東邦大学審査学位論文(博士)

様々な金属イオンに対する 環状配位子の錯形成挙動

東邦大学大学院理学研究科化学専攻 堀田拓希

目次

第1章. 序章	1
1-1. 参考文献	4
第2章. 環内にアミド基,アミノ基,カルバメート基を有する14および17員環大環料	犬分子:
分離後の残渣から得られた偶然の副生成物	5
2-1. 緒言	5
2-2. 結果と考察	5
2-3. 結論	10
2-4. 実験項	11
2-4-1. 試薬および実験装置	11
2-4-2. Diethyl 2,2'-(benzylazanediyl)diacetate (1)の合成(表1,ルートA,エントリー	-1) 11
2-4-3. Diethyl 2,2'-(benzylazanediyl)diacetate (1)の合成(表1,ルートA,エントリー	-2) 11
2-4-4. Diethyl 2,2'-(benzylazanediyl)diacetate (1)の合成(表1,ルートA,エントリ	— 3) 11
2-4-5. Diethyl 2,2'-(benzylazanediyl)diacetate (1)の合成(表1,ルートA,エントリ	-4) 12
2-4-6. Diethyl 2,2'-(benzylazanediyl)diacetate (1)の合成(表1,ルートA,エントリ	-5) 12
2-4-7. Diethyl 2,2'-(benzylazanediyl)diacetate (1)の合成(表1,ルートA,エントリ	-6) 12
2-4-8. Ethyl N-benzyl-N-((2-ethoxy-2-oxoethoxy)carbonyl)glycinate (5) の合成 (表 2,	ルート
B) 12	
2-4-9. Ethyl N-benzyl-N-((2-ethoxy-2-oxoethoxy)carbonyl)glycinate (5) の合成 (表 2,	ルート
C) 12	
2-4-10. 3-Benzyl-1-oxa-3,6,9,12-tetraazacyclotetradecane-2,5,13-trione (3) の合成	13
2-4-11. 3,9-Dibenzyl-1-oxa-3,6,9,12-tetraazacyclotetradecane-2,5,13-trione (6) の合成.	13
2-4-12. 3-Benzyl-1-oxa-3,6,9,12,15-pentaazacycloheptadecane-2,5,16-trione (7) の合成	14
2-4-13. 3,9,12-Tribenzyl-1-oxa-3,6,9,12,15-pentaazacycloheptadecane-2,5,16-trione (8)	の合成
2-4-14. X 線結晶構造解析	14
2-5. 参考文献	
2-6. Supporting Information	
「第3草. [Ag'	相互作
用 54	5 1
3-1.	
3-2-1. 1a やよい 1u の $口 成 C 问 た$	
3-2-2. Ag に入りる Ia C Iu の頭形成付注	
5-2-3. [Ia-Ag」N=CCH3JFF6わよし[Ia-Ag」N=CCH3JOH 頭体のA 脉構迫	
- 3-2-4. 可昇化于咖啡九	05
5-5.	
3-4-2 14710-Tetrazzevclododecane-26-dione (2)の合成 35	
$3-4-3$ 4 10-Ris(4-fluorobenzyl)-1 4 7 10-tetraazacvclododecane-2 6-dione (3) $\mathcal{D} \cong \mathbb{R}^{+}$	
3-4-4 1.7-Bis(4-fluorobenzyl)-1.4.7 10-tetraazacyclododecane (4)の合成	
3-4-5. 1.7-Dicinnamyl-4.10-bis(4-fluorobenzyl)-1.4.7.10-tetraazacvclo-dodecane (12)∞	→成 67
3-4-6. 1,7-Bis(4-fluorobenzyl)-4,10-bis((E)-3-(4-fluorophenyl)allyl)-1,4,7,10-tetraazacycl	0

doc	decane (1b)の合成	
3-4	ŀ-7. Ag⁺添加による紫外可視分光スペクトル測定	
3-4	-8. [1a-Ag⊃N≡CCH ₃]PF ₆ の合成	
3-4	-9. [1a-Ag⊃N≡CCH ₃]OTfの合成	69
3-4	-10. X線結晶構造解析	
3-5.	参考文献	
3-6.	Supporting Information	74
第4章.	トリスおよびペンタキス (テトラアームドサイクレン) の合成とそれらの A	.g ⁺ に対す
る錯形の	成能	104
4-1		104
4-2	結合	104
4-2. 4-3	和木C/ワ奈	110
т-J. Л 2	- 大歌な 1 - 計事なとバ宇齢壮署	110
4-3	-1. 四来わよい天歌表直	110
4-3	$-2. \qquad 2 - (4 - bromophenyi) - 1, 3 - dioxane (2) \nabla_{\Box} \pi \chi$	→ ☆ 111
4-3	-3. [4-(1,3)-dioxolan-2-yi]pnenyi][2,2] -(iminoKiN)-dietnanolate-KO(2-)]boron (3)	音成.III
4-3	4^{-4} . 4'-(1,4-dioxolan-2-yl)biphenyl-4-carbaldehyde (4)の合成	111
4-3	4-Benzyl-10-[[4'-(1,4-dioxolan-2-yl])biphenyl-4-yl]methyl]-1,4,7,10-tetraazacyclo)
doc	decane-2,6-dione (6)の合成	III
4-3	4^{-6} . $4^{-((/-benzyl-5,9-dioxo-1,4,/,10-tetraazacyclododecan-1-yl)methyl)-[1,1'-bipheny$	'I]-4- 110
car	baldehyde (7)の合成	
4-3	-1. 10,10'-((((3,11-dioxo-1,4,/,10-tetraazacyclododecane-1,/-diyl)bis(methylene))	b1s([1,1'-
bip	henyl]-4',4-diyl))bis(methylene))bis(4-benzyl-1,4,/,10-tetraazacyclododecane-2,6-dione)(9)の合
成		
4-3	5-8. 1,7-bis((4'-((7-benzyl-1,4,7,10-tetraazacyclododecan-1-yl)methyl)-[1,1'-biphenyl]	-4-
yl)ı	methyl)-1.4.7.10-tetraazacyclododecane (10)(2)合成	4 4 4
4-3	dode	ecane-1,7-
4-3 diy	6-9.10,10'-((((4,10-bis(3,5-difluorobenzyl)-1,4,7,10-tetraazacyclodode10)bis(methylene))bis([1,1'-biphenyl]-4',4-diyl))bis(methylene))bis(4-benzyl-1,4)	
4-3 diy difl	(10) > 1, 1, 1, 10 (contactor) for deduction ($(10) > 1, 10$) ($(10) >$	
4-3 diy difl 4-3	(10) > 1, $(1, 10) = (10) > 1$, $(10) > 1$, $(10) > 1$, $(10) > 1$, $(10) > 1$, $(10) = (10) > 1$, $(10) > 1$, $(10) = (10) > 1$, $(10) > 1$, $(10) = (10) > 1$, $(10) > 1$, $(10) = (10) > 1$, $(10) > 1$, $(10) = (10) > 1$, $(10) > 1$, $(10) = (10) > 1$, $(10) > 1$,	113 ecane-1,7- 7-bis(3,5- 113
4-3 diy difl 4-3 tetr	(10) > 1, 1, 1, 1, 10 contained of the determined (10) > 1, 1, 1, 10 to the determined of the det	
4-3 diy difl 4-3 tetr 4-3	(10) > 1, 1, 1, 10 ((((4,10-bis(3,5-difluorobenzyl)-1,4,7,10-tetraazacyclo dode d)bis(methylene))bis([1,1'-biphenyl]-4',4-diyl))bis(methylene)) bis(4-benzyl-1, luorobenzyl)-1,4,7,10-tetraazacyclododecane) (1a) の合成 (1,1,7,10-tetrakis((4'-(1,3-dioxan-2-yl)-[1,1'-biphenyl]-4-yl)methyl)-1,4,7,10-tetraazacyclododecane (11)の合成 $(1,1,1,1) > 10$ 合成	
4-3 diy difl 4-3 tetr 4-3 (ma	$(10) \oplus 10,10^{-}((((4,10-bis(3,5-difluorobenzyl)-1,4,7,10-tetraazacyclo dode(1)bis(methylene))bis([1,1'-biphenyl]-4',4-diyl))bis(methylene)) bis(4-benzyl-1,luorobenzyl)-1,4,7,10-tetraazacyclododecane) (1a) の合成(11) \oplus 1,4,7,10-tetrakis((4'-(1,3-dioxan-2-yl)-[1,1'-biphenyl]-4-yl)methyl)-1,4,7,10-tetraazacyclododecane (11) の合成(11) \oplus 1,4,7,10-tetrakis(((1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)))ethylene))tetrakis(([1,1'-biphenyl]-4-carbaldehyde)) (12) の合成$	
4-3 diy difl 4-3 tetr 4-3 (mo 4-3	(10) > 1, $(1, 10) = 0$ ((((4, 10-bis(3,5-difluorobenzyl)-1,4,7,10-tetraazacyclo dode (1)bis(methylene))bis([1,1'-biphenyl]-4',4-diyl))bis(methylene)) bis(4-benzyl-1, (1,1) bis(0) bis(4-benzyl-1,4,7,10-tetraazacyclododecane) (1a) の合成 (1a) の合成 (1a) の合成 (1b) of comparison of comp	
4-3 diy difl 4-3 tetr 4-3 (mo 4-3 (mo 4-3	(10) > 1, $(1, 10) = ((((4, 10 - bis(3, 5 - difluorobenzyl) - 1, 4, 7, 10 - tetraazacyclo dode (10) > 1, (10) = ((((4, 10 - bis(3, 5 - difluorobenzyl) - 1, 4, 7, 10 - tetraazacyclo (10) > 1, (10) = ((((4, 10 - bis(3, 5 - difluorobenzyl) - 1, 4, 7, 10 - tetraazacyclo (10) > 1, (10) = (11) > 1, (1, 1) = (1, 1)$	
4-3 diy difl 4-3 tetr 4-3 (mo 4-3 (mo tetr	$(10) \oplus 1, 0, 0$ ((((4,10-bis(3,5-difluorobenzyl)-1,4,7,10-tetraazacyclo dode d) bis(methylene)) bis([1,1'-biphenyl]-4',4-diyl)) bis(methylene)) bis(4-benzyl-1, luorobenzyl)-1,4,7,10-tetraazacyclododecane) (1a) \mathcal{O} 合成 (10) = 1,4,7,10-tetrakis((4'-(1,3-dioxan-2-yl)-[1,1'-biphenyl]-4-yl)methyl)-1,4,7,10- cazacyclododecane (11) \mathcal{O} 合成 (11) = 4',4''',4''''',4''''''-((1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl) ethylene)) tetrakis(([1,1'-biphenyl]-4-carbaldehyde)) (12) \mathcal{O} 合成 (11) = 0,10',10'''-((((1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)) ethylene)) tetrakis([1,1'-biphenyl]-4',4-diyl)) tetrakis(methylene)) tetrakis ((4-benzyl cazacyclododecane-2,6-dione) (13) \mathcal{O} 合成	
4-3 diy difl 4-3 tetr 4-3 (ma 4-3 (ma tetr 4-3	$(10) \oplus 1, 0, 10$ ((((4,10-bis(3,5-difluorobenzyl)-1,4,7,10-tetraazacyclo dode d)bis(methylene))bis([1,1'-biphenyl]-4',4-diyl))bis(methylene)) bis(4-benzyl-1, luorobenzyl)-1,4,7,10-tetraazacyclododecane) (1a) \mathcal{O} 合成 $(10) \oplus 1, 4, 7, 10$ -tetrakis((4'-(1,3-dioxan-2-yl)-[1,1'-biphenyl]-4-yl)methyl)-1,4,7,10- raazacyclododecane (11) \mathcal{O} 合成 $(11) \oplus 4, 4''', 4'''', 4'''''''''''-((1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl))$ ethylene))tetrakis(([1,1'-biphenyl]-4-carbaldehyde)) (12) \mathcal{O} 合成 $(10) \oplus 10, 10'', 10'''-((((1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)))$ ethylene))tetrakis([1,1'-biphenyl]-4',4-diyl))tetrakis(methylene))tetrakis (4-benzyl raazacyclododecane-2,6-dione) (13) \mathcal{O} 合成 $(10) \oplus 1, 4, 7, 10$ -tetrakis((4'-((7-benzyl-1,4,7,10-tetraazacyclododecan-1-yl)methyl)-[1, hormall 4-yl) = 4, 7, 10 - tetraaxis((4'-((1-benzyl-1,4,7,10-tetraazacyclododecan-1-yl)methyl)-[1,	
4-3 diy difl 4-3 tetr 4-3 (mo 4-3 (mo tetr 4-3 bip	$(10) \oplus 1, 0, 0$ ((((4,10-bis(3,5-difluorobenzyl)-1,4,7,10-tetraazacyclo dode d)bis(methylene))bis([1,1'-biphenyl]-4',4-diyl))bis(methylene)) bis(4-benzyl-1, luorobenzyl)-1,4,7,10-tetraazacyclododecane) (1a) \mathcal{O} 合成 $(10) \oplus 1, 4, 7, 10$ -tetrakis((4'-(1,3-dioxan-2-yl)-[1,1'-biphenyl]-4-yl)methyl)-1,4,7,10- raazacyclododecane (11) \mathcal{O} 合成 $(11) \oplus 1, 4, 7, 10$ -tetrakis(((1,1'-biphenyl]-4-carbaldehyde)) (12) \mathcal{O} 合成 $(11) \oplus 1, 4, 7, 10$ -tetrakis(((1,1'-biphenyl]-4-carbaldehyde)) (12) \mathcal{O} 合成 $(12) \oplus 1, 4, 7, 10$ -tetrakis(([1,1'-biphenyl]-4-carbaldehyde)) (12) \mathcal{O} 合成 $(13) \oplus 1, 4, 7, 10$ -tetrakis(([1,1'-biphenyl]-4',4-diyl))tetrakis(methylene))tetrakis ((4-benzyl)) ethylene))tetrakis([1,1'-biphenyl]-4',4-diyl))tetrakis(methylene))tetrakis (4-benzyl) raazacyclododecane-2,6-dione) (13) \mathcal{O} 合成 $(13) \oplus 1, 4, 7, 10$ -tetrakis((4'-((7-benzyl-1,4,7,10-tetraazacyclododecan-1-yl))methyl)-[1, $(14) \oplus 1, 4, 7, 10$ tetrakis((4'-((7-benzyl-1,4,7,10-tetraazacyclododecane)) 1, 4, 7, 10-tetraazacyclododecane (14) \mathcal{O} 合成	
4-3 diy difl 4-3 tetr 4-3 (mo 4-3 (mo tetr 4-3 bip 4-3	$(10) \oplus 1, 0, 0 \oplus 10, 0 \oplus 10$	
4-3 diy difl 4-3 tetr 4-3 (ma tetr 4-3 bip 4-3 bip 4-3	hendif() 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	
4-3 diy difl 4-3 tetr 4-3 (mo 4-3 (mo tetr 4-3 bip 4-3 cyc 4-3	hendify 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	
4-3 diy difl 4-3 tetr 4-3 (mo 4-3 (mo tetr 4-3 bip 4-3 cyc 4-3 cyc 4-3	 active (1) 1, 1, 1, 10 - tetratable (1) ((((4,10-bis(3,5-difluorobenzyl)-1,4,7,10-tetraazacyclo dode active (1) ((((4,10-bis(3,5-difluorobenzyl)-1,4,7,10-tetraazacyclo) bis((4-benzyl-1,1) bis(4-benzyl-1,1) cital (1) (1,1) cital (1) (1,1) cital (1,1) <licial (1,1)<="" li=""> ci</licial>	
4-3 diy difl 4-3 tetr 4-3 (ma 4-3 (ma 4-3 bip 4-3 bip 4-3 cyc 4-3 4-3 4-3	hendy if	
4-3 diy difl 4-3 tetr 4-3 (ma 4-3 (ma tetr 4-3 bip 4-3 cyc 4-3 4-3 4-4. 4-5.	(10) 日, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10	
4-3 diy difl 4-3 tetr 4-3 (ma 4-3 (ma tetr 4-3 bip 4-3 cyc 4-3 4-3 4-3 4-3 (ma 5 章.	 10,10'-((((4,10-bis(3,5-difluorobenzyl)-1,4,7,10-tetraazacyclo dode 10,10'-((((4,10-bis(3,5-difluorobenzyl)-1,4,7,10-tetraazacyclo dodecane)) 11,1'-biphenyl]-4',4-diyl))bis((methylene)) 14,7,10-tetraazacyclododecane) 11,0) 合成 14,7,10-tetrakis((4'-(1,3-dioxan-2-yl)-[1,1'-biphenyl]-4-yl)methyl)-1,4,7,10-razacyclododecane 11, 4',4''',4''''',4'''''''-(((1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)) 12,0) 合成 10,10',10'',10'''-((((1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl))) 12,0) 合成 10,10',10'',10'''-((((1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl))) 12,0) 合成 13,1,4,7,10-tetrakis([1,1'-biphenyl]-4',4-diyl)))tetrakis(methylene))tetrakis 14,1,4,7,10-tetrakis((4'-((7-benzyl-1,4,7,10-tetraazacyclododecane-1-yl)methyl)-[1,4,7,10-tetraazacyclododecane 14,1,4,7,10-tetrakis((4'-((7-benzyl-1,4,7,10-tetraazacyclododecane-1-yl)methyl)-[1,1'-biphenyl]-4-yl)methyl)-1,4,7,10-tetra azacyclododecane 14,1,4,7,10-tetrakis((4'-((7-benzyl-1,4,0-bis(3,5-difluorobenzyl)-1,4,7,10-tetra azacyclododecane) 15, 'H NMR & FH いた滴定実験 16. UV-vis & FH いた滴定実験 54 文献 55 Supporting Information 電子密度を利用したAg⁺に対する位置選択的な配位 	
4-3 diy difl 4-3 tetr 4-3 (mo 4-3 (mo 4-3 (mo tetr 4-3 bip 4-3 cyc 4-3 4-3 4-3 cyc 4-3 4-3 5 -1. 第 5 章. 5-1.	 9. 10,10'-((((4,10-bis(3,5-difluorobenzyl)-1,4,7,10-tetraazacyclo dod d)bis(methylene))bis([1,1'-biphenyl]-4',4-diyl))bis(methylene)) bis(4-benzyl-1,4,0) bis(4-benzyl-1,4,7,10-tetrakis((4'-(1,3-dioxan-2-yl)-[1,1'-biphenyl]-4-yl)methyl)-1,4,7,10- raazacyclododecane (11)の合成 -11. 4',4''',4'''',4''''',4'''''''-(((1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl) ethylene))tetrakis(([1,1'-biphenyl]-4-carbaldehyde)) (12)の合成 -12. 10,10',10''-((((1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)) ethylene))tetrakis([1,1'-biphenyl]-4',4-diyl))tetrakis(methylene))tetrakis (4-benzyl) raazacyclododecane-2,6-dione) (13)の合成 -13. 1,4,7,10-tetrakis((4'-((7-benzyl-1,4,7,10-tetraazacyclododecane-1-yl)methyl)-[1, henyl]-4-yl)methyl)-1,4,7,10-tetraazacyclododecane (14)の合成 -14. 1,4,7,10-tetrakis((4'-((7-benzyl-4,10-bis(3,5-difluorobenzyl)-1,4,7, 1 clododecan-1-yl)methyl)-[1,1'-biphenyl]-4-yl)methyl)-1,4,7,10-tetra azacyclododecane (14) -5. ¹H NMR を用いた滴定実験 -6. UV-visを用いた滴定実験 -5. ¹H NMR を用いた滴定実験 -6. UV-visを用いた滴定実験 -7. ¹A NMR を用いた滴定実験 -7. ¹A NMR を用いた滴定実験 	
4-3 diy difl 4-3 tetr 4-3 (ma 4-3 (ma tetr 4-3 bip 4-3 cyc 4-3 4-3 4-5. 第 5 章. 5-1. 5-2.	 10,10'-((((4,10-bis(3,5-difluorobenzyl)-1,4,7,10-tetraazacyclo dode 1)bis(methylene))bis([1,1'-biphenyl]-4',4-diyl))bis(methylene)) bis(4-benzyl-1,4,0) 10. 1,4,7,10-tetrakis((4'-(1,3-dioxan-2-yl)-[1,1'-biphenyl]-4-yl)methyl)-1,4,7,10- 11. 4',4"',4"''',4"''''''''''''''''''''''''	

