z2,y;,) + Pd(x,y,;,) — Pd(x,z2) > 0. Thus

f(ZI: J’zl) +f(Z2, yzz) > q)d(x’ Zl) + q)d(x’ ZZ) - de(x, .VZl) - ch(xr .VZz)

holds. Assume that z; ¥ zo. Then we obtain

1 1 1 1
f(z21,y2) + @d(x,y) < f(er Ezl 2] EZZ) + ch(X, Ezl @ EZZ)

<Lia, ) + td(x,21) + Ldd(x, 20)
2 2 2
and similarly we get

1 1 1
f(22,y2) +Pd(x,y,,) < Ef(zz, z1) + zcbd(x, z2) + ECDd(x, z1).
Summing up these inequalities, we obtain

f(Zl’ yz1) +f(Z2, yzz) < @d(x, Z1) + CIDd(x, ZZ) - (I)d(x’yzl) - (I)d(x» yzz)’

which is a contradiction. Thus Ryx is a singleton for every x € X. (ii) and (iii) are directly
obtained by Theorem 5.16. O

In Theorem 5.19, the assumption that ¢ is nondecreasing is not much different from
assuming that ¢ is strictly increasing. Indeed, we get the following.

Fact 5.20. Let X be an admissible CAT(x) space and D € 10, D, /2[. Let K be a convex subset of
X such that there exist p,q € K such that d(p, q) > D. Suppose that a function ¢: [0, cx(Dx/2)[
is nondecreasing. Put ®d = ¢(cx(d)) for d € [0,Dy/2[, and suppose that ®d(x,-) is strictly
midpoint convex on K for all x € X. Then, ¢ is strictly increasing on [0, ¢ (D)|. In particular, if
k <0 and K is unbounded, then ¢ is strictly increasing on [0, co|.

Proof. Assume that ¢ is not strictly increasing on [0, ¢, (D)[. Then there exist #1, 2 € [0, cx(D)|
such that r; < t» and ¢(t) = @(t1) = @(t2) for all ¢ € [f,2]. Take dy,d» € [0, D[ such that
1 = ¢ (dy) and 1 = cx(d2). Then we obtain ®d = ®d; = ®d, for all d € [d;, d»].

Let p, g € K such that d(p,q) > D. Then there exist u, w € [p, q] which satisty d(u, w) = d>.
Take v € [u, w] such that d(u, v) = d;. Then we get

@d(u, %v ® %w) < %cpd(u, V) + %de(u, w) = %cpdl + %cpdz - ®d,.
We also obtain
d(u, %v @ %w) = @ € [dy, dy]
and thus
qbd(u, %v @ %w) =dd,,

which is a contradiction. Therefore ¢ is strictly increasing on [0, ¢, (D)[.
If x <0 and K is unbounded, then we can take any large D € [0, co[ satisfying the assumption.
This is the conclusion. O
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As a consequences of previous results, we obtain sufficient conditions that the perturbation
® = ¢ o ¢, makes Ry a single-valued mapping as follows. Recall that the differentiability and
the continuity of the mapping is specified in Remark 5.13.

In what follows, suppose that X is an admissible complete CAT(x) space which has the convex
hull finite property. Let K be a nonempty closed convex subset of X and f a real function on K?
with conditions (E1)-(E4). Let ¢: [0, cx(Dx/2)[ — [0, o[ and put @ = @ oci: [0, Dx/2[ — [0, oo].
Define a set-valued mapping Ry: X — 2X by

fo={Z€K

nf (7(2,9) + ©(dx, ) - @(d(x,2) > 0] )

for x € X.

First, we consider case where x < 0. If ¢: [0,00[ — [0,0[ has the following conditions
(a), (b), (c), and (d,), then a resolvent R of the equilibrium problem for f is well-defined by
Theorem 5.18 or Theorem 5.19:

(@) ¢ is strictly increasing and differentiable;
(b) ¢’ is continuous on [0, o[;
(c) at least one of the following hold:
(c1) ¢’ is nondecreasing;
(c2) @ = ¢ oc, is convex on [0, o[, and Dd(x, -) is strictly midpoint convex on K for any

x € X;
(d;) K is bounded; otherwise, an inequality
.o fluz) . dd
Amint G T am =g >0

zeK
holds for some u € K.
Note the following remarks.

e If the condition (c2) holds, then we can change the condition of the strict increasingness
of ¢ in (a) to the nondecreasingness of ¢. These two conditions for ¢ are equivalent
under (cp) if K is unbounded, see Fact 5.20.

e Iflimy_,co ®d/d > 0 and Equil f % @, then (d;) is always true, see Remark 5.11.

e If limy o ®d/d = o, then (d;) is always true, see Remark 5.12. Therefore (d;) is true
if lim, o ¢’(t) = co. Indeed, if lim;_ ¢’(f) = oo, then we have lim,_,., ¢(t)/t = o and
hence limg;_,., ®d/d = co.

e If K is unbounded, then the condition (d,) is true if f(v,-) is bounded below for any
v € K and limg_,., ®d/d > 0.

Next, consider the case where x > 0. If ¢: [0, ¢, (Dx/2)[ — [0, co[ has the following conditions
(@), (b), (c1), and (d2), then a resolvent R of the equilibrium problem for f is well-defined by
Theorem 5.18.

(@) ¢ is strictly increasing and differentiable;
(b) ¢’ is continuous on [0, ¢x(Dy/2);

(c1) ¢’ is nondecreasing;

(d2) @ satisfies limy_,p, /» Pd = co.

Note the following remarks.

e lim,_,p, /2 @d = = if and only if lim,_,p_/» ®d/d = oo since D, = n/yx for x > 0.
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e Since x > 0, we have ¢, (Dy/2) = 1/x. Therefore, (d2) is equivalent to lim; »; ¢ (A/x) = .

We now consider some specific cases. First, we confirm that the same results as in previous
studies [11,12,20] in several perturbation functions follow from Theorems 5.18 and 5.19. In
the following three cases, a resolvent Ry is well-defined as a single-valued mapping from
Theorem 5.18.

Corollary 5.21 (Kimura [11]). Let x = 1 and ¢(t) = —log(1—1¢) for t € [0,1[. Then, ®d =
—logcosd for d € [0,n/2[, and a resolvent Ry: X — K defined by the equation (x) is well-
defined. Moreover, the following hold:

() Ry is firmly vicinal with v: [0, /2] > d — 1/cosd, that is,

COS d(xl,fog) COS d(JCg,fol)
cosd(xy, Rrxy) * cos d(xz, Rrxz)

2 cos d(fol, Rsz) >

for any x1, x; € X;
(i) Ry is vicinal with the same v as (i);
(iii) Ry is vicinal with a constant function 1: [0,7/2[ 3d — 1.

Proof. A derivative of ¢ is expressed by ¢’(t) =1/(1-¢) fort € [0, 1[. Thus ¢ satisfies conditions
(a), (b), (c1), and (dz). Therefore, Ry is well-defined as a single-valued mapping. Put ¢ = ¢’ oc,
then y(d) = 1/cosd for d € [0, 7/2[, and Ry is firmly vicinal with . It follows that (i) and (ii)
hold. Moreover, (i) implies an inequality 2 cos d(Ryx1, Ryx2) > cos d(x1, Rrx2) + cos d(x2, Ryx)
for every x1, xo € X, which means the vicinity of Ry with a constant function 1. O

Corollary 5.21 (iii) means that such a mapping Ry is spherically nonspreading of sum type,
see Section 4.1.

Corollary 5.22 (Kimura and Kishi [12]). Let x =0 and ¢(t) =t for t € [0,00[. Then, ®d = d*/2
for d € [0, [, and a resolvent Ry: X — K defined by the equation (%) is well-defined. Moreover,
Ry is firmly metrically nonspreading.

Proof. We easily obtain that conditions (a), (b), (c1), and (d;) are true, hence Ry is well-defined.
Put y = ¢’ oc, for any d € [0, co[. Then y(d) =1 for any d € [0, oo[. Thus Ry is firmly metrically
nonspreading, see Section 4.1. O

Corollary 5.23 (Kimura and Ogihara [20]). Let x = -1 and ¢(t) =t +1 for t € [0,c0[. Then,
®d = coshd for d € [0, o[, and a resolvent Ry : X — K defined by the equation (x) is well-defined.
Moreover, it satisfies

(coshd(x1, Rrx1) + coshd(xz, Rpx2)) coshd(Rpx1, Rpx2) < coshd(x1, Rpxz) + cos d(xz, Rpx1)

for any x1,x, € X.

Proof. Now conditions (a), (b), (c1), and (d;) are true. Put ¢ = ¢’ o ¢y, that is, w(d) = 1 for any
d € [0, 00[. Then Ry is firmly vicinal with v, which follows the desired inequality. O

Now we introduce three corollaries, which are our new result. The following Corollaries 5.24
and 5.26 are obtained from Theorem 5.18, and Corollary 5.27 from Theorem 5.19.

Corollary 5.24. We consider the case where x =1 and ¢(t) =1/(1—t) - (1—1¢) for t € [0,1].
Then, ®d =tandsind for d € [0, n/2[. Define a resolvent Ry: X — K by the equation (x). Then
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Ry is well-defined, and it satisfies

1
cos? d(xg, RfXg)

(( 1 +1) cosd(xl,fo1)+(

+ 1) cosd(x2, Rrxp)| cosd(Rrx1, Rrx
cos? d(x1, Rpx1) ) (x2, Ry 2)) (Rpx1, Rrx2)

1
cos? d(xz, Rpxz)

> ( 1 +1) cosd(xl,fo2)+(

+1|cosd(xy, Rrx
cos® d(x1, Rpx1) ) (2, Ryx1)

for any x1,x» € X. Furthermore, Ry is firmly spherically nonspreading in the sense of Kimura
and Kohsaka [13]. Namely,

2

2
Rex1, R >
cos” d(Ryx1, Rx;) cosd(xy, Rpxy) + cosd(xy, Rrxy)

cosd(xy, Rrxz) cosd(xz, Rrxy)

for any x;, x; € X.

Proof. We get ¢’(t) = 1+1/(1 —t)? for any ¢t € [0,1[. Thus ¢ satisfies (a), (b), (c;), and
(d2), therefore Ry is well-defined as a single-valued mapping. Put ¢ = ¢’ o ¢, that is,
w(d) = 1/cos’d + 1 for d € [0, 7/2[, then Ry is firmly vicinal with . Therefore, we get the
desired first inequality.

Let x1,x2 € X and put ¢; = cosd(x1, Rrx2), @2 = cosd(xz, Rrx1) and put C; = cosd(x1, Rrx1)
and C, = cosd(xo, Rrx2). Then we get

1 1
—+1 +|—=+1
(C12 )<P1 (C22 )<P2

1 1
—+ 1) G+ (—+ 1) 0]
(C12 C22

COS d(fol, Rf)Cz)

[\

G +Q +C1Co (1 + 2) ——
(C1+C)(1+C1Cy) T (CG+C)(1+CCy) Ci+C

and thus

COoS d(xl, Rf)Cz) COS d(xz, fol)

2
2 2
d(Rsrx1, R > P12 >
cos ( 2 fx2) (C1+C2) 192 C1+C2

for any x1, xo € X. This is the desired result. O

In 2016, the well-definedness of the resolvent of the convex function defined by using the
perturbation tand sind was proved by Kimura and Kohsaka [13]. The result above implies
that we can use the same perturbation tand sind to define the resolvent of the equilibrium
problem as the single-valued mapping.

Corollary 5.25. We consider the case where x = 1 and ¢(t) = 1/(1 —t) for t € [0,1[. Then,
®d = 1/cosd for d € [0, n/2[. Define a resolvent Ry: X — K by the equation (x). Then Ry is
well-defined, and it satisfies

1 1
(cos d(x1, Rrxy) * cos d(xz, Ryx2) cos d(Rypx1, Rpxz2)

1
~ cos?d(x1, Ryxy)

1
COS2 d(xz, Rsz)

-cosd(xy,Rrxo) + -cosd(xz, Rrx1)
for any x1,x, € X.
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Proof. Since ¢’(t) = 1/(1 —t)? for any ¢ € [0,1[, ¢ satisfies (a), (b), (c1), and (d2). Hence
Ry is well-defined as a single-valued mapping. Moreover, putting v = ¢’ o ¢, we have
w(d) =1/cos?d for d € [0, n/2[ and Ry is firmly vicinal with . This is the conclusion. |

Corollary 5.26. We consider the case where x = -1 and ¢(t) =log (¢t +1) for t € [0,c0[. Then,
®d =logcoshd for d € [0, . Suppose that f: K> — R satisfies (E1)-(E4) and

lim inf fw2)

d(u,z)—co d(u, Z)
zeK

+1>0

for some u € K. Then a resolvent Ry: X — K defined by the equation (x) is well-defined, and

coshd(x1, Rpx2) coshd(xz, Rpxy)

2coshd(Rrx1, R <
coshd(Ryx1, Ry xz) COShd(xl,fol)+COShd(x2’fo2)

holds for any x;, x» € X.

Proof. We get ¢'(t) = 1/(t + 1), and thus ¢ satisfies (a), (b), and (c;). Furthermore, since
limg ..o @d/d = lim,_,,(logcoshd)/d = 1, we obtain (d;). Thus Ry is well-defined as a single-
valued mapping. Put y = ¢’ o ¢y, that is, y(d) = 1/coshd for d € [0,c00[. Then Ry is firmly
vicinal with ¥ and hence we get the conclusion. O

Corollary 5.27. We consider the case where x = -1 and ¢(t) =t+1-1/(t+1) for t € [0, oo[.
Then, ®d = tanh d sinh d for d € [0, co[. Define a resolvent Ry: X — K by the equation (). Then
Ry is well-defined, and it satisfies

1 1
+1)coshd(xy, Rrx1) + | ——————+1|coshd(xz, Rrx2)| coshd(Rrxy, Rrx
((COSth(xbexl) ) ti Ry) (coshzd(xz,foz) ) bz By 2)) Ry, Ry)

1 1
<|————— +1]coshd(x1,Rfxs) +|——————+ 1] coshd(xs, Rrx
(Cosh2 d(x1, Rpx1) ) (1 f 2) (COShzd(Xz,foZ) ) (%2 ! )

for any x1,x; € X.
To show it, we use the next lemma.

Lemma 5.28 (Kajimura and Kimura [7]). Let X be a complete CAT(-1) space and x € X. Define
a real function g by

g(-) =tanhd(x,-)sinhd(x,-).
Then g is strictly midpoint convex.

Proof of Corollary 5.27. A function @ is convex, and ®d(x, -) = tanh d(x, -) sinh d(x, -) is strictly
midpoint convex by the above lemma. Moreover, we get lim;_,., @d/d = . It means that ¢
satisfies (a), (b), (c2) and (d;). Therefore Ry is well-defined from Theorem 5.19. Put ¢ = ¢’ ocy.
Then y(d) =1+ 1/cosh? d for any d € [0, o[, and then Ry is firmly vicinal with . It implies
the desired result. O

In Theorems 5.16, 5.18, and 5.19, we used a perturbation ¢ o ¢, to define a resolvent Ry.
Henceforth, we consider that we use a perturbation @ o ¢/ instead of ¢ o ¢, and consider
conditions to well-define a resolvent. Let X be a complete CAT(x) space with the convex hull
finite property, and K a nonempty closed convex subset of X.
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Consider the case where x < 0. Let ¢: [0,00[ — [0,00[ and @: [1, 0] — [0, co[. Suppose that
@ock=gpocy,, and let Rf: X — 2K be a set-valued mapping defined by

Ryx = {z € K| Inf (f(2,y) + ¢(ex(d(x,7))) - ¢ (ex(d(x, 2))) 2 0}
= {z €K yigg (f(z, ) +@(cd(d(x, ) = (c/(d(x,2)))) 2 0}

for x € X. Then we know that Ry is well-defined if ¢: [0, o[ — [0, oo[ satisfies conditions (a),
(b), (c), and (d;). Moreover since c/(d) = 1 — xc,(d) for d € R, we get ¢(t) = ¢(1 — xt) for any
t > 0. Indeed, we obtain ¢(c(d)) = @(c’(d)) = @(1 — xck(d)) for all d > 0. Under this setting,
we have the following.

Theorem 5.29. Let xk <0, ¢: [0,00] — [0,00[, and @: [1,00[ — [0,0[. Suppose that ¢(c.(d)) =
@ (cl(d)) foreveryd € [0,[. Define conditions (a), (b) and (cy) for ¢ by

(@) o is strictly increasing and differentiable;
(b) ¢’ is continuous on [0, co|;
(c1) ¢’ is nondecreasing.

Similarly, define conditions (a’), (b’) and (cy) for ¢ by
(@’) ¢ is strictly increasing and differentiable;
(b’) @’ is continuous on [1,c0[;
(cy) @’ is nondecreasing.

Then conditions (a) and (a’) are equivalent. Moreover, under the conditions (a) and (a’), the
following hold:

* (b) and (b’) are equivalent;
* (c1) and (cy) are equivalent.

Proof. Since —x >0 and ¢(t) = ¢ (1 -«t) for any ¢ > 0, we easily get that ¢ is strictly increasing
if and only if so is 9. Moreover, from ¢((s — 1)/(-«)) = @(s) for any s > 1, it is clear
that ¢ is differentiable if and only if ¢ is differentiable. Assuming that (a) is true, we get
@' (t) = —x¢’ (1 -«t) for all ¢ € [0, o[, which is the conclusion. |

In the same way, we also get the following for x > 0.

Theorem 5.30. Let x« > 0, ¢: [0,c(Dx/2)[ — [0,00[, and ¢: 10,1] — [0,00[. Suppose that
@(ck(d)) ="p(ct(d)) for every d € [0, Dx/2[. Define conditions (a), (b) and (c,) for ¢ by

(@) o is strictly increasing and differentiable;
(b) ¢’ is continuous on [0, oo|;
(c1) ¢’ is nondecreasing.

Similarly, define conditions (a’), (b’) and (cy) for ¢ by

(@”) ‘¢ is strictly decreasing and differentiable;
(b’) ¢’ is continuous on 0, 1];
(cy) ¢’ is nondecreasing.

Then conditions (a) and (") are equivalent. Moreover, under the conditions (a) and (a”), the
following hold:

* (b) and (b’) are equivalent;
* (c1) and (cy) are equivalent.
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Proof. By assumptions, we get ¢, (D,/2) = 1/x and ¢(¢) = ¢(1 — «t) for any ¢ € [0,1/x[. In
other words, ¢((1-s)/x) =¢(s) for any s € |0, 1]. These imply the conclusion. |

Theorems 5.29 and 5.30 imply that using ¢, and ¢/ to define the perturbation function are
essentially equivalent for any x % 0. Note that since ¢’(t) = —x¢’(1 — «t) for all € [0, oo, we
get ¢’ o c, = —x (@ o). This means that a mapping T: X — X is (firmly) vicinal with ¢’ o ¢,
if and only if T is (firmly) vicinal with —x (@’ o ¢).

The following table describes natures of a resolvent Ry of the equilibrium problem defined
by using a perturbation ® = ¢ o ¢, = ¢ o ¢/, where FV’ and V' mean ‘firmly vicinal’ and
‘vicinal’, respectively.

Perturbation — Nature of
@(d) @(t) p(s) o and G’ Natures of Ry
| , og(l-n -1 . _ FV with d > ——;
—logcos —-log(1-t) -logs nondecreasin
& 8 8 & Vwith d — 1.
k=1 . 1 1 . . 1
tandsind ——-(1-¢t) —=-s nondecreasing FVwithd— ——+1.
1-1¢ S cos-d
1 L 1 nondecreasing FV with d > —2—.
cosd 1-t¢ s cos?’ d
k=0 %dz t (null) nondecreasing FV with d — 1.
log cosh d log (t - 1) logs nondecreasing FV with d — coslh 7
k=-1| tanhdsinhd f+1-—— s-1 nonincreasing FV with d — — + 1.
r+1 s cosh”d
coshd t+1 s nondecreasing FVwith d — 1.

Note that perturbations defining Ry and functions defining firm vicinity of Ry are related to
an integral with the formula

d
| reancna.
For instance, if ¥ = 1, which implies ¢/ (t) = cost and c[(¢) = sin ¢, then we get
d d
—logcosd=/ -sintdt, tandsind=/ ( +1)sintdt,
o Cost 0 \cos?t

and

1 |
=1 +/ -sintdt.
cosd 0o cos’t

Similarly, if x = -1, which implies ¢}/ (¢) = cosht, c,(t) = sinh ¢, then we obtain

1
cosh?t

d
-sinh tdt, tanhdsinhd=/ (
cosht 0

d
logcoshd = / + 1) sinh r dt,
0

and

d
coshd=1 +/ 1-sinhtdt.
0
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This fact is obtained by the following result.