5-4.	実験コ	頁144
5-4	-1. 言	式薬および実験装置144
5-4	-2. 4	,4,5,5-Tetramethyl-2-(p-tolyl)-1,3,2-dioxaborolane (2)の合成
5-4	-3. 2	-(4-(Bromomethyl)phenyl)-4,4,5,5-tetramethyl-1,3, 2-dioxaborolane (3)の合成144
5-4	-4. I	Decahydro-2a,4a,6a,8a-tetraazacyclopenta[fg]acenaphthylene (5)の合成
5-4	-5. 6	a-(4-Bromobenzyl)decahydro-5H-2a,4a,6a,8a-tetraazacyclopenta[fg]acenaphthylen-6a-
iun	n bromi	de (6)の合成
5-4	-6. 1	-(4-Bromobenzyl)-1,4,7,10-tetraazacyclododecane(7)の合成
5-4	-7. 1	-(4-Bromobenzyl)-4,7,10-tris(4-methoxybenzyl)-1,4,7,10-tetraazacyclododecane (8)の合
成	1	45
5-4	-8. 1	-(4-Bromobenzyl)-4,7,10-tris(3,5-difluorobenzyl)-1,4,7,10-tetraazacyclododecane (10)
合居	式 1	46
5-4	-9. 2	a-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-6a-(4-(3,3,4,4-tetramethyl-
113	,2,5-bro	omadioxolan-1-yl)benzyl)dodecahydro-2a,4a,6a,8a-tetraazacyclopenta[fg]acenaphthylene-
2a,	6a-diiu	m bromide (11)の合成146
5-4	-10.	1-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-7-(4-(3,3,4,4-tetramethyl-
113	,2,5-bro	omadioxolan-1-yl)benzyl)-1,4,7,10-tetraazacyclododecane (12)の合成146
5-4	-11.	1,7-Bis(3,5-difluorobenzyl)-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-
10-	(4-(3,3))	,4,4-tetramethyl-113,2,5-bromadioxolan-1-yl)benzyl)-1,4,7,10-tetraazacyclododecane (13)
のí	合成	146
5-4	-12.	1,7-Bis(4-methoxybenzyl)-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-10-
(4-((3,3,4,4	-tetramethyl-113,2,5-bromadioxolan-1-yl)benzyl)-1,4,7,10-tetraazacyclododecane $(14)\mathcal{O}$
合用	戓	147
5-4	-13.	1,4,7,10-Tetraazabicyclo[8.2.2]tetradecane-11,12-dione (15)の合成 ²² 147
5-4	-14.	4,7-Bis(3,5-difluorobenzyl)-1,4,7,10-tetraazabicyclo[8.2.2]tetradecane-11,12-dione (16)
の	合成	147
5-4	-15.	1,4-Bis(3,5-difluorobenzyl)-1,4,7,10-tetraazacyclododecane (17)の合成148
5-4	-16.	1,4-Bis(3,5-difluorobenzyl)-7,10-bis(4-(4,4,5,5-tetra methyl-1,3,2-dioxaborolan-2-
yl)ł	benzyl)	-1,4,7,10-tetra azacyclododecane (18)の合成148
5-4	-17.	1,4,7-Tris(3,5-difluorobenzyl)-10-((4'-((4,7,10-tris(4-methoxybenzyl)-1,4,7,10-
tetr	aazacy	clododecan-1-yl)methyl)-[1,1'-biphenyl]-4-yl)methyl)-1,4,7,10-tetraazacyclododecane
(2 _M	IF)の合	成
5-4	-18.	10,10'-((((4,10-Bis(3,5-diffuorobenzyl)-1,4,7,10-tetraazacyclododecane-1,7-
diy	1)01s(m)	etnylene)) $bis([1,1]-bipnenyi]-4,4-diyi))bis(metnylene))bis(1,4,7-tris(4-metnoxybenzyi)-$
1,4	,/,10-te	$\frac{149}{10100} = \frac{10000}{10000} = \frac{100000}{100000} = \frac{10000000}{1000000000000000000000000000$
3-4 div	-19. Dhie(m	10,10 -((((4,10-Bis(5,5-dilluorobenzyl)-1,4,7,10-letradzacyciododecane-1,7- ethylene))bis([1,1] binbenyl] 4'4 divl))bis(methylene))bis(1,4,7, tris(4, methovybenzyl)
1 /	$7 10 t_{c}$	$\frac{1}{4}$
1, 1	,7,10-u 20	$10.10'_{(((7.10-Bis(3.5-diffuorobenzyl)-1.4.7.10-tetraazacyclododecane-1.4-$
div	-20. Dbis(m	ethylene)) bis([1 1'-binbenyl]-4' 4-divl))bis(methylene))bis(1 4 7-tris(4-methoxybenzyl)-
1.4	.7.10-te	$traazacvclododecane)$ (4_{MFM})
5-4	-21.	[3 MFM [·] (Ag) ₃](OTf) ₃ の合成
5-4	-22.	[4 _{MFM} ·(Ag) ₃](OTf) ₃ の合成
5-4	-23.	[3 FMF:(Ag)3](OTf)2C]の合成
5-4	-24.	$[3_{FMF} \cdot (Ag)_3] (BF_4)_3 \qquad 151$
5-5.	 参考 ⁻	文献
5-6.	Suppo	orting Information
	* *	-

第6章.	謝辞		
------	----	--	--

第1章. 序章

超分子化学"supramolecular chemistry"とは、分子の集合体および分子間結合の化学で ある¹. 共有結合で構成された有機分子は様々なイオンや他の分子と分子間相互作用 (静電相互作用,水素結合,ファンデルワールス力など)を介して分子集合体(超分子 "supermolecule")を形成することができる.近年では超分子化学は著しく発展しており、 ゲスト分子を完全に閉じ込める有機金属ケージ²、多孔質性でガス吸着や貯蔵などを行 う金属有機構造体(MOF)³、回転や往復など動的な機能を有する分子マシーン⁴など が報告されている.これら機能性分子の応用の幅は医薬品から有機材料まで広く、また、 高機能化・多機能化が可能であるため、今後超分子化学はさらなる期待が高まる領域で ある.

超分子化学の歴史は 50-60 年であり,化学分野全体でみると比較的浅い.超分子化学 が新たな学問領域として考えられる発端となったのは 1987 年のノーベル化学賞である. Pedersen と Lehn, Cram は,クラウンエーテル⁵,クリプテート⁶,スフェランド⁷とい った共有結合で形成されたエーテル基含有の環状分子(ホスト分子)が静電相互作用 (イオン-双極子相互作用)によって適当なイオン(ゲスト分子)を取り込むことがで きることを明らかにし,「高選択的に構造特異的な相互作用をする分子の開発と応用」 という名目でノーベル化学賞を受賞した(図 1).このような錯体形成は生命現象にも 関連がある.例えば,アミノ酸と脂肪酸からなる大環状分子のバリノマイシン(図 2) は生体内においてアルカリ金属イオンを運ぶキャリヤーとしての役割を担っている.こ のことは,超分子化学という学問領域は生体機能の解明にも一役買っている,すなわち, 超分子を用いて生体の機能をモデル化(模倣)し,その本質を解き明かすために有用で あるということを示している⁸.

図1. ホスト分子の例.

図2. バリノマイシンの構造.

ゲスト分子包接挙動は上記のようなエーテル基含有のホスト分子だけではなく,他の ヘテロ原子(窒素や硫黄など)を含むもの,つまりルイス塩基性を有していれば起こり 得る.

アミノ基含有の環状分子は 1961 年に初めて報告された. Curtis はニッケルを含むシッフ塩基錯体を合成した際に目的のものではない結晶が得られ,その構造が環状になっていることが明らかとなった.そして,それを還元させることにより環状テトラアミンを得た(図3)⁹.同年,Stetter によって窒素 4 つを含む 12 員環のサイクレンおよび 14 員環のサイクラムが合成された(図4)¹⁰. さらに木村らは環状ポリアミンがクラウンエーテルと同等もしくはそれ以上に優れた機能性分子であることを 1980 年代に報告してきた^{11,12}.実際,サイクレンの Gd³⁺錯体(プロハンス[®])は磁気共鳴画像法(MRI)の臨床造影剤として用いられ,実用化に至っている.

図3. 偶然得られた環状アミン分子.

図4. 環状アミン分子.

サイクレンを組み込んだ超分子は複数開発されており、ビルディングブロックとして 有用な配位子である¹³⁻¹⁸.中でも、サイクレンに4枚の芳香環側鎖を導入したテトラア ームドサイクレンの特性は興味深く、我々はこれまでに様々なサイクレンベースの機能 性分子を報告してきた.本論文ではサイクレンおよびサイクレン誘導体、予期せぬ副生 成物など、環状配位子に着目した錯体形成挙動についてまとめた.構成は以下の通りで ある.