Theorem 5.31. For « % 0, let X be a complete CAT (x) space with the convex hull finite property,
and K a nonempty closed convex subset of X. Let ¢: [0,00] — [0,00[ be a function which
satisfies the same conditions as Theorem 5.16, and Ry: X — K a resolvent for f well defined by

fo:{zeK

yilellg (f(z,y) + @(ex(d(x,y))) — @(c(d(x, 2)))) 2 0}

for x € X as a single-valued mapping. Put A, = [1,00[ if ¥ <0, and Ax =10,1] if x > 0. Let
ceR and g: Ax — R such that ¢’ (c(0)) = g(c/(0)) and

d
plcx(d) =c+ /0 g(cl()el(t)dt

for every d € [0, D, /2[. Then Ry is firmly vicinal with g o c;;.

Proof. By assumptions, we obtain

@' (cx(d))cr (d) = g(cl (A))ci(d)

for every d € [0, D,/2[. This means that ¢’(c«(d)) = g(c’(d)) for all d € [0, D,/2[. Therefore,
from Theorem 5.16, we get the conclusion. O

5.2 Applications

By applying results of Lemma 4.9 and Theorem 5.16 to Theorems 4.21, 4.22, 4.23, and 4.24, we
obtain the following convergence theorem with Mann type approximation scheme.

Corollary 5.32. Let X, K, f, ¢ and ® be the same as Theorem 5.16, and Ry: X — K resolvent
well defined by an equation (%), see p.67. Let {a,} C [0,1[ such that 3 (1 - a,) = co. Take
x1 € X arbitrarily and generate {x,} c X by either

Xnsl = QpXy ® (1 - an)fon

for ne N or
K
Xnsl = ApXpn ® (1 - an)fon
for n e N. Let us denote (a) and (b) by the following conditions:

(@) {Rrx,} is x-bounded;
(b) sup,,en d(Xn, Rpxp) < Dy /2.

Suppose that Ry is vicinal with y: [0, Dx/2[ — ]0, o[, and define conditions (P1) and (P2) as
follows:

(P1) v is nondecreasing;
(P2) sup,,n w(d(xn, Rrxy)) < oo.

Then the following hold:

(i) Suppose that vy satisfies (P1). Then Equil f % @ if and only if (a) and (b) hold.
()" Suppose that vy satisfies (P2). Then Equil f ¥ @ if and only if (a) holds.
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Corollary 5.33. Let X, K, f, ¢ and ® be the same as Theorem 5.16, and Ry: X — K resolvent
well defined by an equation (x). Suppose that Equilf % @. Let {a,} c [0,1] such that
limsup,_,,an,<1and 3} (1 -a,)=c. Take x| € X and generate {x,} C X by either

Xpe1 = Xy ® (1 - a’n)fon

for ne N or
K
Xnsl = QX ® (1 - an)fon

for n e N. Then {x,} A-converges to some element in Equil f.

In Corollary 5.32, the function v need not be given by ¢’ o ¢,. Therefore for instance, if Ry is
the resolvent defined by Corollary 5.21, which uses the perturbation function ®d = ¢(c;(d)) =
—logcos d, then we can use not only ¢’ o ¢; but also the constant function 1 as the function .
In this case, ¢’ o ¢; satisfies (P1) since ¢’(c;1(d)) = 1/cosd, and 1 satisfies both (P1) and (P2).
Note that the condition (P2) always holds if ¥ is bounded above.

We also get the following convergence theorem with Halpern type approximation scheme
from Theorem 4.29.

Corollary 5.34. Let X, K, f, ¢ and ® be the same as Theorem 5.16, and Ry: X — K resolvent
well defined by an equation (x). Suppose that Equil f ¥ @. Let {a,} c 10,1[ such that
lim, . ap=0and ) | a, = . Let u,x, € X arbitrarily and define {x,} c X by

K
Xp1 = anu @ (1 —ay)Rrxy

for any n e N. In the case where x > 0, suppose that (i) or (ii) holds:
(i) sup,cnd(u, Rexy) < Dy /2,
(i) X%, af = .
Then {x,} converges to some element in Equil f.
Finally, we show a property for two resolvents Ryy and R, for A, u > 0.

Theorem 5.35. Let X be an admissible complete CAT (x) space. Let K be a nonempty closed
convex subset of X and f a real function on K? with conditions (E2). Let ¢: [0, cx(Dy/2)[ —
[0, oo be a differentiable function. For A, u >0, let Rys, R,y be mappings from X into K. Assume
that for each v € {A, u}, an inequality

0 < vf(Rypx, w) + ¢ (ci(d(x, Ryyx))) '%(Cx(d(x» w)) = cx(E) — ¢/ (E)cx (d(x, Ryfx)))

holds for any x € X and w € K \ {R,rx}, where E = d(R,sx,w). Then for any x,y € X, the
following inequalities hold:

0 <A (ck (Dyy))(CK(Dyx) —cx(D) - C;(I(D)CK(Dyy))
+ 1@’ (¢x(Dxx)) (cx(Dxy) — cx (D) — ¢ (D) ey (Dxy)); (@)

(A(/’/(CK(Dyy))C;,(Dyy) + M(p/(CK(DXX))C;/(DXX))CK(D)
< /upl(ck (Dyy))(CK(Dyx) - CK(Dyy))
+ 1@ (¢x(Dxx)) (CK(ny) - CK(DXX)); (ii)
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%(A(P/(CK (Dyy))c;g (Dyy) + ,U(P,(CK(Dxx))CN (Dxx))c;(/ (D)

> L (A9 (6x(Dyy)) 6 (Dy) + 1’ (65 (D)) (Dyy), (i)

where Dy, = d(x,Ryrx), Dxy = d(x,Rury), Dyx = d(y,Rarx), Dy, = d(y,Rury), and D =
d(Ryrx,R,ry). The inequality (iii) is considered only when x % 0.

Proof. Let A, u>0and x,y € X. If Rysx = R,ry, then we get the conclusion obviously. Suppose
that Rysx % R,ry. Then, for a function uf: K? — R, we have

0 < uf (Rusy, Rapx) + ¢ (cx(Dyy)) % (cx(Dyx) = cx (D) = ¢/ (D)cx(Dyy))
and hence
0<S (D) Auf (Rupy, Rapx) + Agp’ (cx(Dyy)) (ex(Dyx) = ex(D) = ¢/ (D)ex(Dyy)).

Similarly, for a function Af, we get

0< = (D )Mf(Rafx Rury) + 119’ (¢x(Dxx)) (cx (Dxy) — cx(D) = ¢ (D)cx(Dxy)).

Summing up these two inequalities, we obtain (i) since f satisfies (E2).
Using Lemma 2.8, we obtain that the inequality (i) is equivalent to

0< A(p/(CK(Dyy))(CK(Dyx) - CK(Dyy) - C;/(Dyy)CK(D))
+ ,U(P,(CK(Dxx))(CK(ny) — Cx(Dyx) — C;,(Dxx)CK(D));

and so is (ii).
Assume that « % 0. Then, using Lemma 2.8 again, we obtain that (i) is equivalent to

1 - ¢/ (Dyy) ~ 1- c;’(Dyy)c,’g(D))

0 <29/ (cx(Dyy) -

: 1-¢/(Dyy)  1-c/(Duo)c(D
+ue (cK(Dxx))( KK xy) X ( 7)(mc) 2 (D) ,
and so is (iii). ]

Corollary 5.36. For A,pn > 0, let Ryy and R,s be well-defined resolvents of the equilibrium
problem under the assumption of Theorem 5.16 for Af and uf, respectively. Then these satisfy
inequalities (i), (ii) and (iii) of Theorem 5.35 for any x,y € X.

Proof. Suppose that Ryy and R,s are well-defined as a single-valued mapping.  From
Lemma 5.15, we obtain

0 < Af(Rapx, w) + @' (ex(d(x, Ripx))) - 7 (cx(d(x, w)) = cx(Dy) = ¢/ (Da)ex(d(x, Rygx)))

D,
¢y (D)
for any x € X and w € K \ {Rysx}, where D) = d(Rysx, w). We also have

0 < uf (Rupx, w) + @' (cx (d(x, Ryfx))) - -~ (ex(d(x, w)) = cx(Dy) = ¢ (Dy)ex(d(x, Rypx)))

D,
¢ (Dy)

for any x € X and w € K \ {R,sx}, where D, = d(R,sx,w). From Theorem 5.35, we obtain the
conclusion. O
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Chapter 6

Convex functions

In this chapter, we consider a convex minimization problem and a new type of convex
functions.

Definition 6.1. Let X be a uniquely D-geodesic space and f a proper function from X into
]—o0, 00]. Then f is said to be midpoint convex if

f(%}ﬁ ® %J@) < lf(yl) + %f(J/z)

for any yj, y» € dom(f) with d(y1,y2) < D. In addition, f is said to be strictly midpoint convex if
1 1 1 1
f(zn@50) <5Fo)+5F ()

for any y1, y» € dom(f) with 0 < d(y1,y2) < D.

Definition 6.2. Let X be a uniquely D-geodesic space and f a proper function from X into
]—c0, 0]. Then f is said to be quasiconvex if

fyre (1 -1)y2) <max{f(y), f(y2)}

for any y, y» € dom(f) and ¢ € |0, 1[. In addition, f is said to be strictly midpoint quasiconvex
if
f(3r@3y) <max (£, f(2)
2 2

for any yy, y» € dom(f) with 0 < d(y1,y2) < D.

It is clear that if f is convex then f is quasiconvex. Similarly, if f is strictly midpoint convex,
then f is strictly midpoint quasiconvex.

6.1 Convex minimization problems

In this section, we consider applying the result of fixed point approximation theorems shown
in the previous chapter to solve convex minimization problems on admissible complete CAT (k)
spaces.

Let f be a proper convex function from X into ]-co, c0]. Then we call a mapping Sy from X
into itself a resolvent operator of f if the set of all fixed points of Sy coincides with the set of
all minimizers of f, that is, F(S) = argmin f.

Regarding resolvents of convex functions, Kajimura and Kimura proved the following result.
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Lemma 6.3 (Kajimura and Kimura [9]). Let X be an admissible complete CAT (k) space and f a
proper convex function from X into |—oo, oo] Suppose that a function ¢: [0, cx (D /2)[ — [0, o[
is nondecreasing and differentiable, and ¢’ is continuous at [0, c,(Dy/2)[. Define a set-valued
mapping Sy from X into 24°m() py

Spx = argr;lin (f() + plex(d(x, 1))
yE
for x € X. Assume that Sy is well-defined as a single-valued mapping from X into dom(f).
Then Sy is firmly vicinal with ¢’ o c,: [0, Dy /2] — ]0, oo].
Lemma 6.3 is obtained by the next lemma.

Lemma 6.4. Let X, f and ¢ are the same as Lemma 6.3. Define a set-valued mapping Sy from
X into 29°m() py

Spx = ang;in (f() + @lex(d(x,y))))
NAS
for x € X. Then the following hold:
(i) Forany x € X, z € Syx and w € X \ {z}, an inequality

0 < f(w) - f(2) + ¢ (cc(d(x, 2))) - cx(d(x,w)) = cx(D) = ¢ (D)cx(d(x, 2)))

paiol

holds, where D = d(z, w);
(i) for any x1,x2 € X, z1 € Syx1 and z; € Syxz, an inequality

(@' (cx(D1)) ey (Dh) + @ (¢ (D2))cy (D2)) e (d(z1, 22))
< ¢’ (¢ (D1)) (e (d(x1, 22)) — € (D1)) + @' (cx(D2)) (cx (d(x2, 21)) — ¢ (D2))
holds, where D, = d(x1,z1), and D> = d(x2, z).

Proof. (i) Since f is proper convex, dom(f) is a nonempty convex set. Define f: dom(f)? —» R

by f(z,y) = f(y) - f(2) for z,y € dom(f). Put ®d := ¢(c,(d)) for every d € [0, D,/2[. Then we
obtain

Spx = argn;in (f() + @(cx(d(x,y))))
ye

= argmin (f (y) + ®d(x, y))
yedom(f)

- {z e dom(f) | inf  (f(y) +®@d(x,y)) > f(2) + ®d(x, z)}
yedom(f)
- {z e dom(f) ‘ inf (F(z,y)+®d(x,y) - ®d(x,2)) > o}
yedom(f)
for every x € X. Therefore, from Lemma 5.15 we obtain

0< f(w) - f(2)+ ¢ (cx(d(x,2)))  —7r7 (ex(d(x, w)) = ex(D) = ¢ (D)ex(d(x, 2)))

K(D)

forany x € X, z € Syx and w € dom(f) \ {z}, where D = d(z, w). This inequality is true obviously
if w e X\ dom(f).

(ii) By Theorem 5.16, we get the conclusion. O
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From Lemma 4.3 and the inequality (ii) in Lemma 6.4, we obtain that Sy is firmly vicinal with
¢’ o ¢y if Sy is well-defined as a single-valued mapping from X into dom(f). This completes
the proof of Lemma 6.3.

Now we show the following crucial fact.

Lemma 6.5. The single-valued mapping Sy: X — dom(f) well defined in Lemma 6.3 satisfies
F(Sy) = argmin f.

Proof. Let z € argmin f. Then since ¢ is nondecreasing, we have
[(2) + ¢(ex(d(z,2))) = f(2) + 9(0) < f () + ¢(0) < f(¥) + ¢(cx(d(2,)))

for any y € X. It implies that z = Syz, that is, z € F(Sy).
Conversely, take z € F(Sy). Then we get

£(2) < F(0)+ ¢/ (exld(z2) - s en(dlz, ) - ex(d(z, ) = ¢ (A2 w)ex(d(2,2)
=f(w)
for any w € X \ {z} from Lemma 6.4 (i). It means that z € argmin f. O

We consider a sufficient condition of ¢ such that such a resolvent Sy is well-defined as a
single-valued mapping. In 2016, Kimura and Kohsaka gave a sufficient condition on f so that
f has the unique minimizer.

Lemma 6.6 (Kimura and Kohsaka [13]). For x > 0, let X be an admissible complete CAT(x)
space and f a proper lower semicontinuous quasiconvex (Dy/2)-coercive function from X into
]—o0, 00]. Then f has at least one minimizer on X. Moreover, if f is also strictly midpoint convex,
then f has the unique minimizer on X.

Later, in 2019, Kajimura and Kimura showed the following result.

Lemma 6.7 (Kajimura and Kimura [7]). Let X be a complete CAT(0) space and f a proper
lower semicontinuous convex coercive function from X into ]—oo, ]. Suppose that f is strictly
midpoint convex. Then f has the unique minimizer on X.

From the three lemmas above, we get the following result.

Theorem 6.8. Let X be an admissible complete CAT (x) space and f a proper lower semicontin-
uous convex function from X into |—oco, |. Suppose that a function ¢: [0, cx(Dx/2)[ — [0, o[
is strictly increasing, differentiable, and ¢’ is nondecreasing and continuous on [0, ¢, (D /2)][.
Define ®@: [0, D, /2[ — [0,00[ by ® = ¢ o c¢. Suppose the following:

* If x <0, then

. fe .. ®d)
Aminf Zo =5+ im == >0

for some u € X.
* If x>0, then suppose that limg_,p, ;> P(d) = co.

Define a set-valued mapping Sp: X — 24°m() py

Spx = argr;ﬂn (f(y)+@(d(x,y)))
ye

for x € X. Then the following hold.
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(i) S¢: X — dom(f) is well-defined as a single-valued mapping;

(ii) Sy is firmly vicinal with ¢’ o cx: [0, Dy /2[ — ]0, oo[;

(iii) F(Sy) =argmin f.
Proof. This is obtained by similar proof of Theorem 5.18. Since ¢’ is nondecreasing, we obtain
that ¢ is convex. Moreover, since ¢, is convex on [0, D, /2[, ® is also convex. Therefore, from
Lemmas 6.6 and 6.7, we get Syx % @ for every x € X. Since ¢ is strictly increasing and ¢’ is
nondecreasing, we also have ¢’(¢) > 0 for all ¢ € |0, cx (D« /2)[.

Let x € X and z;, 2 € Syx. Then from Lemma 6.4 (ii), we obtain

cx(d(z1, 22))
- @’ (cx(d(x, 21))) (cx(d(x, 22)) = cx(d(x, 21))) + ¢ (cx (d(X, 22))) (cx (d(x, 21)) = ex (d(X, 22)))
- @' (cx(d(x,21))) e (d(x,z1)) + @' (e (d(x, 22))) ¢ (d(x, z2))
(¢ (cx(d(x,21))) — @ (cx(d(x, 22)))) (cx (d(x, 22)) = ci(d(x, 21)))
@’ (cx(d(x,21)))c (d(x, 21)) + ¢ (e (d(x, 22))) ¢ (d(x, 22))

Since ¢’ is nondecreasing, we get c(d(z1,z2)) < 0, and hence z; = z,. This is the conclusion
of (i). Note that (ii) and (iii) are obtained from Lemmas 6.3 and 6.5. O

Theorem 6.9. Let X be an admissible complete CAT (x) space and f a proper lower semicontin-
uous convex function from X into |—oo, o]. Suppose that a function ¢: [0, cx(Dx/2)[ — [0, oo
is nondecreasing, differentiable, and ¢’ is continuous on [0, ¢, (Dy/2)[. Define ®: [0, D, /2] —
[0, 0] by ® = ¢ o ck. Furthermore, suppose that ®(d(x,-)) is strictly midpoint convex for any
x € X. Suppose the following:

e If x <0, then

lim inf f(2) + lim % >

d(u,z)—oo d(u,z) d—oo d 0

for some u € X.
* If x > 0, then suppose that lim,_,p_» ®(d) = .

Define a set-valued mapping Sp: X — 29°m() py

Spx = argn;in (f(y)+@(d(x,y)))
yE

for x € X. Then the following hold.

(i) Sy: X — dom(f) is well-defined as a single-valued mapping;
(i) Sy is firmly vicinal with ¢’ o ¢i: [0, Dy /2] — ]0, [;
(iii) F(Sy) =argmin f.

Proof. Fix x € X and put g(-) = f(-) + ®(d(x,-)). Then g: X — ]-o0, 0] is proper and lower
semicontinuous. Since ®(d(x,-)) is continuous and midpoint convex, we obtain that ®(d(x, -))
is convex on dom(f). Hence, for any y;,y» € dom(f) and ¢ € |0, 1],

gy (1-0)y)=fne(1-1)y)+P(d(x,ty1® (1 -1)y2))
<tf(y)+ (A =0)f(y2) +1®@(d(x, 1)) + (1 = )DP(d(x,y2)) =tg(y1) + (1 = 1)g(y2).

Thus g is convex. We also have
1 1 (1 1 1 1 1 1
g(§y1 o §J’2) = f(EJ’I ® Eyz) + cb(d(x, SN @ EJ’z)) <580 +58(32)
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for any yy, y» € dom(f) with y; ¥ y». Hence g is strictly midpoint convex.

We show g is (D, /2)-coercive. If k¥ > 0, then we have lim;_,p, /> ®(d) = co by the assumption.
It follows that limg(x,z) ~p, /2 §(2) = o0, which implies the coercivity of g. We consider the case
where x < 0. Take a point u € X satisfying the assumption. Then we obtain

fl2) duz)) . P
d(u,z)'d(x,z))-'_él—{rolo d >0

lim inf 8(2) > liminf
d(x,z2)—> d(x, Z) d(u,z)—oo

and hence g is coercive.
Consequently, by Lemmas 6.6 and 6.7, Syx is a singleton for any x € X. Moreover, from
Lemmas 6.3 and 6.5, we get (ii) and (iii). O

In the previous theorem, we consider the case where x < 0. Suppose that f is bounded
below and liminf; ,.(®(d)/d) > O. Then the condition liminfy ;) (f(2)/d(x,2)) +
liminf;_.(®(d)/d) > 0 is true. Indeed, we get lim infy(, ;) (f(2)/d(x,2)) = 0 if f is bounded
below.

Note that we obtain from Lemmas 4.2 and 4.9 that, if T: X — X is firmly vicinal with v and
F(T) % @, then T is tightly quasinonexpansive and A-demiclosed. From this fact, we get the
following results from Theorems 4.21, 4.22, 4.23, and 4.24.

Corollary 6.10. Let X, f, and ¢ be the same as Lemma 6.3, and Sy: X — dom(f) resolvent well
defined by an equation
Syx = argmin (f(y) + ¢(c(d(x, ¥)))).- (%)
yex
Let {a,} c [0, 1] such that 35, (1 — a,) = . Take x1 € X arbitrarily and generate {x,} c X by
either
Xps1 = WXy, © (1 - an)sfxn
for neN or
Xn+l = QpXpn é (1- an)sfxn
for n e N. Let us denote (a) and (b) by the following conditions:
(@) {Syxn} is x-bounded;
(b) sup,,en d(xn, Spxn) < Dy /2.
Suppose that Sy is vicinal with y: [0, D, /2] — ]0, [, and define conditions (P1) and (P2) as
follows:
(P1) v is nondecreasing;
(P2) sup,,cy, ¥(d(xn, Spxn)) < o.
Then the following hold:

(i) Suppose that v satisfies (P1). Then argmin f % @ if and only if (a) and (b) hold.
(i) Suppose that v satisfies (P2). Then argmin f % @ if and only if (a) holds.