- 第2章 サイクレン誘導体を合成する過程において偶然得られた,二酸化炭素が挿 入された大環状分子について述べた.副生成物の構造決定,二酸化炭素の 混入経緯,合成経路の確立,アルカリ金属イオンに対する錯形成能を検討 した.
- 第3章 これまでに報告がない新たな CH-π相互作用によってアセトニトリルを包接 するサイクレン誘導体について述べた.従来のアセトニトリル包接錯体に

おける相互作用は、例えば、アセトニトリルの CH₃と芳香環のπ電子との間 に働くものであった.本研究により、芳香環の CH とアセトニトリルのπ電 子との間の相互作用が初めて観測された.

- 第4章 サイクレンを複数個連結した配位子の合成および Ag⁺錯体形成挙動について 述べた. ESI-MS スペクトルによってこれらの配位子は Ag⁺に対して段階的 に配位することが明らかとなった.
- 第5章 芳香環側鎖の電子密度によって Ag⁺に対して位置選択的な配位を起こす分子 について述べた. 異なる電子密度の芳香環側鎖を有するサイクレンを連結 することで, Ag⁺に配位する部位コントロールし, かつ, NMR からその部 位を簡易的に決定できることを示した.

- 1-1. 参考文献
- 1. Lehn. J. -M., Pure. Appl. Chem., 1978, 50, 871-892.
- 2. Zhu, J.-L.; Zhang, D.; Ronson, T.K.; Wang, W.; Xu, L.; Yang, H.-B.; Nitschke, J.R., *Angew. Chem. Int. Ed.*, **2021**, *60*, 11789–11792.
- 3. Wu, Y.; Tang, M.; Wang, Z.; Shi L.; Xiong, Z; Chen, Z; Sessler J. L.; Huang, F, *Nat. Commun.*, **2023**, *14*, 4927.
- 4. Berna, J.; Alajarin, M.; Orenes, R. A., J. Am. Chem. Soc., 2010, 132, 10741–10747.
- 5. Pedersen, C. J., J. Am. Chem. Soc., 1967, 89, 7017-7036.
- 6. Lehn, J. -M.; Sauvage, J. -P., J. Am. Chem. Soc., 1975, 97, 6700-6707.
- Cram, D. J.; Kaneda, T.; Helgeson, R. C.; Lein G. M., J. Am. Chem. Soc., 1979, 101, 6752-6754.
- 8. 菅原正,木村榮一,村田滋,堀顕子,『超分子の化学』,裳華房,2013.
- 9. Curtis, N. F.; House, D. A., *Chem. Ind.* (London), **1961**, 42, 1708–1709.
- 10. Stetter, H.; Mayer, K. H., Chem. Ber., 1961, 94, 1410-1416.
- a) Kimura, E., *Kagaku no ryouiki*, **1981**, *35*, 25–34.; b) Idem., *Pharmacia*, **1982**, *18*, 689–692; c) Idem., *Yakugaku Zasshi*, **1982**, *102*, 701–715.
- 12. Kimura, E., YAKUGAKU ZASSHI, 2002, 122(3), 219–236.
- Liu, T.; Nonat, A.; Beyler, M.; Regueiro-Figueroa, M.; NchimiNono, K.; Jeannin, O.; Camerel, F.; Debaene, F.; Cianférani-Sanglier, S.; Tripier, R.; Platas-Iglesiasand, C.; Charbonnière, L. J.; *Angew.Chem.,Int.Ed.*, 2014, 53,7259–7263.
- 14. Tian, D.; Li, F.; Zhu, Z.; Zhang, L.; Zhu, J., Chem. Commun., 2018, 54, 8921-8924.
- 15. Rahman, A. B.; Okamoto, H.; Miyazawa, Y.; Aoki, S., European Journal of Inorganic Chemistry, 2021, 2021(13), 1213–1223.
- Ju, H.; Hiraoka, T.; Horita, H.; Lee, E.; Ikeda, M.; Kuwahara, S.; Habata, Y., *Dalton Trans.*, 2022, 51(40), 15530–15537.
- 17. Ju, H.; Horita, H.; Iwase, M.; Kaneko, N.; Yagi, K.; Ikeda, M.; Kuwahara, S.; Habata, *Inorg. Chem.*, **2021**, *60(20)*, 15159–15168.
- 18. Ju, H.; Uchiyama, M.; Horita, H.; Ikeda, M.; Kuwahara, S.; Habata, *Inorg. Chem.*, **2021**, *60* (15), 11320–11327.

第2章. 環内にアミド基, アミノ基, カルバメート基を有する14および17 員環大環状分子:分離後の残渣から得られた偶然の副生成物

2-1. 緒言

カルバメート(-N(C=O)O-)は官能基のひとつで,tert-ブトキシカルボニル(Boc-)や9-フルオレニルメチルオキシカルボニル(Fmoc-)などの第一級および第二級アミンの保護基として知られており¹,過去には抗マラリア薬として研究されたことがある². カルバミン酸塩を含む医薬品は,現在,クロルフェネシンカルバミン酸塩(筋筋膜性疼 痛障害治療薬)³,メトカルバモール⁴(骨格筋痙攣弛緩薬),ネオスチグミン臭化物⁵, ピリドスチグミン⁶(重症筋無力症治療薬)⁷などがある.カルバミン酸塩を含む大環状 化合物は、ヒト脳内メマプシン2の阻害剤⁸やC型肝炎ウイルスNS3/4Aプロテアーゼ 阻害剤⁹⁻¹⁵として作用することから,近年注目を集めている.

我々はこれまで、芳香族側鎖を持つ機能的なジ-¹⁶、トリ-¹⁷、テトラ-アームドサイク レン¹⁸⁻²²とその Ag+錯体の合成に焦点を当ててきた.これらが Ag+と錯体を形成すると き,Ag⁺がサイクレンの空孔に捕捉され,芳香族側鎖がAg⁺-πおよびCH-π相互作用によ り Ag⁺を覆い、食虫植物のような挙動を示す.従って、我々はこれらアームドサイクレ ンを「銀食い分子」²³と呼んでいる、4-ベンジル-1.4.7.10-テトラアザシクロドデカン-2,6-ジオン(スキーム1の2a)は、アームドサイクレンを合成するための重要な出発物 質である.最近我々は、ジエチル 2.2'- (ベンジルアザンジイル)ジアセテート(1)と ジエチレントリアミンとの反応により、2aに加えて、コスモセン(L)の前駆体である 24 員環の大環状化合物 2b が二量体の副生成物として生成することを報告した(スキー **ム 1**)²⁴. コスモセン(L)は8個のベンジル基を有する24員環の環状オクタアミンで あり、名前の由来は8枚の花びらを有するコスモスからきている、シリカゲルカラムク ロマトグラフィーで 2a と 2b を分離した後、褐色の残渣(約 20g) を合わせ、蒸発させ て室温で保存していた.すると、約1年後に淡黄色のサイコロ状の結晶が析出していた (約0.03g)(図S1).本章では、副生成物である3の構造、3の前駆体である5の選択 的な合成、ベンジル側鎖を持つ14員および17員大環状化合物(6と8)の合成、これ らのアルカリ金属カチオンとの錯形成能について報告する.

2-2. 結果と考察

残渣から析出した化合物を濾過してヘキサンで洗浄し,減圧下で乾燥させると空気中

スキーム 1. 2a と 2b の合成.

で安定な淡黄色の結晶が得られた.これは実験室で入手可能なほとんどの有機溶媒および水に容易に溶解しなかったが、クロロホルム、アセトニトリル、アセトンにはわずかに溶解した(表 S1).¹H および¹³C NMR, IR, FAB-MS, 元素分析, X線結晶構造解析によってこの化合物を同定した.この化合物の IR スペクトル(図 S3)を 2a の IR スペクトル(図 S2)と比較すると、2a の IR スペクトルにはなかったカルバメート由来のvC=O およびvC-O 振動がそれぞれ 1728 cm⁻¹および 1122 cm⁻¹に現れた.図 S4 と S5 に示すように、重クロロホルムおよび重アセトニトリル中における¹H NMR スペクトルは2aよりも複雑であった(図 S6).¹³C{¹H} NMR スペクトルを333 K で一晩中積分することで測定を試みたが、その難溶性のために強度が小さく、かつ、複雑な NMR スペクトルしか得られなかった(図 S7).カルバメートはN-C結合による回転異性体が存在するため.¹H および¹³C{1H} NMR は複雑化していると考えられる²⁵.ジチオスレイトール(DTT)とα-チオグリセロール(TG)の1:1混合物をマトリックスとして用いた FAB-MS 測定では、この化合物の分子量は 2a より 44 だけ大きく(図 S8)、これは二酸化炭素が 2a に挿入されていることを示している.

最終的に、X線結晶構造解析の結果によってこの化合物が14員環の大環状配位子、 3-ベンジル-1-オキサ-3.6.9.12-テトラアザシクロテトラデカン-2.5.13-トリオン(3)であ り(図1, S9, S47), 2aのメチレン炭素(3位)と3級アミン窒素(4位)の間に二酸 化炭素が挿入されている構造であることが明らかとなった(スキーム 1). 興味深いこ とに,アミド窒素まわり(C3-N2-C4, 123.55 °: C7-N4-C8, 122.72 °)とカルバメートまわ り(C9-N1-C1, 122.66°)だけでなく, sec-アミン窒素まわり(C5-N3-C6, 114.18°)も平 面構造を保っており,全体の環構造が非常に剛直であることを示唆している.カルボニ ル酸素(O1,O3,O4)とNH水素(N3,N4)は水素結合を形成し(図 S9b),分子間CHπ相互作用も見られた. Hirshfeld 表面分析により, 3 は 14 個の分子に囲まれていること が明らかになった(図 S9b および SI Hishfeld animation.mp4). したがって,3は周囲の 分子と相互作用しやすく、分離後の各混合物を含む残渣中で微量ではあるが結晶を形成 できたと予想される.難溶性では今後の解析が困難であるため、還元的アミノ化により 3の2級アミノ基にベンジル基を導入し、有機溶媒への溶解性を高めた6を調製した.6 は¹Hおよび¹³C¹H} NMR (図 S10 および S11), FAB-MS, 元素分析, X線結晶構造解 析(図 S12 および S48)により同定した. 6のX線結晶構造において,アミド,アミ ノ,およびカルバメートのN原子付近の結合角は3のものと類似していることが明らか となった (図 S9a).

図1.3のX線結晶構造.

3は環骨格中にアミド基2個、2級アミノ基1個、カルバメート基1個を含む、これに 類似した構造がないかどうかを図 S13 に示した 4 つの構造を用いて SciFinder^{n™}で文献 検索したが、一致するものは見つからなかった、次に、この化合物がどのようにして得 られたのかを検討した。まず考えたのは二酸化炭素の環内への挿入である。吉田らは二 酸化炭素がジエチルアミンおよびハロゲン化アルキル誘導体と反応し、40気圧(4.1 x 10⁶ Pa) 下で対応する N.N-ジエチルカルバミン酸アルキルエステルが生成することを報 告している²⁶. この文献を参考に炭酸カリウム存在下において窒素(スキーム2のルー ト A, 表 1 のエントリー1), 二酸化炭素 (エントリー2), アルゴン (エントリー3) の 雰囲気下(大気圧下)でベンジルアミンとブロモ酢酸エチルの反応を行い、反応生成物 を注意深く処理した. その結果, すべてのルートにおいて微量(~3 mg)の5(図S14-**\$18**)が得られた、一方、トリエチルアミンまたはピリジンの存在下においてアルゴン 雰囲気下または空気中で同様の反応を行ったが(エントリー4-6)、これらの条件では5 は得られなかった、炭酸カリウム中でベンジルアミンと二酸化炭素を反応させてカルバ メートを形成させた後、ブロモ酢酸エチルを反応させたが5は得られなかった(ルート B). これは、カルバミン酸カリウムの生成によりベンジルアミンの窒素の求核性が弱 まったためだと考えられる²⁷.2当量のベンジルアミンとブロモ酢酸エチルを窒素雰囲 気下で反応させると¹H NMR と FAB-MS(図 S19 と S20)により一置換誘導体(4)¹⁰ が確認された(ルート C). そして,反応混合物を二酸化炭素雰囲気下で炭酸カリウム と反応させ、続いてブロモ酢酸エチルを反応させることで5を収率74%で得た(ルート C). メタノール中で5とジエチレントリアミンの混合物をオイルバスで7日間還流する と3が24%の収率で得られた.これらの結果から、(i)1の合成中にCO2が挿入される こと、(ii) 二酸化炭素源は空気ではなく炭酸カリウムであること、(iii) 1の混入物質と して微量の5が残存することから、1とジエチレントリアミンとの反応過程で環化生成 物3が得られることが示唆された.

表1. ルートAにおける反応条件と1および5の収率.

Entry	Base	Atmosphere	Yield of 1	Yield of 5
1	K ₂ CO ₃	N ₂	76%	trace
2	K ₂ CO ₃	CO ₂	48%	trace
3	K ₂ CO ₃	Ar	74%	trace
4	NEt_3	Ar	81%	-
5	Pyridine	Ar	27%	_
6	NEt_3	Air	86%	-

5の IR スペクトル(図 S14)では、1752 cm⁻¹と1715 cm⁻¹に2つのvC=O 振動が観測 された.5の DFT (B3LYP/6-31G*)²⁸計算により、1759 cm⁻¹と1724 cm⁻¹はそれぞれエ ステル基とカルバメート基のvC=O振動であることが示された(図 S15).したがって、 1752 cm⁻¹と1715 cm⁻¹の振動はそれぞれエステル基とカルバメート基のvC=O 振動と割り 当てられた.末端エチル基の CH₂基と CH₃基は、5の¹H NMR スペクトルにおいて三組 の四重線と三重線を示した(図 S16).また、5の¹³C NMR では、いくつかの炭素シグ

ナルが二組のシグナルを示した(図 S17). そこで, DFT 計算(B3LYP/6-31G*)²⁸によ り回転障壁は約4kJ/molと見積もられ、N-CH2-(C=O) OCH2CH3には2つの安定なコン フォマーが存在することが示唆された(図 S21 と表 2). これは-C-C-結合の回転速度が ¹H NMR の時間スケールよりも遅いことを示している.5の¹H および¹³C NMR シグナ ルを正確に帰属するために CH 相関二次元スペクトル(HSQC(図 S22) および HMBC (図 S23 および S24))を測定したところ, 驚くことに HMBC において Hb-C5-N1-C6-O1-C7 および C5-N1-C6-O1-C7-H_cに ⁵J_{CH}の相関が観測された(図 S24). DFT 計算によ って得られた5の最適化構造ではC27-N1-C10-O4-C13 結合はW型であり、二面角C27-N1-C10-O4とN1-C10-O4-C13はそれぞれ-176.76°と-161.74°であったため5つの原子は ほぼ同一平面上にあることが考えられる(図 S25).この結果は、この分子の ${}^{5}J_{CH}$ とい う長距離相関が可能であることを支持しており、SciFinderⁿ™によると、⁵J_{CH}を示す化 合物の報告は今のところ3件しかない²⁹⁻³¹.前述のよう,3の¹H NMR スペクトルは複 雑であり、3 が剛直な構造をとっていることが示唆されたため、3 の HSQC と HMBC ス ペクトルの測定を試みたが、333 K で長時間測定しても良好な二次元 NMR スペクトル は得られなかった.5 と3の活性化パラメータを VT NMR を用いて見積もったところ (図 S26, S27), トリアームドサイクレン¹⁷やビスサイクレン誘導体の Ag⁺錯体³²の環 反転エネルギーよりも高かった.

5 とトリエチレンテトラミンを反応させると 17 員環の大環状化合物(7)が得られた (図 S28 および S29).7 も有機溶媒に不溶であったため、ベンジル基を2つ導入して8 を合成した.トリアセトキシ水素化ホウ素ナトリウム存在下、7 と 4 当量のベンズアル デヒドを反応させることで85%の収率でトリベンジル誘導体8(図 S30-S33)を得た.

6と8の錯形成能を調べるため、メタノール中における配位子とアルカリ金属チオシ アン酸塩(LiSCN, NaSCN, KSCN)の 1:1 混合物について ESI-MS を測定した(図 S34-39). すべての場合において、1:1 (=リガンド:アルカリ金属イオン) 錯体に由来 するフラグメントイオンピークがベースピークとして観測され、この条件下では 1:1 錯 体が優勢に形成されることが示唆された.次に、¹H NMR を用いた滴定実験により Li⁺, Na⁺, K⁺の安定度定数を見積もった(**表2**, **図 S40–S46**). 安定度定数の算出にはBindfit ソフトウェア³³を使用し,6と8はいずれもLi⁺選択性であることが明らかとなった.6 と8のアルカリ金属錯体においてはX線結晶構造解析に適した単結晶が得られなかった ため, DFT 計算(ωB97X-D/6-311G*)²⁸を行った. 図 2a に示すように, 6-Li⁺の最適化 構造は1つのアミン窒素原子(N5)と3つのカルボニル酸素原子(O2, O3, O4)によ って歪んだ四面体型で配位したものであった.同様に、8-Li+の最適化構造(図 2b)は 環骨格が歪むことにより 2 つのアミン N 原子 (N8 と N9) と 2 つのカルボニル O 原子 (O3とO4)がLi⁺イオンに適した四面体型で配位したものであり, N…LiとO…Liの距 離は約 2.0–2.1Å であった.これは,それぞれ 4,7-ジメチル-4,7,10,11,15,18-ヘキサアザビ シクロ[8.5.5]オクタン³⁴とアンタマニド³⁵のLi⁺錯体における N…Li と O…Li の距離に 匹敵する. DFT 計算によって最適化された構造を UCSF Chimera の Amber 力場 ff14SB を 用いた分子動力学(MD)シミュレーションにかけた³⁶. 図 S49 と参考資料の動画 (SI 6 Li MD.mp4 と SI 8 Li MD.mp4) はそれぞれ Li⁺錯体の時間依存性二乗平均平方 根偏差(RMSD)のプロットと MD 動画である.この結果,DFT で最適化された構造は

安定であり、Li⁺イオンがホスト分子から脱離することはないことが確認された.した がって、DFT 計算から 6 と 8 のドナー原子が四面体型で Li⁺に対して配位することがこ れらの大環状化合物が Li⁺選択性を示す理由であることが示唆された.

(a) (b)

図 2. 6-Li⁺ (a) と 8-Li⁺ (b) 錯体の最適化構造 (ωB97X-D/6-311G*, 極性溶媒). 水素原子は省略している.

表 2. 6 と 8 の Li⁺, Na⁺, K⁺に対する 1:1 錯体の安定度定数.()内は偏差値.

Compd.	Li⁺	Na⁺	K+
6	410 (30)	<5	<5
8	1090 (30)	20 (1)	30 (1)

 CD_2Cl_2 に溶解した配位子に、 CD_3OD に溶解した MSCN(M=Li⁺, Na⁺, K⁺)を添加して¹H NMR スペクトルを測定した。[配位子] = $1.0 \times 10^{-5} \text{ mol}/0.6 \text{ mL}, [MSCN] = 5.0 \times 10^{-4} \text{ mol}/0.5 \text{ mL}.$

2-3. 結論

分離後の油状残渣から析出した結晶は出発物質(1)の合成中に二酸化炭素が導入されたカルバミン酸エステル(5)の環化によって生じた,環状骨格にアミド基,アミノ基,カルバミン酸基を含む14員環化合物(3)であった.5をトリエチレンテトラミンと反応させると17員環の生成物(7)が得られた.これらのカルバメート含有環化生成物(3および7)は有機溶媒への溶解度が低かった.5と7にそれぞれベンジル基を導入した化合物6と8は有機溶媒への溶解性が向上した.アルカリ金属イオンに対する安定度定数は¹HNMRの滴定実験から算出した.興味深いことに,6と8はともにLi⁺選択性を示した.この新しい大環状化合物は,難治性疾患の治療薬や新たなホスト分子としての医薬材料などへの応用が期待される.

2-4. 実験項

2-4-1. 試薬および実験装置

本研究で用いた試薬はすべて標準的なグレードのものであり,再精製はしていない. 融点は Mel-Temp キャピラリー装置を用いて測定し,補正はしていない. 質量分析は FAB-MS スペクトルを JEOL 600H で, ESI-MS スペクトルを JEOL JMS-T100CS で行っ た.¹H および ¹³C{¹H} NMR スペクトルは JEOL ECP400 (400 MHz) および Bruker AVANCE II (400MHz) を用いて測定した. 元素分析は Yanako MT-6 CHN Micro Corder で行った. DFT 計算には *Spartan '20* を使用した.

2-4-2. Diethyl 2,2'-(benzylazanediyl)diacetate (1)の合成(表1,ルートA,エントリー1)

50 mL 二口丸底フラスコにモレキュラーシーブで脱水した DMF(15 mL)を入れ,窒素バブリングを 20 分間行った後,ベンジルアミン(0.54 g, 5.0 mmol),炭酸カリウム(2.49 g, 18.0 mmol) とブロモ酢酸エチル(1.70 mL, 15.4 mmol)を加え,窒素雰囲気下, 室温で1日撹拌した.炭酸カリウムをセライトろ過で取り除いた後,水(150 mL)を加えて酢酸エチル:ヘキサン=1:4の混合溶媒で抽出し,有機層を水(20 mL)で洗浄した. 有機層に無水硫酸ナトリウムを加えて脱水乾燥し,ろ過をした.溶媒を減圧留去した後,シリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:5)で精製し, 無色油状の1を76%の収率で得た.その後,残留油状物質をFAB-MSで確認したところ 5の存在を確認したが,単離には至らなかった.

2-4-3. Diethyl 2,2'-(benzylazanediyl)diacetate (1)の合成 (表 1, ルートA, エントリー2)

50 mL 二口丸底フラスコにモレキュラーシーブで脱水した DMF(15 mL)を入れ,二酸化炭素バブリングを20分間行った後、ベンジルアミン(0.55 g, 5.1 mmol)、炭酸カリウム(2.50 g, 18.1 mmol)とブロモ酢酸エチル(1.70 mL, 15.4 mmol)を加え、二酸化炭素雰囲気下,室温で1日撹拌した.炭酸カリウムをセライトろ過で取り除いた後、水(150 mL)を加えて酢酸エチル:ヘキサン=1:4の混合溶媒で抽出し、有機層を水(20 mL)で洗浄した.有機層に無水硫酸ナトリウムを加えて脱水乾燥し、ろ過をした.溶媒を減圧留去した後、シリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:5)で精製し、無色油状の1を46%の収率で得た.その後、残留油状物質をシリカゲルカラムクロマトグラフィー(クロロホルム:ヘキサン:tert-ブチルメチルエーテル=1:2:0.2)で再度精製し、淡黄色油状の5を少量得た(同定は下記の通り).

2-4-4. Diethyl 2,2'-(benzylazanediyl)diacetate (1)の合成 (表1, ルートA, エントリー3)

50 mL ニロナスフラスコにモレキュラーシーブを用いて脱水した DMF (15 mL) を入 れ、20 分間アルゴンバブリングを行った後、ベンジルアミン (0.55 g, 5.1 mmol)、炭酸 カリウム (2.50 g, 18.1 mmol) とブロモ酢酸エチル (1.70 mL, 15.4 mmol) を加え、アル ゴン雰囲気下、室温で1日撹拌した.炭酸カリウムをろ過で取り除いた後、水 (150 mL) を加えて酢酸エチル: ヘキサン=1:4の混合溶媒で抽出し、有機層を水 (20 mL) で洗 浄した. 有機層に無水硫酸ナトリウムを加えて脱水乾燥し、ろ過をした. 溶媒を減圧留 去した後、シリカゲルカラムクロマトグラフィー (酢酸エチル: ヘキサン=1:5) で精 製し、淡黄色油状の1を74%の収率で得た. 2-4-5. Diethyl 2,2'-(benzylazanediyl)diacetate (1) の合成 (表 1, ルートA, エントリー4)

50 mL ニロナスフラスコにモレキュラーシーブを用いて脱水した DMF(15 mL)を入 れ,20 分間アルゴンバブリングを行った後、ベンジルアミン(0.55 g, 5.1 mmol)、トリ エチルアミン(0.82 g, 18.0 mmol)とブロモ酢酸エチル(1.70 mL, 15.4 mmol)を加え、 アルゴン雰囲気下、室温で1日撹拌した.水(100 mL)を加えて酢酸エチル:ヘキサン =1:4 の混合溶媒で抽出し、有機層を水(20 mL)で洗浄した.有機層に無水硫酸ナト リウムを加えて脱水乾燥し、ろ過をした.溶媒を減圧留去した後、シリカゲルカラムク ロマトグラフィー(酢酸エチル:ヘキサン=1:5)で精製し、淡黄色油状の1を81%の 収率で得た.

2-4-6. Diethyl 2,2'-(benzylazanediyl)diacetate (1) の合成 (表1, ルートA, エントリー5)

50 mL ニロナスフラスコにモレキュラーシーブを用いて脱水した DMF(15 mL)を入 れ、20 分間アルゴンバブリングを行った後、ベンジルアミン(0.54 g, 5.1 mmol)、ピリ ジン(1.45 mL, 18.0 mmol)とブロモ酢酸エチル(1.70 mL, 15.4 mmol)を加え、アルゴ ン雰囲気下、室温で1日撹拌した.水(100 mL)を加えて酢酸エチル:ヘキサン=1:4 の混合溶媒で抽出し、有機層を水(30 mL)で洗浄した.有機層に無水硫酸ナトリウム を加えて脱水乾燥し、ろ過をした.溶媒を減圧留去した後、シリカゲルカラムクロマト グラフィー(酢酸エチル:ヘキサン=1:5)で精製し、淡黄色油状の1を27%の収率で 得た.

2-4-7. Diethyl 2,2'-(benzylazanediyl)diacetate (1) の合成 (表 1, ルートA, エントリー6)

50 mL ニロナスフラスコにモレキュラーシーブを用いて脱水した DMF(15 mL)を入 れ、ベンジルアミン(0.55 g, 5.1 mmol)、トリエチルアミン(1.83 g, 18.1 mmol)とブロ モ酢酸エチル(1.70 mL, 15.4 mmol)を加え、空気中、室温で1日撹拌した.水(100 mL) を加えて酢酸エチル:ヘキサン=1:4の混合溶媒で抽出し、有機層を水(30 mL)で洗 浄した. 有機層に無水硫酸ナトリウムを加えて脱水乾燥し、ろ過をした. 溶媒を減圧留 去した後、シリカゲルカラムクロマトグラフィー(酢酸エチル:ヘキサン=1:5)で精 製し、淡黄色油状の1を86%の収率で得た.

2-4-8. Ethyl N-benzyl-N-((2-ethoxy-2-oxoethoxy)carbonyl)glycinate (5) の合成(表2,ルートB)

DMF (150 mL), ベンジルアミン (5.51 g, 51.4 mmol), 炭酸カリウム (25.5 g, 184 mmol)の混合物を二酸化炭素で 30 分間バブリングした後, 二酸化炭素雰囲気下, 室温 で 24 時間撹拌した. ブロモ酢酸エチル (25.1 g, 150 mmol) を加えてさらに 1 日撹拌した. TLC で 5 のスポットが確認できなかったため 100 ℃ で 48 時間撹拌したが, 目的物 は得られなかった.