Corollary 6.11. Let X, f, and ¢ be the same as Lemma 6.3, and suppose that argmin f % @.
Let Sy: X — dom(f) a resolvent well defined by an equation (xx). Let {a,} C [0, 1] such that
limsup,,_,, a, <1 and 3} (1 -a,) =co. Take x| € X and generate {x,} C X by either

Xnil = ApXy ® (1 - an)sfxn
for ne N or

K
Xpil = ApXy ® (1 - an)sfxn
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for n e N. Then {x,} A-converges to some minimizer of f.
We also get the following result from Theorem 4.29.

Corollary 6.12. Let X, f, and ¢ be the same as Lemma 6.3, and suppose that argmin f % Q.
Let S¢: X — dom(f) a resolvent well defined by an equation (xx). Let {a,} C ]0,1[ such that
lim, . @, =0and 3}, a, =co. Let u,x, € X arbitrarily and define {x,} c X by

Xpel = Qpll S (1 - ay)Srxy
for any n € N. In the case where x > 0, suppose that (i) or (ii) holds:

(i) sup,cnd(u, Spxy) < Dy /2,

(i) X%, af = .

Then {x,} converges to some minimizer of f.

6.2 (-1)-convex functions

Using (-1)-convex combination, we can define another type of convex functions named ‘(-1)-
convex function.” In this section, we investigate its natures and perform some numerical
experiments.

6.2.1 Natures of (—1)-convex functions on geodesic spaces

Let X be a uniquely geodesic space and f a function from X into ]—oo,]. f is said to be
(=1)-convex [27] if X
flaxe (1-a)y) <af(x)+(1-a)f(y)
forany x,y € X and a € [0, 1].
Then we easily get the following:

e If f,g: X > ]-00, 0] is (—1)-convex, then so is f + g.

e If f: X — |—00, 0] is (-1)-convex, then so is kf for any k > 0.

e If f: R — ]-o00,00] is (-1)-convex, then so is g: R > ¢+ f(t +¢) for any c € R.
e If f: R — ]—o0,00] is (—1)-convex, then sois g: R >t +— f(-t).

We can get several examples as follows.

e Let X be a CAT(-1) space and z € X. Then a function f: X — |-, o] defined by
f () =coshd(-, z) is (-1)-convex.

e A function f: R 5t — cosht is (-1)-convex.

* A function f: R> ¢+ expt is (-1)-convex.

e For b € R, a function f: R >t + b is (—1)-convex.

* For a, b € R such that a % 0, a function f: R > t — at + b is not (-1)-convex.

e A function f: R 3t — t? is not (~1)-convex.

Theorem 6.13. Let X be a uniquely geodesic space. Then a function f: X — ]—oo, 0] is
(=1)-convex if and only if for any x,y € X withx %y and t € 10,1],

sinh(td(x,y))
sinh(zd(x,y)) +sinh((1 - t)d(x, y))
N sinh((1-1#)d(x,y))
sinh(td(x,y)) +sinh((1 - t)d(x, y))

faxe(1-1)y) < f(x)

f ).
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Proof. f(ax EDS (1-a)y)=af(x)+(1-a)f(y) always holds if x = y or a € {0, 1}. Therefore, f is
(=1)-convex if and only if f(ax Eg (1-a)y) <af(x)+(1-a)f(y) for any x, y € X with x ¥ y and
a €10, 1][. It is equivalent from Lemma 3.6 to f(tx® (1 -1)y) < (g(xyy)(t)f(x) + (g(x,y) (I-0)f(y)
for any x, y € X with x % y and ¢ € ]0, 1{. This implies the conclusion. i

Corollary 6.14. Let X be a uniquely geodesic space. Then a function f: X — ]—co,c0] is
(=1)-convex if and only if for any x,y € X withx %y and z € 1x,y/|,

(sinhd(y,2))f (x) + (sinhd(x, 2)) f(y)

f(2) < sinhd(y, z) + sinhd(x, z)

Corollary 6.15. Let X be a uniquely geodesic space. Then a function f: X — |—co, 0] is
(=1)-convex if and only if for any x,y € X with x %y and z € |x,y|,

(sinhd(y, 2))(f(x) - f(2)) + (sinh d(x, 2)) (f (y) - f(2)) = 0.

Corollary 6.16. Let X be a uniquely geodesic space. Then a function f: X — R is (-1)-convex
if and only if for any x,y € X withx %y and z € |x, y|,

d(y! Z) - d(x) Z)

W@ BT f0-f)
= 2 o 402 ;—d(x, 2) 2

A (-1)-convex function has the following relationship with convex functions.

Lemma 6.17. Let X be a uniquely geodesic space. Then every continuous (—1)-convex function
f: X — ]-00, 0] is convex.

Proof. Assume that f is continuous and (-1)-convex. Then we obtain from Corollary 3.7 that

fArely)=f(ire 2y) <2r@+1f)

for any x, y € X, and hence f is midpoint convex. Therefore, since f is continuous, we get the
desired result. O

Theorem 6.18. Let X be a uniquely geodesic space and f: X — |-, ] a proper (-1)-convex
function. Let u,v € dom(f). Then f|y,,[ is continuous.

Proof. Take an arbitrary point x € u, v[. Let {x,} be a sequence on |u, v[ which converges to
x€lu,v]. PutA={neN|x, €lu,x[}and B={n e N | x, € [x,v[}. Then there exists {a,},ca
and {B,}rep such that

-1 -1
Xp=a,u® (1—ay)x and x,=p,v & (1-6,)x

for any n € A and n € B, respectively. Since x, — x as n — oo, we obtain from Lemma 3.22 that
{an} and {B,} both converge to 0. By the (—1)-convexity of f, we get

fxn) < anf(u)+(1-an)f(x) and f(xn) < Puf (V) + (1= Pu)f(x)

for any n € A and n € B, respectively. It follows that limsup,,_,, f(x,) < f(x).
Take {yn}nea and {6y} nep satisfying

-1 -1
xX=yv® (1-1v,)x, and x=35u & (1-95,)x,
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for any n € A, and n € B, respectively. Then {y,} and {5,} both converge to 0 from Lemma 3.23.
We also have

) < yf@)+ (1 =ya)f(xp) and f(x) < 6uf (v) + (1= ) f(xn)

for any n € A, and n € B, respectively. Therefore we obtain f(x) < liminf,_. f(x,).
Consequently, we get f(x) =lim,_ f(x,), which is the desired result. i

Using Lemma 6.17 and Theorem 6.18, we obtain the following fact.

Theorem 6.19. Let X be a uniquely geodesic space and f: X — |—-oo, 0] a proper (—1)-convex
function. Then f|qom(r) is convex.

Proof. Letu,v e dom(f). Itis obvious if u = v, therefore we assume that u % v. We immediately
obtain that f1y,,,[ is convex from Lemma 6.17 and Theorem 6.18.

Take x € [u,v][ c dom(f) arbitrarily. Since f is (-1)-convex, we have f(¢x EB (1-1v) <
tf(x)+(1—-1t)f(v) for any t € ]0, 1[. Note that there exists a limit L =lim,_,o f(au ® (1 — a)v).
It follows that

-1
£(v) > limsup LUX @ (L= Dv) = £ (%)

. -1
n st - =11_r)r&f(tx€9(1—t)v)—L

Since v € dom(f), we have L < . Then we get

() +(1=0f @) = ftx@ (1= 0w) = () + (1= Df @) ~lim f(tx® (1= 1) (sx & (1= 5)v))
> tf (x) + (1= O)f () = 1 (x) - (1= ) lim f(sx & (1= 5)v)
=(1-0D(f@)-1L)
>0

for any ¢ € 10, 1[. Thus f is convex on |u, v].
Similarly, we also obtain tf(u) + (1 —t)f(y) - f(tu & (1 —¢)y) > 0 for any y € Ju,v] and
€10, 1[, and hence f is convex on [u, v[. Consequently, we get the conclusion. O

Lemma 6.20. Let X be a uniquely geodesic space and f: X — ]—oco, 00| a proper (-1)-convex
function. Then for any u,v € dom(f) such that f(u) % f(v),

f(%u ® %v) < %f(u) + %f(v).

Proof. Take u,v € dom(f) such that f(u) < f(v). Put D =d(u,v)/4 > 0. Then we have

3 (sinh(3D))f(u) + (sinh D) f (v)
f(4u ®7 4 ) sinh(3D) + sinh D
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by Theorem 6.13. Hence we obtain

1.1 2(3 1 1
r(guegy)=r(5(zue v)ue3v)
sinh(2D) 3 .1 sinh D
~ sinh(2D) +sinh D f(Zu © Zv) * sinh(2D) + sinh D
< sinh(2D) sinh(3D) (W)
< (Sinh(2D) + sinh D) (sinh(3D) + smh D)/ “
(sinh(2D) + sinh(3D) + sinh D) sinh D
(sinh(2D) + sinh D) (sinh(3D) + sinh D)
_ C(3+48?) C+2+28%
_2@C+1x1+8%f00+2@C+1X1+S%fa&

f@)

f@)

where S =sinh D and C = cosh D. Therefore, we have

. ) C(3+452) C+2+28?
AR TAC 2(2C+1)(1+82)f(u)+ 22C+1)(1+8%)
_@S+NC oS- L

(2C+1)(1+8?) (=)
L2824+ 1-82-
T (2C+1)(1+8?)

- $? )
C(2C+1)(1+8?) (f(v) - f(u)) > 0.

ﬂw)

L) - rau)

It follows that

fFuegv) <5f@+5f o),

which is the desired result. O

Corollary 6.21. Let X be a uniquely geodesic space and f: X — ]—o0, ] a proper (-1)-convex
function. Suppose that
Lol o Le sl
flzue5v)=5f@+5f @),

forany u,v € dom(f). Then f|4om(r) IS a constant function.

Theorem 6.22. Let X be a uniquely geodesic space and f: X — |—oo, 0| a proper (-1)-convex
function. Suppose that there exists u,v € dom(f) such that f(u) % f(v). Then

fue (1-0v) <tf(u)+A-1)f(y)

forany t €10, 1].