2-4-9. Ethyl N-benzyl-N-((2-ethoxy-2-oxoethoxy)carbonyl)glycinate (5) の合成(表2,ルートC)

50 mL 二口丸底フラスコに,クロロホルム (10.0 mL),ベンジルアミン (1.08 g, 10.3 mmol) を加え,撹拌しながらブロモ酢酸エチル (0.56 mL, 5.0 mmol) をゆっくり滴下し, 窒素雰囲気下,室温で2時間撹拌した.析出した固体を吸引ろ過で取り除いた後,溶媒

を減圧留去した.水(20 mL)を加えてジエチルエーテルで抽出し、有機層に無水硫酸 ナトリウムを加えて脱水乾燥し、ろ過をした.溶媒を減圧留去して化合物4を淡黄色油 状として得た. 50 mL 二口丸底フラスコに, モレキュラーシーブで脱水した DMF (15 mL), 化合物 4 と炭酸カリウム (2.02 g, 14.6 mmol) を入れ, 二酸化炭素バブリングを 20分間行った後、二酸化炭素雰囲気下、室温で1日撹拌した.ブロモ酢酸エチル(0.56 mL, 5.0 mmol)をゆっくり滴下し、さらに1日撹拌した. 炭酸カリウムをセライトろ過 で取り除いた後、ろ液に水(200 mL)を加えて酢酸エチル:ヘキサン=1:4 の混合溶 媒で抽出し、有機層を水(100 mL)で洗浄した. 有機層に無水硫酸ナトリウムを加え て脱水乾燥し、ろ過をした.溶媒を減圧留去した後、シリカゲルカラムクロマトグラフ ィー(酢酸エチル:ヘキサン = 1:5) で精製し, 淡黄色油状の5を74%の収率で得た. IR (neat) 2983, 2940, 1752, 1715, 1198 cm⁻¹; ¹H NMR (400 MHz, CDCl₃ 302 K) (1:1 rotamer ratio, * denotes a rotamer resonances) δ 7.33–7.24 (m, 5H), 4.68 (d, J=16.4 Hz, 2H, NCH₂C=O), 4.63 (d, J = 12.8 Hz, 2H, PhCH₂N), 4.25 (q, J = 7.2 Hz, 2H, OCH₂CH₃), 4.23* (q, J = 7.2 Hz, 2H, OCH₂CH₃), 4.16 (q, J = 7.3 Hz, 2H, OCH₂CH₃), 3.94₁* (s, 2H, COOCH₂CO), 3.93₆ (s, 2H, $COOCH_2CO$), 1.30 (t, J = 7.0 Hz, 3H, OCH_2CH_3), 1.29* (t, J = 7.0 Hz, 3H, OCH_2CH_3), 1.23 (t, J = 7.2 Hz, 3H, OCH₂CH₃); ¹³C{¹H} NMR (100 MHz, CDCl₃, 298 K) (*denotes a rotamer resonances) δ 169.29 (168.26*: EtOC=O), 168.33 (168.28*: EtOC=O), 155.8 (155.7*: NC=O), 136.4₃ (136.4₀*: NCH₂-C), 128.7₁ (128.6₉*), 128.1, 127.9, 127.7, 62.0₅ (61.9₉*: NCH₂C=O), 61.3₁ (61.2₈*: OCH₂CH₃), 61.2₃ (61.2₁*: OCH₂CH₃), 51.6 (51.2*: PhCH₂N), 47.8 (47.5*: OCH₂C=O), 14.1; FAB-MS (matrix: DTT:TG = 1:1) m/z 324 ([M+H]⁺, 32%); Anal. Calcd. for C₁₆H₂₁NO₆ + 0.05CHCl3: C, 58.54; H, 6.44; N, 4.25. Found: C, 58.50; H, 6.26; N, 4.24.

2-4-10. 3-Benzyl-1-oxa-3,6,9,12-tetraazacyclotetradecane-2,5,13-trione (3) の合成

500 mL 三ツ口丸底フラスコにメタノール (300 mL) を入れ, 窒素バブリングを 30 分間行った後, 化合物 5 (0.86 g, 2.6 mmol) とジエチレントリアミン (0.40 g, 3.9 mmol) を加え, 窒素雰囲気下で7日間還流を行った. 室温まで冷却後, 溶媒を減圧留去した. メタノールから再結晶をし, 無色結晶の 3 を 24%の収率で得た. M.p. 185.8–187.0 °C; IR (KBr disc) 3322, 3271, 3085, 2940, 1728, 1645, 1122 cm⁻¹; ¹H NMR (400 MHz, CDCl₃, 298 K) δ 7.43–7.29 (m, 5H), 4.70 (s, 1H), 4.66 (s, 1H), 4.65 (s, 1H), 4.62 (s, 1H), 4.25 (q, J = 7.1 Hz, 1H), 4.7(q, J = 7.1 Hz, 2H), 3.941 (s, 1H), 3.937 (s, 1H), 1.30 (t, J = 7.1 Hz, 1.5H), 1.29 (t, J = 7.1 Hz, 1.5H), 1.25 (t, J = 7.1 Hz, 3H); ¹³C [¹H] NMR (100 MHz, CDCl₃, 333 K) (*denotes a rotamer resonances) δ 168.9 (EtOC=O), 167.5 (EtOC=O), 155.5 (NC=O), 136.6 (NCH₂-C), 129.0, 128.5, 128.3, 65.3 (64.6*: NCH₂C=O), 53.2 (50.1*: PhCH₂N), 47.0 (45.4*: OCH₂C=O), 38.2 (38.1*: CH₂NHCH₂); FAB-MS (matrix: DTT:TG = 1:1) *m/z* 335 ([M+H]⁺, 100%); Anal. Calcd. for C₁₆H₂₂N₄O₄: C, 57.47; H, 6.63; N, 16.76. Found: C,57.25; H, 6.45; N, 16.68.

2-4-11. 3,9-Dibenzyl-1-oxa-3,6,9,12-tetraazacyclotetradecane-2,5,13-trione (6) の合成

50 mL 二口丸底フラスコに 1,2-ジクロロエタン (10 mL), 化合物 3 (0.34 g, 1.0 mmol), ベンズアルデヒド (0.23 g, 2.1 mmol), トリアセトキシ水素化ホウ素ナトリウム (0.42 g, 2.0 mmol) を加え,窒素雰囲気下,室温で 1 日撹拌した.飽和炭酸水素ナトリウム水溶 液 (5 mL) を加えて塩基性にした後,ジクロロメタンで抽出した. 有機層に無水硫酸 ナトリウムを加えて脱水乾燥し,ろ過をした.溶媒を減圧留去した後,シリカゲルカラ ムクロマトグラフィー (クロロホルム→クロロホルム:メタノール=20:1) で精製し, 自色固体の 6 を 98%の収率で得た. M.p. 55.0–56.3 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.44–7.14 (m, 10H), 6.78 (s, 1H), 5.67 (s, 1H), 4.79 (s, 2H), 4.54 (s, 2H), 3.80 (s, 2H), 3.55 (s, 2H), 3.45–3.19 (m, 4H), 2.76–2.46 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 166.7, 154.2, 137.7, 135.2, 128.1, 127.9, 127.5, 127.3, 126.7, 63.1, 56.5, 51.8, 50.6, 49.4, 48.9, 35.6, 35.1; FAB-MS (matrix: DTT:TG = 1:1) *m/z* 424 ([M]⁺, 100%); Anal. Calcd. for C₂₃H₂₈N₄O₄ + 0.25 CHCl₃: C, 61.46; H, 6.27; N, 12.33. Found: C, 61.23; H, 6.26; N, 12.18.

2-4-12. 3-Benzyl-1-oxa-3,6,9,12,15-pentaazacycloheptadecane-2,5,16-trione (7) の合成

500 mL 丸底フラスコに化合物 5(9.73 g, 30 mmol), メタノール(300 mL), トリエチ レンテトラミン(8.78 g, 60 mmol)を入れ, 窒素雰囲気下, 40 °C で 2 日間撹拌した. 溶 媒を減圧留去した後メタノールから再結晶を行い, 無色針状結晶の 7 を 18%の収率で得 た. M.p. 195.0–195.5 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.26 (m, 5H), 4.67 (s, 2H), 4.56 (s, 2H), 3.93 (s, 2H), 3.39 (q, J = 4.8 Hz, 2H), 3.32 (q, J = 5.0 Hz, 2H), 2.80–2.66 (m, 8H); ¹³C NMR (100 MHz, CDCl₃, 333 K) δ 168.9, 167.4, 155.2, 137.1, 128.4, 127.6, 127.3, 63.5, 51.3, 48.9₁, 48.8₉, 48.6, 48.1, 47.7, 39.0, 38.9; FAB-MS (matrix: DTT:TG = 1:1) m/z 378 ([M+H]⁺, 30%); Anal. Calcd. for C₁₈H₂₇N₅O₄ + 0.1 MeOH: C, 57.11; H, 7.26; N, 18.40. Found: C, 56.85; H, 7.04; N, 18.31.

2-4-13. 3,9,12-Tribenzyl-1-oxa-3,6,9,12,15-pentaazacycloheptadecane-2,5,16-trione (8) の合成

50 mL 二口丸底フラスコに 1,2-ジクロロエタン(10 mL), 化合物 7(0.19 g, 0.50 mmol), ベンズアルデヒド(0.42 g, 4.0 mmol), トリアセトキシ水素化ホウ素ナトリウム(0.85 g, 4.0 mmol)を入れ,窒素雰囲気下,室温で 2 日撹拌した.飽和炭酸水素ナトリウム水溶 液(10 mL)を加えて塩基性にした後,ジクロロメタンで抽出した. 有機層に無水硫酸 ナトリウムを加えて脱水乾燥し,ろ過をした.溶媒を減圧留去した後,シリカゲルカラ ムクロマトグラフィー(ジクロロメタン→クロロホルム:メタノール=10:1→5:1) で精製し, 白色固体の 8 を 85%の収率で得た. M.p. 59.0–60.1 °C; ¹H NMR (400 MHz, CDCl₃) *δ* 7.45–7.14 (m, 15H), 6.86 (s, 1H), 6.06 (s, 1H), 4.59 (s, 2H), 4.50 (s, 2H), 3.79 (s, 2H), 3.51 (s, 2H), 3.46 (s, 2H), 3.39–3.21 (m, 4H), 2.62 (s, 4H), 2.59–2.40 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) *δ* 168.6, 167.5, 155.4, 139.0, 138.8, 136.4, 129.2, 128.9, 128.8, 128.6, 128.4, 128.1, 127.4, 127.3, 64.8, 59.5, 59.0, 53.5, 52.8, 52.5, 52.3, 50.2, 37.5, 36.9; FAB-MS (matrix: DTT:TG = 1:1) *m/z* 557 ([M]⁺, 100%); Anal. Calcd. for C₃₂H₃₉N₅O₄ + 0.2 CHCl₃: C, 66.50; H, 6.79; N, 12.04. Found: C,66.66; H, 6.62; N, 11.97.

2-4-14. X線結晶構造解析

化合物 3 においては、分離した混合物を 1 年間静置して沈殿させた単結晶を用いて X 線結晶構造解析を行った. 化合物 6 と NaSCN を CD_2Cl_2 と CD_3OD の混合溶媒に溶解さ せて ¹H NMR スペクトルを測定した溶液をバイアル瓶に移して静置したところ、 6/NaSCN 錯体ではなく化合物 6 の単結晶が得られた.

X線データは回転陽極によって生成されたグラファイト単色 Mo K α 線($\lambda = 0.71073$ Å)を備えた Bruker SMART APEX II ULTRA 回折計で収集した. 化合物のセルパラメー ターはスポットの最小二乗法による精密化から得られた. すべての場合において非水素 原子は異方的に精密化され,水素原子は理想化された位置に配置され,それぞれの親原 子とともに等方的に等速的に精密化された. 関連する結晶構造のデータ収集と精密化デ ータを**表 S2** と **S3** にまとめた. CCDC 2158595 (3)および 2216898 (6)には本論文の補足 結晶学的データが含まれている. これらのデータは The Cambridge Crystallographic Data Centre から www.ccdc.cam.ac.uk/ data_request/cif.を介して無料で入手できる.

- 2-5. 参考文献
- 1. Wuts, P. G. M. Protecting Groups in Organic Synthesis; John Wiley & Sons, Inc.
- 2. Leffler, M. T.; Matson, E. J. Carbamate Antimalarials. J. Am. Chem. Soc. 1948, 70, 3439-3442.
- 3. Karns, R. M.; Winer, J. H. Chlorphenesin carbamate in the treatment of muscle spasm and musculoskeletal disorders. *Pac. Med. Surg.* **1967**, *75*, 199-200.
- 4. Yale, H. L.; Pribyl, E. J.; Braker, W.; Bergeim, F. H.; Lott, W. A. Muscle-relaxing Compounds Similar to 3-(o-Toloxy)-1,2-propanediol.1 I. Aromatic Ethers of Polyhydroxy Alcohols and Related Compounds. *J. Am. Chem. Soc.* **1950**, *72*, 3710-3716.
- 5. Trevisani, G. T.; Hyman, N. H.; Church, J. M. Neostigmine: Safe and effective treatment for acute colonic pseudo-obstruction. *Diseases of the Colon & Rectum* **2000**, *43*, 5.
- 6. Baker, R.; Szabova, A.; Goldschneider, K. 45 Chronic Pain. In A Practice of Anesthesia for Infants and Children (Sixth Edition), Coté, C. J., Lerman, J., Anderson, B. J. Eds.; Elsevier, **2019**; pp 1063-1075.e1062.
- 7. Rodríguez Cruz, P. M.; Palace, J.; Beeson, D. The Neuromuscular Junction and Wide Heterogeneity of Congenital Myasthenic Syndromes. *Int. J. Mol. Sci.* 2018, *19*, 6.
- Ghosh, A. K.; Devasamudram, T.; Hong, L.; DeZutter, C.; Xu, X.; Weerasena, V.; Koelsch, G.; Bilcer, G.; Tang, J. Structure-based design of cycloamide-urethane-derived novel inhibitors of human brain memapsin 2 (β-secretase). *Bioorg. Med. Chem. Lett.* 2005, *15*, 15-20.
- Avolio, S.; Robertson, K.; Hernando, J. I. M.; Di Muzio, J.; Summa, V. Inhibitors of hepatitis C virus NS3/4A: α-Ketoamide based macrocyclic inhibitors. *Bioorg. Med. Chem. Lett.* 2009, 19, 2295-2298.
- Harper, S.; Ferrara, M.; Crescenzi, B.; Pompei, M.; Palumbi, M. C.; Di Muzio, J. M.; Donghi, M.; Fiore, F.; Koch, U.; Liverton, N. J.; Pesci, S.; Petrocchi, A.; Rowley, M.; Summa, V.; Gardelli, C. Inhibitors of the Hepatitis C Virus NS3 Protease with Basic Amine Functionality at the P3-Amino Acid N-Terminus: Discovery and Optimization of a New Series of P2-P4 Macrocycles. *J. Med. Chem.* 2009, *52*, 4820-4837.
- Pompei, M.; Di Francesco, M. E.; Pesci, S.; Koch, U.; Vignetti, S. E.; Veneziano, M.; Pace, P.; Summa, V. Novel P2-P4 macrocyclic inhibitors of HCV NS3/4A protease by P3 succinamide fragment depeptidization strategy. *Bioorg. Med. Chem. Lett.* 2010, 20, 168-174.
- 12. Kuethe, J.; Zhong, Y.-L.; Yasuda, N.; Beutner, G.; Linn, K.; Kim, M.; Marcune, B.; Dreher, S. D.; Humphrey, G.; Pei, T. Development of a Practical, Asymmetric Synthesis of the Hepatitis C Virus Protease Inhibitor MK-5172. *Org. Lett.* **2013**, *15*, 4174-4177.
- Soumana, D. I.; Kurt Yilmaz, N.; Prachanronarong, K. L.; Aydin, C.; Ali, A.; Schiffer, C. A. Structural and Thermodynamic Effects of Macrocyclization in HCV NS3/4A Inhibitor MK-5172. ACS Chem. Biol. 2016, 11, 900-909.
- 14. Guo, Z.; Black, S.; Hu, Y.; McMonagle, P.; Ingravallo, P.; Chase, R.; Curry, S.; Asante-Appiah, E. Unraveling the structural basis of grazoprevir potency against clinically relevant

substitutions in hepatitis C virus NS3/4A protease from genotype 1a. J. Biol. Chem. 2017, 292, 6202-6212.

- Timm, J.; Kosovrasti, K.; Henes, M.; Leidner, F.; Hou, S.; Ali, A.; Kurt Yilmaz, N.; Schiffer, C. A. Molecular and Structural Mechanism of Pan-Genotypic HCV NS3/4A Protease Inhibition by Glecaprevir. ACS Chem. Biol. 2020, 15, 342-352.
- 16. Habata, Y.; Taniguchi, A.; Ikeda, M.; Hiraoka, T.; Matsuyama, N.; Otsuka, S.; Kuwahara, S. Argentivorous Molecules Bearing Two Aromatic Side-Arms: Ag+- π and CH- π Interactions in the Solid State and in Solution. *Inorg. Chem.* **2013**, *52*, 2542-2549.
- 17. Habata, Y.; Kizaki, J.; Hosoi, Y.; Ikeda, M.; Kuwahara, S. Argentivorous molecules bearing three aromatic side arms: synthesis of triple-armed cyclens and their complexing property towards Ag⁺. *Dalton Trans.* **2015**, *44*, 1170-1177.
- 18. Habata, Y.; Ikeda, M.; Yamada, S.; Takahashi, H.; Ueno, S.; Suzuki, T.; Kuwahara, S. Argentivorous Molecules: Structural Evidence for $Ag^+-\pi$ Interactions in Solution. *Org. Lett.* **2012**, *14*, 4576-4579.
- 19. Habata, Y.; Okeda, Y.; Ikeda, M.; Kuwahara, S. The water-soluble argentivorous molecule: $Ag^+-\pi$ interactions in water. *Org. Biomol. Chem.* **2013**, *11*, 4265-4270.
- 20. Habata, Y.; Oyama, Y.; Ikeda, M.; Kuwahara, S. Argentivorous molecules with two kinds of aromatic side-arms: intramolecular competition between side-arms. *Dalton Trans.* **2013**, *42*, 8212-8217.
- Lee, E.; Hosoi, Y.; Temma, H.; Ju, H.; Ikeda, M.; Kuwahara, S.; Habata, Y. Silver ioninduced chiral enhancement by argentivorous molecules. *Chem. Comm.* 2020, 56, 3373-3376.
- 22. Lee, E.; Ukekawa, T.; Ikeda, M.; Ju, H.; Kuwahara, S.; Habata, Y. Chiral Argentivorous Molecules Having Biphenyl Groups as Side-arms: Drastic Enhancements in CD Intensities. *Chem. Lett.* **2020**, *49*, 1178-1180.
- 23. Schmidbaur, H.; Schier, A. Argentophilic Interactions. *Angew. Chem., Int. Ed.* **2015**, *54*, 746-784. "Argentivorous" is different from "argentophilic". "Argentophilic" is used in the sense of Ag⁺...Ag⁺ interactions.
- 24. Ju, H.; Iwase, M.; Sako, H.; Horita, H.; Koike, S.; Lee, E.; Ikeda, M.; Kuwahara, S.; Habata, Y. Cosmosen: Octa-Armed 24-Membered Cyclic Octaamine Synthesized from a Byproduct in the Preparation of 4-Benzyl-2,6-dioxocyclen. *J. Org. Chem.* **2021**, *86*, 9847-9853.
- 25. Ugarriza, I.; Uria, U.; Carrillo, L.; Vicario, J. L.; Reyes, E. Base-Promoted C→N Acyl Rearrangement: An Unconventional Approach to α-Amino Acid Derivatives. *Chem. A Eur. J.* **2014**, *20*, 11650-11654
- 26. Yoshida, Y.; Ishii, S.; Yamashita, T. A Direct Synthesis of Carbamate Ester From Carbon Dioxide, Amine and Alkyl Halide. *Chem. Lett.* **1984**, *13*, 1571-1572.
- 27. Aresta, M.; Dibenedetto, A.; Quaranta, E. Reaction of alkali-metal tetraphenylborates with amines in the presence of CO₂: a new easy way to aliphatic and aromatic alkali-metal carbamates. *J. Chem. Soc., Dalton Trans.* **1995**, 3359-3363. Characterizations of PhNHCOOLi and Ph NHCOONa were reported in the reference.

- 28. Spartan 20, ver. 1.0.0; Wavefunction Inc. Irvine, CA.
- 29. Parr, W. J. E. Nuclear magnetic resonance and molecular orbital study of phenylphosphine and some dihalogeno derivatives. *J. Chem. Soc., Faraday Trans.* 2 1978, 74 (5), 933.
- 30. Koole, N. J.; de Bie, M. J. A.; Hansen, P. E. Carbon–proton coupling constants in allenes, ethenes and butatrienes. Application to conformational analysis of allenyl and vinyl alkyl ethers and thioethers. *Organic Magnetic Resonance* **1984**, *22* (3), 146-163.
- Araya-Maturana, R.; Gavin-Sazatornil, J. A.; Heredia-Moya, J.; Pessoa-Mahana, H.; Weiss-Lopez, B. Long-range correlations (njC,H n > 3) in the HMBC spectra of 3-(4-oxo-4H-chromen-3-YL)-acrylic acid ethyl esters. J. Braz. Chem. Soc. 2005, 16 (3B), 657-661.
- Ju, H.; Horita, H.; Iwase, M.; Kaneko, N.; Yagi, K.; Ikeda, M.; Kuwahara, S.; Habata, Y. Bis-Argentivorous Molecules Bridged by Phenyl and 4,4'-Biphenyl Groups: Structural and Dynamic Behavior of Silver Complexes. *Inorg. Chem.* 2021, 60, 15190-15168.
- 33. Bindfit software. http://supramolecular.org. Thordarson, P. Chem. Soc. Rev. 2011, 40, 1305–1323.
- 34. Vlassa, M.; Huan, R.; Jackson, J. E.; Dye, J. L. Tetrahedron 2002, 58, 5849-5854.
- 35. Karle, I, L. J. Am. Chem. Soc. 1974, 96, 4000-4006.
- Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. J. Comput. Chem. 2004, 25, 1605–1612.
- 37. Bruker AXS Inc.: Madison, Wisconsin, USA, 2008.
- Sheldrick, G., Crystal structure refinement with SHELXL. Acta Crystallogr. C 2015, 71, 3-8.

2-6. Supporting Information

(A)

Figure S1. Crystals precipitated from the residual oil after separating 2a and 2b (A) and cubic-shaped crystals after filtration (B).

Table SI. Solubility tests for several solvents of 3

Solvents	RT	40 °C
MeOH	DS.	DS.
EtOH	DS.	DS.
1-PrOH	DS.	DS.
2-PrOH	DS.	DS.
CHCl₃	SS.	SS
hexane	DS.	DS.
cyclohexane	DS.	DS.
heptane	DS.	DS.
Ethyl acetate	DS.	DS.
Diethylether	DS.	DS.
Tetrahydrofuran	DS.	DS.
CH₃CN	SS.	SS.
Acetone	SS.	SS.
Benzene	DS.	DS.
Toluene	DS.	DS.
Water	DS.	DS.

DS and SS mean difficult solubility and slight solubility, respectively.

Figure S2. IR spectrum of 2a. (KBr disc).

Figure S3. IR spectrum of 3 (KBr disc).

Figure S4. ¹H NMR spectrum of 3 in CD₃CN (297 K).

Figure S5. ¹H NMR spectra of **3** (8-2 ppm expanded) (in CD₃CN (bottom) and CDCl₃ (middle)). The proton signal ratios were assigned as follows; from the lower field, 5H (Ph-), 2H (NH-C=O), 4H (Bzl-N-CH₂ and (C=O)-OCH₂-C=O-N), 2H (N-CH₂-Ph), 4H (CH₂-NH(C=O)), 4H(CH₂-NH-CH₂).

Figure S6. ¹H NMR spectrum of 2a in CDCl₃ (298 K).

Figure S7. ${}^{13}C{}^{1}H$ NMR spectrum of 3 inCDCl₃ (333 K).

Figure S8. FAB-MS of 3 (matrix; DTT/TG=1:1).

Figure S9. X-ray structures of **3** (hydrogen atoms omitted) (a) and hydrogen bondings between carbonyl oxygens and NH hydrogens with surrounding molecules (b).

Figure S10. ¹H NMR spectrum of 6 in CDCl₃ (297 K).

Figure S11. ${}^{13}C{}^{1}H$ NMR spectrum of 6 in CDCl₃ (299 K).

Figure S12. X-ray structures of 6.

Figure S13. Structures used for literature search.

Figure S14. IR spectrum of 5 (neat).

Figure S15. Simulated IR spectrum of 5 by the DFT (B3LYP/6-31G*) calculation.

Figure S16. ¹H NMR spectrum of 5 in CDCl₃ (302 K).

Figure S17. ¹³C{¹H} NMR spectrum of 5 in CDCl₃ (298 K).

Figure S18. FAB-MS spectrum of **5** (matrix: DTT/TG = 1:1).

Figure S19. ¹H NMR spectrum of **4** in the mixture obtained under the condition of **Route C** in CDCl₃. (298 K).

Figure S20. FAB-MS of 4 in the mixture obtained under the condition of Route C (matrix: DTT/TG = 1:1).

Figure S21. Rotation barrier vs. the N-C-C-O dihedral angles in N-CH₂-(C=O)OEt moiety of **5** (DFT, B3LYP/6-31G*). There are two stable conformers for the N-CH₂-(C=O)OCH₂CH₃ part (marked yellow).

Table S2. Rotation barrier vs. the N-C-C-O dihedral angles in N-CH₂-(C=O)OEt moiety of **5** (DFT, B3LYP/6-31G*).

Constraint	Energy	Δ Energy	180	-708116.53	5.5
Angle (°)	(kcal/mol)	(kcal/mol)	190	-708117.66	4.37
0	-708117.63	4.4	200	-708118.52	3.51
10	-708118.19	3.84	210	-708119.13	2.89
20	-708118.82	3.21	220	-708118 94	3.08
30	-708119.64	2.39	230	-708118.06	3.97
40	-708120.51	1.52	230	708116.76	5.27
50	-708121.09	0.94	250	708114.87	7.16
60	-708121.65	0.38	250	-708114.87	7.10
70	-708122	0.03	260	-708112.73	9.3
80	-708121.86	0.17	270	-708122.03	0
90	-708121.44	0.59	280	-708121.04	0.99
100	-708120.8	1.23	290	-708119.53	2.5
110	-708119.95	2.08	300	-708120.49	1.54
120	708110.16	2.00	310	-708119.66	2.37
120	-708119.10	2.67	320	-708118.79	3.24
130	-708118.29	3.74	330	-708118.12	3.91
140	-708117.4	4.63	340	-708117.66	4.37
150	-708116.68	5.35	350	-708117.37	4.66
160	-708115.67	6.36	360	-708117.54	4.49
170	-708115.59	6.44			

Figure S22. HSQC spectra of **5** (47-63 ppm region in ${}^{13}C{}^{1}H{}$ NMR).

Figure S23. HMBC spectra of 5 (154-170 ppm region in ${}^{13}C{}^{1}H{}$ NMR).

Figure S24. HMBC spectra of **5** 10-55 ppm region in ${}^{13}C{}^{1}H$ NMR).

Figure S25. Stable structure of 5 calculated by DFT (B3LYP/6-31G*).

Figure S26. (a) VT ¹H NMR of **5** in CDCl₃, (b) line shape simulation with calculated rate constants, (c) Arrhenius plot, and (d) activation parameters of the rotation of **5**.

Figure S27. (a) VT ¹H NMR of **3** in CDCl₃, (b) line shape simulation with calculated rate constants, (c) Arrhenius plot, and (d) activation parameters of the rotation of **3**.

Figure S28. ¹H NMR spectrum of 7 in CDCl₃ (333 K).

Figure S29. ¹³C{¹H} NMR spectrum of 7 in DMSO- d_6 (333 K).

Figure S30. ¹H NMR spectrum of 8 in CDCl₃ (299 K)

Figure S31. ${}^{13}C{}^{1}H$ NMR spectrum of 8 in CDCl₃ (333 K).

Figure S32. VT ¹H NMR spectra of 8 in CDCl₃.

Figure S33. IR spectrum of 8 (KBr disc).

Figure S34. CSI mass spectrum of a mixture of **6** and LiSCN (298 K, CH₃OH). [**6**] = [LiSCN] = 1.0×10^{-3} M.

Figure S35. CSI mass spectrum of a mixture of **6** and NaSCN (298 K, CH₃OH). [**6**] = [NaSCN] = 1.0×10^{-3} M.

Figure S36. CSI mass spectrum of a mixture of **6** and KSCN (298 K, CH₃OH). [**6**] = [KSCN] = 1.0×10^{-3} M.

Figure S37. CSI mass spectrum of a mixture of **8** and LiSCN (298 K, CH₃OH). [**8**] = [LiSCN] = 1.0×10^{-3} M.

Figure S38. CSI mass spectrum of a mixture of **8** and NaSCN (298 K, CH₃OH). [**8**] = [NaSCN] = 1.0×10^{-3} M.

Figure S39. CSI mass spectrum of a mixture of **8** and KSCN (298 K, CH₃OH). [**8**] = [KSCN] = 1.0×10^{-3} M.

L : Li* = 1 : 2.0			1.1				
	Щ			lla	A.M.	<i>i</i>	
L : Li* = 1 : 1.8	jm	l	U.	UM	MJ.	l.	. 1
L:LI* = 1:1.6	M		U	JUM_	NJL.	l.	
L : Li* = 1 : 1.5			_U		MJ		
L : Li* = 1 : 1.4			<u> </u>	JUK	MLL	l.	
L : Li* = 1 : 1.3	/"		_U	U.L.M	ML_		
L:LI' = 1:1.2				LLA_	Mul		·
L: LI* = 1: 1.1		~h	ll_	JUM_	Mu_l_	<u> </u>	
L : LI' = 1 : 1.0			_U	.LLM	Mul		. I
L : LI* = 1 : 0.9		l		JUM_	Mr.A.		
L : Li' = 1 : 0.8			_U	.LLM	Mal	<u> </u>	
L : Li' = 1 : 0.7	M			.LLM	M		
L : Li* = 1 : 0.6			_U	LM	_M)	U	
L : Li' = 1 : 0.5				.UM		M	l
L : Li* = 1 : 0.4	M			UM_	_M	.M	
L : Li' = 1 : 0.3			_U	JJM_	M	<u> </u>	1
L : Li* = 1 : 0.2	M			.I.M	_M		
L : Li* = 1 : 0.1			ų		_!!		I
L : Li' = 1 : 0.0			Jl_	_LLM	M		
10 9 8	÷ · · · · · · · · · · · · · · · · · · ·	6 5 δ/p	pm	4 3	2	i	0

Figure S40. Li⁺-induced ¹H NMR spectral changes of 6 (298 K, 6 in CD₂Cl₂/LiSCN in CD₃OD).