Proof. From Theorem 6.19, f|dom(s) is convex. Lett € ]0,1[. If r = 1/2, then we get the
conclusion by Lemma 6.20.
Suppose that t < 1/2. Then putting m = (1/2)u @ (1/2)v and s = 2t, we have

fue(1-tv)=f(smae(1-s)v) <sf(m)+(1-s)f(v)
<%sf(u)+(1—%s)f(v)
= tf (W) +(1-1)f (v).
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Next, suppose that ¢t > 1/2. Put r =2t — 1. Then we obtain

fGue(1-tHv)y=frue(l-rm)<rf(u)+(1-r)f(m)
< (%+%r)f(u) +%(1 )
=tf(w)+(1-0)f().

Thus we get the conclusion. i

Corollary 6.23. Let X be a uniquely geodesic space and f: X — |—o0, ] a proper (-1)-convex
function. Let u,v € dom(f) such that u % v. Assume that f(x) % f(y) forany x,y € [u,v]. Then
f is strictly midpoint convex on [u, v].

Proof. Take two points x, y € [u,v] with x % y and d(u, x) < d(u,y), and let ¢t € |0, 1[. Then we
get f(x) ¥ f(y) by the assumption of f. Therefore, we get f(tx® (1 -1)y) <tf(x)+(1—1)f(y)
from Theorem 6.22, which is the desired result. i

In Corollary 6.23, if there exist x, y € [u, v] satisfying f(x) = f(y), then f is not always strictly
midpoint convex on [u, v]. For instance, a function f: R — R defined by

o (if t < 0);
F(6) = {cosht -1 (@(fr>0)

is (-1)-convex, and not strictly midpoint convex on [-1, 1].

6.2.2 Natures of (-1)-convex functions on the real line
We consider (-1)-convex functions on R. Henceforth, we use a function g, ,: R — R defined
by

sinh(y - z)
sinh(y — z) + sinh(z — x)

O e

2 tanhy;x 2

sinh(z — x)
sinh(y — z) + sinh(z — x)

8ry(2) = fx)+ f

for x,y,z € R such that x < y. By Theorem 6.13 and Corollary 6.16, a function f: R — R is
(-1)-convex if and only if for any x,y,z € R such that x < z < y, an inequality f(z) < gx,,(z)
holds. In other words, we can explain that the (-1)-convexity of f means that epi f > epi gy,
for any x < y.

The following figure represents a graph of fi: R > ¢ + cosht € R and g, defined by the
above formula, where x = -1 and y = 2. This function f; is (-1)-convex, and hence g, is
always above the graph of f; on any bounded interval |x, y[.
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x y

Define a function f,: R 5 r — 2. Then f; is not (-1)-convex, since f>(z) > gx,,(z) holds for
x=2,y=6,and 2 < z < zy, where zy ~ 3.48659558.

P

8xy

L ! R
X 20 ¥

Similarly, we can obtain that a function f: R > ¢t + at is not (-1)-convex for any a % 0.

Theorem 6.24. Every (—1)-convex function f: R — R is convex.

Proof. Let f: R — R be a (-1)-convex function. Then, since dom(f) = R, we get the conclusion
from Theorem 6.19. i

Let I c R be a closed interval and f a function from I into R. Then, f is (—1)-convex if and
only if
sinh(z - s)

f(t) < inf sinh(u - t) + sinh(z - s)

S<t<u
s<u

( sinh(u — 1) F(s)+

sinh(u — t) + sinh(z - s) f(u)) (*)
s, uel
for any ¢ € I by Theorem 6.13. It means that, for a function f to be (-1)-convex, the value f(¢)
must satisfy the inequality (x).
Let I be a bounded closed interval on R, and f a function from I into R. Define a function
g: I > Rby

sinh(t —s)
sinh(u — t) + sinh(t - s)

t) = min
g( ) S<t<u
s<u
s,uel

( sinh(u — 1) Fls) +

sinh(u — t) + sinh(z - s)

f(Lt))

for r € I. Then f is (-1)-convex if and only if f = g.
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Lemma 6.25. Define a function h: ]—c0,0] — R by
- L
h(t) = tanh >

for t € |-0,0]. Then h is (-1)-convex.
Proof. Let s, t,u € ]—o0,0] such that s < ¢t < u. Then we have
(sinh(u —t))(h(s) — h(t)) + (sinh(t — s))(h(u) — h(t))
. _ S _ LAHPY _ u_ 13
=sinh(u — t) (tanh 5 tanh 2) + sinh(¢ s)(tanh > tanh 2)
—sinh L= sinh =L

u-t, S 2 t+23inht_scosht_s- - 2 -
2 coshzcoshz 2 2 coshzcoshz

=2sinh uz— L cosh

ZsinhuT_tsinht_Ts "yt y s S
= 5 ; ” (— cosh cosh = + cosh —— cosh —)
cosh 3 cosh 5 cosh = 2 2 2 2

. u-—rt _. t—Ss . u-—sS . t—s—u
2sinh 3 sinh 5 sinh 3 sinh 5

S t u
cosh > cosh 3 cosh 5

Since t — s —u < —s < 0, we obtain
(sinh(u —t))(h(s) — h(t)) + (sinh(t — s)) (h(u) — h(t)) > 0.
It means that & is (-1)-convex from Corollary 6.15. O

Now we prove the following crucial result.

Theorem 6.26. Let f: R — R be a (-1)-convex function. Then for any v € R,

lim inf fu) > 0.

|u—v|—co |Lt - l)| -

Proof. By Theorem 6.24, we have f is continuous and convex, Thus, from Lemma 2.1, there
exists L € |—o0, 0] such that for any v € R,

lim inf fw) > L.

lu—v|—co U — V| —

Suppose L < 0 and assume that there exists v € R such that the inequality above holds as an
equation. Then

lim ACD =L or lim Lu)=
u—oo Y — U U——00 —(u—v)

holds. Without loss of generality, we may assume the first equation holds, which implies

limM:Iim(M-u_v):L.

u—oo U u—oo\uU — 0V u
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Take a real number ¢ such that 0 < ¢ < —L/7. Then there exists uy > 0 such that for any
u > up, an inequality (L — €)u < f(u) < (L + €)u holds. Thus, for any A > 0, we get

(sinh A) f (up) + (sinh 32) f (ug + 41)
sinh A + sinh 31
(sinh A)ug + (sinh 32) (1o + 4A)
' sinh A + sinh 34
(sinh 31)A
sinh A +sinh 31"

(L—¢€)(up+31) < f(up+31) <

<(L+e¢)

< (L+¢€)upg+ (4L +4¢) -

It deduces that

0<%((—L+s)(uo+3A)+(L+g)u0+(4L+4g)_ (sinh 32)A )

sinh A + sinh 31
2¢e sinh 31
—up—3L+3 4L +4e¢) -
s +3e+ (4L +4e) sinh A + sinh 31
- L+7e<0
as A — oo, which is a contradiction. Hence we get the conclusion. O

6.2.3 Numerical experiments for (—1)-convex functions on the real line

In what follows, we consider numerical experiments for (—1)-convex functions on R. First, we
generate a “maximum” (-1)-convex function on R joining two points. Let x1, x2, y1, 2 be real
numbers such that x; < x, and y; < y». Let fi: [x1, x2] — [y1, 2] be an affine function such that
f(x1) =y and f(x2) = y». Namely,

— X2 r—x

t
i) =n- ol - Rl

for ¢ € [x1, x2]. Then £ is not (—1)-convex.
Starting with f;, we attempt to create a sequence of mappings {f,} whose limit lim,_, f,
being (—1)-convex. Put I =[x}, x2] and J = [y1, y2]. Define a function f,: I — J by

. sinh(u —t) sinh(z - s)
f2(1) = r%‘i%b(sinh(u ~ 5 +simh(z =5 ' * Sinh(u = 1) + sinh(i =5) fl(“))
s, uel

for r € I. Then f, is not (-1)-convex.
The following graph describes the construction of f; from f;. epif; is given by the lower
envelope created by the family of epigraphs {epi g, | s,u €I, s < u}.
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In the same fashion, for each n € N, define a function f,,;: I — J by

sinh(z —s)
sinh(u — t) + sinh(z - s)

o sinh(u - )
fan (1) = %121%}4 sinh(z — ) + sinh(z — 5)
s,uel

fa(s) + Jn(u)

inductively. Then the following hold.
Lemma 6.27. f,(x1) =y1 and f,(x2) =y, for any n € N.
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Proof. It is obvious if n = 1. Take n € N. Then we have

sinh(x; - s)
sinh(u — x;) + sinh(x; — s)

sinh(u — x7)
sinh(u — x1) + sinh(x; — )

for1(x1) = s<x1<u( Jn(s) + fn(u)

S, ueI

o sinh(u — x1) _
B (sinh(u —p) +0 ) O] = Jnlx)-

It implies that f;,(x1) = y; for any n € N. Similarly, we get f,+1(x2) = fu(x2) =y forallneN. O
Lemma 6.28. f,,1(t) < fu(¢) foranyneNand t € I.
Proof. We get

sinh(u - t) sinh(z - s)
Fanr (1) = s<t<u(Slnh(u — ) +sinh(z =) ") * siah(u - 1) +sinh(r =) %
S, ueI
< Srglgtmax{fn(s) fu(u)} < fu(2)
s?lfgl
forallmeNandrt e I. |

Lemma 6.29. y; < f,,(¢) foranyneNand t € I.

Proof. It is obvious when n = 1. Suppose that some n € N satisfies for all r € I, y; < f,,(t). Then
we get

sinh(u - t) sinh(t — s)

t) > min |— - + —
Jus1 (1) s<i=u sinh(u — t) + sinh(t - s) n smh(u—t)+smh(t—s) =
S, ue[
for any t € I. Hence we obtain the conclusion. O

By above lemmas, we obtain that there exists a limit lim,,_,, f,(¢) for each ¢t € I. Define a
function f: I — J by foo(¢) = lim,_, f,(¢) for ¢ € I.
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X
1 X2
Black solid line: y = f1(x), dotted line: y = f>(x),
y Zfé(X), ’ y Y :ﬁi(“\")! ’ y:fll(x)! y :f18(x)» y :fOO(x)'
Then we expect the following holds.
Conjecture 6.30. Forany tel,
. 2Xp — X1 —t . r—x1
fool) = i »n s (252 - 1)
© o 2Xp — X1 — 1 s t—x1 . 2Xp — X1 — 1 . t—x1
smh(T) + smh(T) smh(T) + smh(T)
tanh £ _sz
=J’2+(J’2—yl)'m-
anhT

We can show that the following hold.
Theorem 6.31. Let x1,x2, 1,2 € R such that x) < x, and y, < y». Define g: |-, x2] — R by

I — X2
h
tan 5

gW)=y+(2-n) ———=-
tanh X2 le

for t € |—c0,x2]. Then g is (-1)-convex.