					. 1		
L : Na† = 1 : 1.8					Mr		
L : Na ⁺ = 1 : 1.7	/n			_LLM			
L : Na ⁺ = 1 : 1.6	M	l		LUL	M	~_l	
L : Na ⁺ = 1 : 1.5	M	l	_U	_LLM	_M	~.l	
L : Na† = 1 : 1.4	_M	l		U.M	_M		
L : Na ⁺ = 1 : 1.3	N			_UM	M_{-}	<u></u>	
L : Na* = 1 : 1.2					_M	l	
L : Na' = 1 : 1.1				_LLM	_11	!	
L : Na* = 1 : 1.0				_LLM	<u> </u>	Į	·····
L : Na' = 1 : 0.9				_LLM	_M		
L : Na ⁺ = 1 : 0.8			_Ų	_UM	_!!	l	.
L : Na* = 1 : 0.7			_Ų	L_M	_M	<u>_</u>	
L : Na ⁺ = 1 : 0.6			_Ų	_UM_	_N	!	
L : Na† = 1 : 0.5			<u> </u>	LUM_	_M		
L:Na' = 1:0.4			_U	_UM	_M		
L : Na ⁺ = 1 : 0,3			<u> </u>		_N	l	
L : Na' = 1 : 0.2				_UM		L	
L : Na ⁺ = 1 : 0.1			_4		_M		tt.
L : Na ⁺ = 1 : 0.0				_LLM_		/	
10 9 8	7	6 5 ð	/ppm	4 3		2 1	Ó

Figure S41. Na⁺-induced ¹H NMR spectral changes of 6 (298 K, 6 in CD₂Cl₂/NaSCN in CD₃OD).

					I		
L:K' = 1:2.0	M			_UM_	_M_		
L:K ⁺ = 1:1.8	M			_LLM	. M_		
L:K ⁺ = 1:1.6	M			_LLM_	_t,t		
L:K ⁺ = 1:1.5	M			_Ļļĸ			
L:K ⁺ = 1:1.4	M		<u> </u>	_LLM_	_Ņ_		
L:K* = 1:1.3	M			_LLM_	М.,		
L:K* = 1:1.2	M		_Ų	_LLM_	_Ņ_		
L:K' = 1:1.1	M		- <u>-</u> 44	_ll_M_	_M	ų	
L:K* = 1:1.0	M		Щ.,	_LLM_	_Ņ	\u	ļ
L:K' = 1:0.9	M	^	- <u>-</u> <u>İ</u> , <u></u>	_Ll_M	_M	h	
L:K ⁺ = 1:0.8	<u>M</u>		<u> </u>	_LLM_	<u>_M_</u>	h	
L:K* = 1:0.7	^/\	^	- <u>U</u>		_M		<u>_</u>
L:K ⁺ = 1:0.6					U	NN	
L:K' = 1:0.5	/^**[L_M	_M	l	
L:K* = 1:0.4	/^*'L //1					U	
L:K' = 1:0.3			 		_M	L	<u>_</u>
L:K* = 1:0.2		^			_vr	k	_
L:K' = 1:0.0		Ak	// 			^^A	<u>_</u>
L:N = 1:0.0	M	<u>_</u>				······ ··· ·····	
10 9	8 7	6 5 δ/p	pm	4 3		2 1	0

Figure S42. K⁺-induced ¹H NMR spectral changes of **6** (298 K, **6** in CD₂Cl₂/KSCN in CD₃OD).

	W			ú 1	
L : Li [*] = 2.0	/"\		L.M.	M	
L : Li' = 1.8	J^n(ll_Mt	M_L	
L : Li* = 1.6			ilini	M_L	l
L : Li* = 1.5			iLMi	M.A	
L : Li* = 1.4			LMA_	M.L.	1
L : Li* = 1.3	M		L_LML_	MALL.	
L : Li' = 1.2	ال		L_LML_		
L : Li* = 1.1				M_A_L_	
L : Li* = 1.0	<u></u>			MAL	
L : Li* = 0.9	Л(LM		
L : Li* = 0.8	<u></u>			M	
L : Li* = 0.7	//h		L.M.		
L : Li' = 0.6			L.U.M.	A	
L : Li' = 0.5			L.M.	A	
L : Li* = 0.4	Jn		L.J.M.	M	1
L : Li* = 0.3					
L : Li* = 0 0.2	M		lML	M	
L : Li* = 0.1	M		L. LML	_M	
L : Li* = 0.0	M		L_LML_	_M	
10 9	8 7	6 5 δ/ppm	4 3	2 1	0

Figure S43. Li⁺-induced ¹H NMR spectral changes of 8 (298 K, 8 in CD₂Cl₂/LiSCN in CD₃OD).

L : Na* = 2.0	k.	L)	1		,		
	/└		_JML_		L		
L : Na ⁺ = 1.8	M		M	M	_A		
L : Na ⁺ = 1.6	N\	l					
L : Na ⁺ = 1.5	M	L	_LMA				
L : Na' = 1.4	N\	Å	l_linr		<u></u>		
L : Na' = 1.3	M	Ll	l_linz				
L:Na ⁺ = 1.2	M	. I	I line .	_/_			
L:Na ⁺ = 1.1			i Jini		A		
L : Na* = 1.0	Al		Mrr	M			
L : Na' = 0.9	Al		L.Mr.A				
L : Na' = 0.8	M		Mur	_M_			
L : Na' = 0.7	M		MAA	_h_			
L : Na ⁺ = 0.6	M		h	M.	~		
L : Na ⁺ = 0.5	州	l	1_Mar	M			
L : Na* = 0.4	M		M	_M_		<u> </u>	
L : Na† = 0.3	M		Mrr	_)/_			
L : Na' = 0.2	M	l	l_Mrr	_/\			
L : Na ⁺ = 0.1	Maria da	. J.	lhr	_/\	1		
L : Na ⁺ = 0.0		l	L.ihr	_M_			
10 9 8	7 6	5 δ/ppm	4 3		2		Ó

Figure S44. Na⁺-induced ¹H NMR spectral changes of 8 (298 K, 8 in CD₂Cl₂/NaSCN in CD₃OD).

L : K* = 1 : 2.0	N,				1		
L:K*=1:1.8	M	<u>/</u>			M		
L : K* = 1 : 1.6	,All		J	_ l_Mah	JM		
L : K* = 1 : 1.5	M			llht	_M		
L:K'=1:1.4	M			_LMM	M		
L:K' = 1:1.3	M			_L.Mu	_M		
L:K* = 1:1.2			J.	Like	M		
L:K ⁺ = 1:1.1	M)(/k		
L : K* = 1 : 1.0	₩		!	Allah	Jr		
L : K' = 1 : 0.9	M		/	_L.M.A	_M		
L : K' = 1 : 0.8				_LMA	_h		
L:K'=1:0.7	₩			_LMA	_h		
L : K ⁺ = 1 : 0.6	M		l	_1.thr	_h_		
L : K ⁺ = 1 : 0.5	Ni			lhr	Jr.		
L : K* = 1 : 0.4	N			l_lha	_)(
L : K* = 1 : 0.3	N		!	_L.Mu	_h	L	
L : K' = 1 : 0.2				_LMA_	_M		
L : K ⁺ = 1 : 0.1			J.				
L : K ⁺ = 1 : 0.0	N	,,,		_L.l.A	_M		
10 9	8 7	6 5 δ/ppr	n	4 3	•	2 1	Ó

Figure S45. K⁺-induced ¹H NMR spectral changes of **8** (298 K, **8** in CD₂Cl₂/KSCN in CD₃OD).

Figure S46. Titration curves for the metal-induced ¹H NMR spectral changes of **6** and **8**. See Figures S40-S45.

Figure S47. ORTEP diagram of **3** with 30% probability levels.

Figure S48. ORTEP diagram of 6 with 30% probability levels.

Empirical formula	C16 H22 N4 O4				
Formula weight	334.37				
Temperature	120(2) K				
Wavelength	0.71073 Å				
Crystal system	Orthorhombic				
Space group	Pca2 ₁				
Unit cell dimensions	$a = 22.1858(19)$ Å $\alpha = 90^{\circ}$.				
	$b = 8.4106(8) \text{ Å}$ $\beta = 90^{\circ}.$				
	$c = 8.8362(8) \text{ Å}$ $\gamma = 90^{\circ}.$				
Volume	1648.8(3) Å ³				
Ζ	4				
Density (calculated)	1.347 Mg/m ³				
Absorption coefficient	0.099 mm ⁻¹				
F(000)	712				
Crystal size	0.125 x 0.121 x 0.114 mm ³				
Theta range for data collection	2.422 to 25.992°.				
Index ranges	-27<= <i>h</i> <=25, -10<= <i>k</i> <=8, -10<= <i>l</i> <=10				
Reflections collected	9071				
Independent reflections	3177 [<i>R</i> (int) = 0.0600]				
Completeness to theta = 25.242°	99.9 %				
Absorption correction	Semi-empirical from equivalents				
Max. and min. transmission	0.7457 and 0.6808				
Refinement method	Full-matrix least-squares on F^2				
Data/restraints/parameters	3177 / 1 / 217				
Goodness-of-fit on F ²	1.011				
Final R indices [I>2sigma(I)]	$R_1 = 0.0489, wR_2 = 0.1036$				
R indices (all data) $R_1 = 0.0782, wR_2 = 0.1208$					
Absolute structure parameter	-1.0(10)				
Extinction coefficient	n/a				
Largest diff. peak and hole	0.362 and -0.343 e.Å ⁻³				

Table S3. X-ray crystallography of 3-Benzyl-1-oxa-3,6,9,12-tetraazacyclotetradecane-2,5,13-trione (3).

Empirical formula	C23 H28 N4 O4	C23 H28 N4 O4					
Formula weight	424.49						
Temperature	120(2) K						
Wavelength	0.71073 Å						
Crystal system	Monoclinic						
Space group	Сс						
Unit cell dimensions	a = 9.6621(6) Å	$\alpha = 90^{\circ}$.					
	<i>b</i> = 24.7356(16) Å	$\beta = 103.6210(10)^{\circ}.$					
	c = 9.5268(6) Å	$\gamma = 90^{\circ}$.					
Volume	2212.8(2) Å ³						
Z	4						
Density (calculated)	1.274 Mg/m ³						
Absorption coefficient	0.089 mm ⁻¹	0.089 mm ⁻¹					
F(000)	904						
Crystal size	0.470 x 0.267 x 0.115 t	nm ³					
Theta range for data collection	1.647 to 27.955°.						
Index ranges	-11 <= <i>h</i> <= 12, -31 <=	-11 <= <i>h</i> <= 12, -31 <= <i>k</i> <= 32, -12 <= <i>l</i> <=5					
Reflections collected	7359	7359					
Independent reflections	3374 [R(int) = 0.0262]						
Completeness to theta = $25.242 \circ$	100.0 %						
Refinement method	Full-matrix least-squar	es on F^2					
Data/restraints/parameters	3374 / 2 / 280						
Goodness-of-fit on F^2	1.071						
Final <i>R</i> indices $[I > 2 \text{sigma}(I)]$	$R_1 = 0.0348, wR_2 = 0.0$	879					
R indices (all data)	$R_1 = 0.0402, wR_2 = 0.1$	003					
Absolute structure parameter	0.0(8)	0.0(8)					
Extinction coefficient	n/a						
Largest diff. peak and hole	0.216 and -0.268 e.Å ⁻³						

Table S4. X-ray crystallography of 3,9-Dibenzyl-1-oxa-3,6,9,12-tetraazacyclotetradecane-2,5,13-trione (6).

Table S5. Cartesian Coordinates of stable 5 (DFT, B3LYP/6-31G*).

SPARTAN'20 Quantum Mechanics Driver: (Win/64b)	3	С	C4	1.317735	-2.9498567	-1.021034
\sim Relates 1.0.0	4	С	C2	1.0634884	-5.1589059	-2.0038573
Release 1.0.0	5	С	C6	1.6406693	-3.2784256	-3.4020233
	6	С	C5	1.6204419	-2.4372955	-2.289895
lob type: Geometry optimization.	7	C	C3	1.034329	-4.3146867	-0.8921298
Mathad. DD21 VD	8	н	HZ	0.8424157	-6.216519	-1.8850826
Methou: RD5L11	10	п		1.0093592	-2.003020	-4.3011113
Basis set: 6-31G(D)	10	н	H3	0 7919874	-1.3749093	-2.4008017
Number of basis functions: 387 Number of	12	С	C7	1.3405363	-2.0684123	0.2131436
	13	н	H4	2.3673378	-1.8405893	0.5094521
electrons: 172 Parallel Job: 8 threads	14	н	H7	0.8782909	-2.6053003	1.0544631
SCF model:	15	Ν	N1	0.6791833	-0.7718457	0.037288
A restricted hybrid HF-DFT SCF calculation will be	16	С	C8	-0.7219977	-0.7300298	-0.3401275
A restricted hybrid III -DI I Ser calculation will be	17	н	H8	-1.0775146	-1.7627229	-0.4223384
performed using Pulay DIIS + Geometric Direct Minimization	18	н	H11	-1.3058578	-0.2392689	0.4455626
Ontimization:	19	С	C9	-0.9640001	-0.0300585	-1.6843752
	20	С	C10	1.2866357	0.3361247	0.5528651
Step Energy Max Grad. Max Dist.	21	0	01	-0.0850609	0.3383135	-2.4216867
1 -1128.464736 0.000175 0.001029	22	0	02	2.3743949	0.3701113	1.1000816
	23	0	03	-2.2566273	0.1599559	-2.0486747
<step 2=""></step>	24	С	C11	-3.3619346	-0.2188537	-1.2042762
Job type: Frequency calculation.	25	н	H9	-3.2727725	-1.2718771	-0.9114914
	26	н	H12	-3.3597627	0.39421	-0.2950233
Method: RB3L1P	27	С	C12	-4.630971	0.0061156	-2.0075938
Basis set: 6-31G(D)	28	н	H10	-4.624322	-0.6071508	-2.9136078
Dessen for with Suggessful completion	29	н	H14	-4.718427	1.0562954	-2.3019165
Reason for exit. Succession completion	30	н	H15	-5.50/195/	-0.2632494	-1.408021
Quantum Calculation CPU Time: 1:09:47.48	31	0	04	0.5029048	1.4468627	0.363099
Quantum Calculation Wall Time: 9.12.90	32	C	C13	0.8259337	2.5461694	1.1900881
Quantum Calculation wan Time. 9.12.90	33	н	H13	1.9085962	2.6128928	1.3298193
SPARTAN'20 Properties Program: (Win/64b)	34	н	H17	0.4/3536/	3.4418391	0.670272
Release 100	35	C	C14	0.1104339	2.391/1//	2.53/2555
Release 1.0.0	30	0	05	-0.6019604	1.4511998	2.7911343
Use of molecular symmetry disabled	3/	0	06	0.2874264	3.3692642	3.4529914
	30	U U	U15	1.184985	4.4700882	3.2179199
	39		H10	2.2018/21	4.0985170	3.05/590/
Cartesian Coordinates (Angstroms)	40	п С	C16	1 1728812	5 266 22 1 4	2.5210704
	41	н	H18	1 /333/05	A 8124519	5 3367/6/
	/13	н	H20	0 1059955	5 7351817	1 6034
Atom X Y Z	43 44	н	H21	1 7912116	6 2255605	4.0054
1 н н1 1.3833262 -5.2933993 -4.1326307	+		1121	1.7512110	0.2255005	4.5100039
2 C CI 1.3664097 -4.6412673 -3.2633526						

Table S6. Cartesian Coordinates of stable 6-Li⁺ (DFT, ωB97X-D/6-311G*, polar solvent).