Proof. Define h: |-,0] — R by

g(t+x2) =y X2 — X1 t

h(t) = tanh =tanh =

) Y2—-n 2 2
for t € |-c0,0]. Then g is (-1)-convex if and only if & is (-1)-convex. Therefore we get the
conclusion from Lemma 6.25. O

This implies that if Conjecture 6.30 is true, then the function f, is (-1)-convex.
Next, we propose the following conjectures:
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Conjecture 6.32. Let f be a (—1)-convex function from R into itself. Then f is bounded below.

Conjecture 6.33. Let X be a CAT(-1) space and f a proper (-1)-convex function from X into
]—c0, 0]. Then for anyv € X,
. f(u)
liminf ——— > 0.
d(u,v)—co d(u, U)

Note that Conjecture 6.33 is true if X = R, which is obtained by Theorem 6.26. Now we
present the experiment that led us to the Conjecture 6.32. Specifically, we attempt to simulate
the extension of a (-1)-convex function. In preparation for the numerical experiment, we
notice the following fact. Let s,f,u € R such that s <t < u. Suppose that a function
f:[s,u] - Ris (-1)-convex on [s,t]. Then, for f to be (-1)-convex on [s, u], f must satisfy

(sinh(u —t’) +sinh(¢’ — ")) f(¢') — (sinh(u — ")) f (s”)
Ju) = sinh(t’ —s’)

for all s’,#" € R such that s < s’ < ¢’ < t. Note that the inequality above is equivalent to
f(t') < gsu(t’). Naturally, satisfying this condition is not sufficient for f to be (-1)-convex.
Let € > 0 such that |¢] < 1 and take § < 0 arbitrarily. Put A = {ke | k € NU {0}}. We will

create a function f: A — R. Define f(0) = 0 and f(¢) = §. In addition, for any k € N, define
f((k+1)¢) by

(sinh((k + 1)e — ') + sinh(¢' — s)) £ (¢') — sinh((k + 1)e — ') £ (s”)

fl(k+1)e) = max

0§s’<t’isk sinh(¢’ - s’)

s t'e

B (sinh((k +1 - n)e) +sinh((n — m)e)) f(ne) —sinh((k + 1 — n)e) f(me)

- 0<m<n<k smh((n - m)g) )
m,neNU{0}

Put Py = {(m,n) € Z> |0 <m < n <k} and

_ (sinh((k+1-mn)e) +sinh((n —m)e)) f(ne) —sinh((k +1 - n)e) f(me)
B sinh((n —m)e)

Ex(m, n)

for every k € N such that 0 < m < n < k. Then we have f((k + 1)) = maxX(,n)ep, Ex(m, n).
For instance, we get f(2¢) = max(,n)ep, E1(m, n) = E1(0,1) = 26. Similarly, we have f(3¢) =
maX{EZ(O) 1)» EZ(O) 2)) E?_(l’ 2)}; and

f(4e) = max{E3(0, 1), E3(0, 2), E3(0, 3), E3(1, 2), E3(1, 3), E3(2,3)}.

The following figure represents a definition of f(3¢).
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fle)=8 -

FBe)=E(0,2) L - N N
N

By(O, 1) oo T

F(26) =28 F---mmmmmm oo o N0 |

Similarly, the following figure represents a definition of f(4¢).

R

0 |
fle)=6f- =

f(2e) =28 ------me N

FIG T e e ST L
f(48) =E3(0, 3) 77777777777777777777777777777777777 ==

By(1,3) ———3F=====zzzzzzzzzzzzz=czzzzzszoNesgzzzoooes
Es23) e o |

B3(0,2) oo NN T
E3(1,2) |- oo N T

B3(0,1) |- oo oo T

For ease of recognizing, the figures above are drawn for the large epsilon ¢ = 0.8, and § = -0.5.
If || is significantly small, then the four points (¢, f(¢)), (2¢, f(2¢)), (3¢, f(3¢€)) and (4¢, f (4¢))
are almost aligned in a straight line.

By the definition of f, we have

sinh(u —t)
sinh(u — t) + sinh(z — s)

sinh(z — s)
sinh(u — t) + sinh(z — s)

f@) =

f(s)+

f(uw)
for any s, ¢, u € A such that s < t < u. Therefore, a function f discretely simulates the extension

of a (—1)-convex function to co when |¢| < 1.
In what follows, we assume that 0 < € < 1. Then we expect that the following hold.
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Conjecture 6.34. Forany t € A,

sinh
f)=—— Zt_s 6:tan§h£tanht££+6.
s1nh§cosh( 3 ) 2
In other words, for any 1 € N U {0},
. l
sinh{-¢e
f(le) = —— E z)-1 5= tafhﬁtanh ’52"5+5. (F)
SlnhECOSh(Tg) 2

We can easily verify that the above equation holds if / = 0, 1, 2. This Conjecture 6.34 can be
proven if the following conjecture is true:

Conjecture 6.35. For any k, m,n e NU {0} such that k >2 and 0<m<n<k,

sinh(m—_ms) cosh(ws) sinh(ge)

1 . 2 2
sinh(”_zms) cosh(”_zme) cosh(”gls)
sinh(’”lT_ne) cosh(lﬁ';—_ng) sinh(%s) sinh(k ; 1 s)
) cosh(mz_ ls) - cosh(gg) .

Proof of Conjecture 6.34 under Conjecture 6.35. We show it by induction. Suppose that (F;)
holds for1=0,1,2,3,..., k. Then we have

_ (sinh((k +1 = n)¢) +sinh((n — m)¢)) f (ne) —sinh((k +1 - n)e) f(me)
Ex(m,n) = sinh((n — m)e)

Sinh(lﬁl_—mg) Cosh(wg)

2 2 sinh((k+1—n)e)

(I cosn(Eome) T sinh (e
sinh(£50=""¢) cosh (X L=2n 0, sinh(Je)
sinh( 5" cosh( 5™ e | sinh £ cosh(” 5 Le|
sinh(X21=") cosh(£21=1 | sinh(Ze|
sinh(25"¢) cosh(25™e]  sinh £ cosh(2-Le)
* sinh (2522 cofh(n—zmg) sinh £
sinh(MT_me) cosh(wg) sinh(gg)
cosh(” 215)
sinh(££2="¢) cosh( 1 ="¢) sinh( Z'e)
cosh(”” 215)

94



for any (m, n) € Px. In particular, we also have
5 sinh( k ; 1 5) cosh(%s) sinh(%g) sinh( k ; le)

sinh(%g) cosh(%g) sinh% . cosh(k 5 1 5) ~ sinh % cosh(%s)

Er(0,k) = 5.

Therefore, if Conjecture 6.35 is true, then Ey(m, n) < Ex(0, k) for any (m, n) € P,. Hence
. k+1
smh( 5 e)

sinh % cosh(ge)

f((k+1)e):( mz)lxp Ex(m,n) = Ex(0,k) = 0,

which implies the conclusion. i

We consider the case where ¢ = 0.01 and 6 = —-0.01. Define a function f: A — R by the
same method, where A = {0.01k | k € NU {0}}. The following figure shows 201 points (0, f(0)),
(0.05, £(0.05)), (0.1, f(0.1)),...,(9.95, £(9.95)), (10, f(10)).

R
1 2 3 4 5 6 7 8 9 0
0l
-1
-2

Then the shape of the graph of f is like the graph of the hyperbolic tangent function. Put
A'={teA|t <10} ={0.01k | k € Z, 0 < k <1000}, and define h: A” — R by

5 Ctanh £S5 001 .. =001

h(r) = U
(®) nhz tanh 0.005 2

-0.01

for t € A’. We attempt to calculate max;c |f (t) — h(¢)| by a computer. Then, using a quadruple-
precision floating point calculation, we obtain max,c |f (¢) — h(f)| ~ 2.153 x 10731, This result
is consistent with Conjecture 6.34, since max;ca/|f (t) — h(t)| = 0 if that conjecture is true.

The following figure shows a graph of 4 and points (0, £(0)), (0.2, £(0.2)),..., (10, £(10)).

R
1
R
10 1 2 3 4 5 6 7 8 9 10 11
-1
-2 cosocooooeesescs h

From this result, we suggest Conjecture 6.32.
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Chapter 7

Conclusion

In this thesis, we consider the following themes:

* Natures of x-convex combinations on geodesic spaces;

* fixed point approximation theorems for tightly quasinonexpansive mappings on com-
plete CAT(x) spaces;

* resolvents of the equilibrium problem on complete CAT(x) spaces;

* resolvents of a convex function on complete CAT(x) spaces;

e natures of (—1)-convex functions.

First, we consider another type of convex combination which is named a x-convex com-
bination. We show that a x-convex combination has good properties on CAT(x) spaces. In
particular, we obtain the following results on the unit sphere on a real Hilbert space.

Theorem 7.1. Let ‘H be a real Hilbert space and S = {x € H | ||x|| = 1} a unit sphere on H with
a metric d: Sy X Sy — [0, n] defined by d(u,v) = cos™ (u,v) foru,v € Sy. Then for any x,y € Sy
such that d(x,y) < n and a € [0,1],

ax+(1-a)y

1
wx &=y = T =ayT

Theorem 7.2. Let H and Sy be the same as Theorem 7.1. Let S be a nonempty convex subspace
of Sw such that d(u,v) < n for any u,v € S. Let A(x,y,z) be a geodesic triangle on S such that

[x,y]n [y, z] N[z, x] = @. For a,B,y € 10,1, take p = (1 - a)xéleay, qg=(~1 —,B)yela,Bz, and
r=(1-vy)z 619 yx. Then the following are equivalent:

* [x,qlnly,rIn[zp] % 2;
* afy/(1-a)(1-B)(1-7)) =1
Next, we propose a notion of tightly quasinonexpansive mappings on CAT(x) spaces. We
show that every tightly quasinonexpansive mapping is quasinonexpansive, and every firmly
vicinal mapping with v is tightly quasinonexpansive. @ We prove Mann type fixed point
approximation theorems for vicinal mappings with y and tightly quasinonexpansive mappings
on a complete CAT(x) space as follows:

Theorem 7.3. Let X be an admissible complete CAT(x) space and T: X — X a vicinal mapping
with . Suppose that v satisfies (P1) or (P2):

(P1) v is nondecreasing;
(P2) sup,,en w(d(xn, Txp)) < oco.

Let {a,} C [0, 1] such that 35, (1 - a,) = . Take x, € X arbitrarily and generate {x,} C X by

96



either
Xnil = pXn ® (1 - ay)Txy
for ne N or
K
Xnsl = AnXn ® (1 — )T xy
for n e N. Let us denote (a) and (b) by the following conditions:

(a) {Tx,} is x-bounded;
(b) sup,,cn d(xn, Txp) < Dy /2.

Then the following hold:

(i) Suppose that vy satisfies (P1). Then F(T) % @ if (a) and (b) hold. Conversely, F(T) % @
only if (a) and (b) hold when T is tightly quasinonexpansive.
()" Suppose that vy satisfies (P2). Then F(T) % @ if and only if (a) holds.

Theorem 7.4. Let X be an admissible complete CAT(x) space and T a quasinonexpansive and
A-demiclosed mapping from X into itself. Suppose that {a,} and {x,} are the same as the
previous theorem. Then the following hold:

(i) If T is tightly quasinonexpansive and limsup,,_,  a, < 1, then {x,} A-converges to some
fixed point of T.
(iii) If liminf,en @y (1 — ay) > 0, then {x,} A-converges to some fixed point of T.

We also prove Halpern type fixed point approximation theorems for tightly quasinonexpan-
sive mappings on a complete CAT(x) space as follows:

Theorem 7.5. Let X be an admissible complete CAT(x) space and T: X — X a tightly quasi-
nonexpansive and A-demiclosed mapping. Let {a,} c 10,1 such that lim,. a, = 0 and
Yoy @n =00, Let u,x1 € X arbitrarily and define {x,} c X by

Xpel = Apl & (1-an)Tx,
for any n e N. In the case where x > 0, suppose that (i) or (ii) holds:
(i) sup,en d(u, Tx,) < Dy /2,
(i) X%, af = .
Then {x,} converges to Pg)u.

In Chapter 5, we study the equilibrium problem on complete CAT(x) spaces. For a CAT(x)
space X, its nonempty closed convex subset K, and a function ¢: [0, cc(Dx/2)[ —» R, we
consider a resolvent operator Ry: X — K for a bifunction f: K x K — R defined by

fo={Z€K

D (7(29) + plend(n) = plen(d(.2) = 0) )

for each x € X. We get sufficient conditions such that R to be a single-valued mapping as
follows:

Theorem 7.6. Let X be an admissible complete CAT (x) space and suppose that X has the convex
hull finite property. Let K be a nonempty closed convex subset of X and f a real function on
K? with conditions (E1)-(E4). Suppose that a function ¢: [0, c,(Dy/2)[ — [0,00[ is strictly
increasing, differentiable, and ¢’ is continuous on [0, c(Dy/2)[. In addition, if x < 0, then
suppose that ¢ has the following conditions (d,) and at least one of (c;) and (c2):
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(c1) ¢’ is nondecreasing;

(€2) @ o cy is convex on [0,00[, and ¢(c.(d(x,-))) is strictly midpoint convex on K for any
xeX;

(d1) K is bounded; otherwise, an inequality

lim inf fw2) + lim plex(d) >

d(u,z)—o d(u, Z) d—oo d
zeK

0

holds for some u € K.
Otherwise, if x > 0, then suppose that ¢ has the following conditions (c¢;) and (dz):

(c1) ¢’ is nondecreasing;
(d2) limg_,p, /2 p(ck(d)) = o0, that is, limy »1 @ (A/x) = co.
Define a set-valued mapping Ry: X — 2K by the formula (x). Then the following hold:
* Ry is well-defined as a single-valued mapping from X into K;
* Ry is firmly vicinal with ¢’ o ¢i: [0, Dy /2] — ]0, oo[;
* Ry is tightly quasinonexpansive and A-demiclosed;

* the set of all fixed points of Ry and the set of all solutions to an equilibrium problem for
f are identical.

We also consider a resolvent operator of a convex function. For a proper convex function
f: X — ]—-o0, 0], we consider a resolvent operator Sy: X — dom(f) defined by

Spx = argn)f(lin (f) + @(cc(d(x, ) (k%)
ye

for each x € X. We get the following result which gives a sufficient condition such that S; to
be single-valued.

Theorem 7.7. Let X be an admissible complete CAT (x) space and f a proper lower semicontin-
uous convex function from X into |—oo, ]. Suppose that a function ¢: [0, ¢, (Dx/2)[ — [0, co[
is nondecreasing, differentiable, and ¢’ is continuous on [0, cx(Dx/2)[. Furthermore, suppose
that (cy) or (c3) hold:

(c1) ¢’ is nondecreasing;
(c3) @(c(d(x,-))) is strictly midpoint convex for any x € X.

Suppose the following:
* If x <0, then suppose that

o f(2) . @(c(d))
giminf =0+ hm —7—>0

for some u € X.
* If x > 0, then suppose that limg_,p_j2 ¢(c«(d)) = co.

Define a set-valued mapping Sp: X — 29°m) by the formula (xx). Then the following hold.

* Sy is well-defined as a single-valued mapping from X into dom(f);

* Sy is firmly vicinal with ¢’ o cx: [0, Dy /2[ — ]0, oo[;

* Sy is tightly quasinonexpansive and A-demiclosed;

* the set of all fixed points of Sy and the set of all minimizers of f are identical.
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We also obtain the following convergence theorem of a solution to the equilibrium problem
and the convex minimization problem. In what follows, Equil f denotes a set of all solutions
to an equilibrium problem for a bifunction f.

Theorem 7.8. Let X, K, and f be the same as Theorem 7.6. Let ¢: [0,cx(Dx/2)[ — [0, 0]
be a nondecreasing and differentiable function such that ¢’ is continuous on [0, cx(Dx/2)].
Let Ry: X — K be a resolvent well defined by the formula (x). Let {a,} C [0,1[ such that
2oy (1= ay) = oo, Take x, € X arbitrarily and generate {x,} c X by either

Xnsl = ApXy ® (1 - an)fon

for ne N or
K
Xnsl = ApXp ® (1 - an)fon
for n e N. Let us denote (a) and (b) by the following conditions:

(@) {Rrx,} is x-bounded;
(b) sup,,en d(Xn, Rpxp) < Dy /2.

Suppose that Ry is vicinal with y: [0, D, /2] — ]0, o[, and define conditions (P1) and (P2) as
follows:

(P1) v is nondecreasing;
(P2) sup,,n w(d(xn, Rpxy)) < oo.

Then the following hold:

(i) Suppose that vy satisfies (P1). Then Equil f % @ if and only if (a) and (b) hold.
()" Suppose that v satisfies (P2). Then Equil f ¥ @ if and only if (a) holds.

Theorem 7.9. Let X, K, f, ¢, and Ry be the same as Theorem 7.8, and suppose that Equil f % @.
Let {a,} c [0, 1] such that limsup,_, a, <1 and ¥7 (1 - ay,) = . Take x; € X and generate
{xn} € X by either

Xpe1 = Xy ® (1 - a’n)fon

for ne N or
K
Xnil = ApXy ® (1 - “n)fon
for n e N. Then {x,} A-converges to some solution to the equilibrium problem for f.

Theorem 7.10. Let X, K, f, ¢, and Ry be the same as Theorem 7.8, and suppose that Equil f ¥ @.
Let {a,} c ]0,1[ such that lim,_,. a, =0 and 3.7, a, = . Let u,x; € X arbitrarily and define
{xp} c X by
K
Xp1 = apu © (1 —ay)Rrxy

for any n € N. In the case where x > 0, suppose that (i) or (ii) holds:
(i) sup,cnd(u, Rrxy,) < Dy /2,
(i) X%, a2 = .
Then {x,} converges to some solution to the equilibrium problem for f.

Theorem 7.11. Let X and f be the same as Theorem 7.7. Let ¢: [0, cx(Dx/2)[ — [0, be
a nondecreasing and differentiable function such that ¢’ is continuous on [0, cx(Dx/2)[. Let
Sp: X — 29omU) pe g resolvent well defined by the formula (xx). Let {a,} c [0, 1] such that
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Yo (1= ay) = co. Take x € X arbitrarily and generate {x,} C X by either
Xnil = ApXpn © (1 — ay)Srxy

for ne N or
Xn+l = QpXp é (1- an)sfxn
for n e N. Let us denote (a) and (b) by the following conditions:

(@) {Syxn} is x-bounded;
(b) sup,,en d(xn, Sfxn) < Dy /2.
Suppose that Sy is vicinal with y: [0,D./2[ — ]0, [, and define conditions (P1) and (P2) as
follows:
(P1) v is nondecreasing;
(P2) sup,,cn w(d(xn, Sfxn)) < co.
Then the following hold:
(i) Suppose that v satisfies (P1). Then argmin f % @ if and only if (a) and (b) hold.
()" Suppose that v satisfies (P2). Then argmin f % @ if and only if (a) holds.

Theorem 7.12. Let X, f, ¢, and Sy be the same as Theorem 7.11, and suppose that argmin f ¥ @.
Let {a,} c [0, 1] such that limsup,_, a, <1 and 37’ (1 — a,) = co. Take x; € X and generate
{xn} c X by either

X1 = @nn @ (1= @) Sty
for ne N or

Xnsl = @nXn & (1 - an)Srxn
for n e N. Then {x,} A-converges to some minimizer of f.

Theorem 7.13. Let X, f, ¢, and Sy be the same as Theorem 7.11, and suppose that argmin f % @.
Let {a,} c ]0,1[ such that lim,_. a, =0 and ¥, | a, = . Let u,x1 € X arbitrarily and define
{xn} Cc X by
K
Xni1 = Qpu © (1 — a,)Srxy

for any n e N. In the case where x > 0, suppose that (i) or (ii) holds:
(i) sup,,cnd(u, Spxn) < Dy /2,
(i) X5, a2 =oo.

Then {x,} converges to some minimizer of f.

In Section 6.2, we study a special convex function named a (-1)-convex function. Let X be
a uniquely metric space. We show that a (—1)-convex function f: X — R is convex on dom(f).
We also prove that a (-1)-convex function f: R — R satisfies

oo f(u)
dl(%)lilfo d(u,v) 20

for all v € R, where d(-,-) = |- — -|. By doing numerical experiments, we consider the behavior
and properties of (-1)-convex functions.
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