PARTAN'20 Quantum Mechanics Driver: (Win/64b)	Step	Energy	Max Grad.	Max Dist.
Release 1.0.0	1	-1420.651981	0.017650	0.057845
	2	-1420.653858	0.003634	0.091814
Job type: Geometry optimization.	3	-1420.653254	0.010975	0.066054
Method: RWB97X-D	4	-1420.654028	0.000689	0.025441
Basis set: 6-311G*	5	-1420.654064	0.000375	0.089356
Number of basis functions: 660	6	-1420.654096	0.000774	0.027439
Charge : +1	7	-1420.654120	0.000360	0.012815
Number of electrons: 228	8	-1420.654129	0.000216	0.038744
Parallel Job: 8 threads				

SCF model:

A restricted hybrid HF-DFT SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization Polarizable Continuum solvation model will be applied Reason for exit: Successful completion

Quantum Calculation CPU Time :4:37:32.95Quantum Calculation Wall Time :39:50.13

Cartesian Coordinates (Angstroms)

Solvation: C-PCM dielectric=37.22			Atom	х	Υ	Z
		-				
Optimization:	1	0	01	2 2225100	1 0272424	1 125050
Step Energy Max Grad Max Dist	1	0	02	-2.2235188	1.9372434	-1.135959
Step Energy Wax Grad. Wax Dist.	3	õ	03	-1.0456794	0.228068	-0.2904831
1 - 1420.653570 0.004093 0.061785	4	0	04	-0.4537492	2.9941213	0.7074358
2 - 1420.652054 0.021367 0.065851	5	Ν	N5	1.1096438	0.3115488	1.9227828
3 -1420 653138 0 000575 0 085550	6	Ν	N6	-1.4772928	1.8040836	2.3244165
5 -1420.055158 0.009575 0.005550	7	н	H7	-2.2844598	1.250082	2.5654351
	8	Ν	N8	-0.7654794	0.7780906	-2.4513707
Reason for exit: Aborted by user	9	Ν	N9	1.7618461	-0.997863	-0.7185637
Overstein Calculation CDU Times 1.50.20.20	10	Н	H10	1.348338	-1.9023822	-0.8829027
Quantum Calculation CPU Time : 1:50:29.36	11	C	C11	-1.4432083	2.3/16/91	1.1258039
Quantum Calculation Wall Time: 15:55.36	12	c	C12	-1.6904424	0.8071419	-4.7340481
	13	ч	С15 H1/I	-1.0552924	1 1001215	-6 12/1/156
	14	C	C15	-1 3503335	0 9283235	-1 2544197
SPARTAN'20 Quantum Mechanics Driver: (Win/64b)	16	c	C16	2.3607718	-3.1429766	5.5046323
Release 1.0.0	17	н	H17	2.8575454	-3.696588	6.2945032
	18	С	C18	1.3379221	0.0271772	-1.4478881
	19	С	C19	-2.9380265	0.2139857	-4.5319402
Job type: Geometry optimization.	20	н	H20	-3.4421722	0.3335449	-3.5769101
Method: RWB97X-D	21	С	C21	1.7765021	-2.8807795	3.1821848
Dania anti 6 211C*	22	н	H22	1.8058435	-3.2582252	2.1643189
Basis set: 0-311G	23	C	C23	-1.6547572	-0.091646	-6.9779457
Number of basis functions: 660	24	н	H24	-1.148497	-0.2099698	-7.9303062
Charge + 1	25	L L	U25	2.4124431	-3.5965522	4.191596
N. 1. (1	20	C	C27	1 6540621	-1 9817298	5 8014862
Number of electrons: 228	27	н	H28	1 5904717	-1 62992	6 8259615
Parallel Job: 8 threads	29	C	C29	-2.6527463	2.1750576	0.2112643
	30	н	H30	-3.2911128	1.3592507	0.5493291
	31	н	H31	-3.2289003	3.0975719	0.1642087
SCF model:	32	С	C32	-2.897199	-0.678107	-6.7704581
A restricted hybrid HF-DFT SCF calculation will be	33	н	H33	-3.3666966	-1.2542977	-7.5608393
norformed using Pulay DUS + Coometric Direct Minimization	34	С	C34	1.0176175	-1.2730889	4.7888239
performed using r diay DIIS + Geometric Direct Minimization	35	н	H35	0.4482009	-0.3871738	5.0481702
Polarizable Continuum solvation model will be applied	36	C	C36	1.0206206	1.4326209	2.8700921
	3/	н	H37	1.5095469	2.28/9358	2.3962122
	38	н	H38 C20	1.5854526	1.2406599	3.7927300
Solvation: U-PUM dielectric=31.22	39 40	c	C40	-0 3977671	1 8555211	3.4004004
	41	н	H41	-0.7402833	1.2317255	4.1357176
Optimization:	42	н	H42	-0.3123158	2.8727579	3.7011909

43	С	C43	-3.5387059	-0.5239986	-5.5427621	51	С	C51	0.2774119	-0.2400086	-2.5184758
44	н	H44	-4.5097711	-0.9785124	-5.3761582	52	н	H52	0.7539525	-0.1692563	-3.4974745
45	С	C45	-1.043863	1.6041892	-3.624299	53	н	H53	-0.1454662	-1.2410636	-2.4196792
46	н	H46	-0.1028176	2.0431456	-3.9632836	54	С	C54	2.7438086	-0.908517	0.3627697
47	н	H47	-1.6923664	2.4201148	-3.3095052	55	н	H55	3.7238404	-0.6745562	-0.0602381
48	С	C48	0.4220694	-0.9218389	2.340728	56	н	H56	2.8109229	-1.9136055	0.7725048
49	н	H49	0.3317653	-1.5563306	1.4575705	57	С	C57	2.5021358	0.1109687	1.4980679
50	н	H50	-0.5970073	-0.6507623	2.6201428	58	н	H58	3.1376229	-0.2117709	2.3351899

Table S7. Cartesian Coordinates of stable 8-Li⁺ (DFT, wB97X-D/6-311G*, polar solvent).

SPARTAN'20 Quantum Mechanics Driver: (Win/64b) Release 1.0.0

Job type: Geometry optimization. Method: RWB97X-D Basis set: 6-311G* Number of basis functions: 873 Charge : +1

Number of electrons: 300 Parallel Job: 8 threads

SCF model:

A restricted hybrid HF-DFT SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization

Optimization:

Step	Energy	Max Grad.	Max Dist.
1	-1824.888005	0.006676	0.100267
2	-1824.884961	0.040774	0.066384
3	-1824.887272	0.012284	0.075480
4	-1824.885576	0.020976	0.059077
5	-1824.888012	0.006957	0.063091
6	-1824.887454	0.012105	0.067775
7	-1824.889020	0.006605	0.064884
8	-1824.888051	0.010254	0.050006
9	-1824.889212	0.006052	0.093994
10	-1824.888148	0.009796	0.059645
11	-1824.889688	0.003959	0.071836
12	-1824.888309	0.011569	0.042076
13	-1824.889889	0.002929	0.090903
14	-1824.888886	0.009175	0.045550
15	-1824.890054	0.002720	0.057321
16	-1824.889480	0.006820	0.056162
17	-1824.890201	0.002507	0.089633
18	-1824.889825	0.005317	0.075087
19	-1824.890406	0.002142	0.136140
20	-1824.890417	0.002125	0.101829
21	-1824.890606	0.001849	0.084036
22	-1824.890790	0.002345	0.058790
23	-1824.891004	0.001953	0.113252
24	-1824.891004	0.002948	0.072132
25	-1824.891190	0.001130	0.055700
26	-1824.891213	0.001228	0.025232
27	-1824.891258	0.000750	0.069562
28	-1824.891262	0.001077	0.043979
29	-1824.891283	0.000947	0.010583

30 -1824.891291 0.000585 0.016953

Reason for exit: Successful completion Quantum Calculation CPU Time : 27:01:51.39 Quantum Calculation Wall Time: 3:26:02.52

Cartesian Coordinates (Angstroms)

		Atom	х	Y	Z
1	Li	Li1	-0.2224774	-0.5567614	-0.612275
2	0	02	-3.9701098	-0.8699691	-0.6306771
3	0	03	-1.1050231	-0.106031	-2.3186387
4	0	04	-1.6701073	-0.7129547	0.588784
5	0	05	-4.5832346	0.5787182	0.9903328
6	Ν	N6	-1.0664332	2.1371032	-2.0112931
7	Ν	N7	-3.9411247	1.3319628	-1.0675985
8	Ν	N8	1.0821721	-2.1424218	-0.1716877
9	Ν	N9	1.306208	0.8553027	-0.4746282
10	Ν	N10	-1.7158648	-2.8429528	1.3159516
11	С	C11	1.1736003	1.457476	1.9509278
12	С	C12	1.2428106	1.9412914	0.5259252
13	н	H13	0.3477328	2.5276437	0.3154729
14	н	H14	2.1118993	2.607654	0.4024484
15	С	C15	-2.9107308	4.7206356	-1.0885241
16	н	H16	-3.4548989	4.9597905	-1.9990584
17	С	C17	0.3459525	2.4468005	-2.2202171
18	н	H18	0.5265707	3.3826708	-1.6885116
19	н	H19	0.5059883	2.6590825	-3.2834062
20	С	C20	-4.1870494	0.3752236	-0.1299043
21	C	C21	-1.5401261	4.1444527	1.2575785
22	н	H22	-1.0153603	3.9223986	2.1813363
23	C	C23	3 6811796	-5 7772639	-1 3407263
24	н	H24	3 5499502	-6 8470289	-1 2304408
25	C	C25	2 5706092	-4 9432323	-1 3636576
26	н	H26	1 5786811	-5 377845	-1 2830727
27	Ċ	C27	2 3083206	1 419055	2 7575933
28	н	H28	3 2585365	1 7768563	2 3712306
29	C	C29	2 7128345	-3 5637628	-1 5139761
30	C	C30	-2 2792538	-1 7655232	0 76245
31	C	C31	-4 3923192	2 6950033	-0 784234
32	н	H32	-5 1608291	2 620792	-0.0159773
33	н	H33	-4 8670834	3 0885657	-1 6873841
34	C	C34	0 675903	-3 2439784	0 7150564
35	н	H35	1 556593	-3 6930169	1 1949514
36	н	H36	0 2257959	-4 0302789	0 1048115
37	Ċ	C37	2 237417	0.9316175	4 0571383
38	н	H38	3 1284785	0.9083358	4 6743896
39	Ċ	C39	-0 3363102	-2 8553425	1 7954172
40	н	H40	-0 2850788	-3 5809365	2 6088779
40	н	H41	-0 1203788	-1 876076	2 2260689
42	Ċ	C42	1 5019276	-2 6554614	-1 5007622
43	н	H43	1 6734592	-1 7966242	-2 1535023
11	н	нии	0.6372564	-3 1750838	-1 9203968
44	Ċ	C45	-0 0/3993	1 033529	2 /8103/1
45	н	H46	-0 9350003	1.053525	1 866682
40	Ċ	C47	3 9982066	-3 0/3/9/6	-1 66598/3
18	н	H18	1 1370386	-1 977311/	-1 8238085
10	Ċ	C/Q	2 4584671	-0.0444264	-0 2/0052
50	ц	L49 H50	2.4584071	0.0444204	0.2499933
50	Ц	H50 H51	2 2002/27	-0.2008142	-1 2206511
52	Ċ	(52	1 2010734	1 1075545	-1 8222862
52	ц	UJZ H52	1 2/1067/	0 57/0543	-1.000002
55	ц	1155	2 26/575/	1 0026046	-2.334231
54	п С	п54 С55	2.3043/54	0 5 4 7 7 7 9 6	-1.3000092
55 56	с µ	C33	-0.1199/93	0.54///80	3.7794300
50	п С	050	-1.0/03/13	1 0265401	4.1/9/409
57	L	C2/	-3.2351928	1.0303491	-2.3039804

58	н	H58	-3.5053726	1.80686	-3.0314896
59	н	H59	-3.5548661	0.0751911	-2.6985277
60	С	C60	-2.5996419	3.3435022	0.8593101
61	н	H61	-2.9067685	2.4969281	1.4650904
62	С	C62	2.113131	-1.3271732	0.4966738
63	н	H63	3.0372771	-1.9048991	0.6414387
64	н	H64	1.7424024	-1.0678378	1.489341
65	С	C65	-3.2878095	3.6182778	-0.3245888
66	С	C66	-1.6964897	0.969586	-2.2008593
67	С	C67	5.112779	-3.872496	-1.6448321
68	н	H68	6.103297	-3.4489767	-1.7708219
69	С	C69	-3.7366215	-1.8637194	0.3339748
70	н	H70	-3.9545176	-2.819778	-0.1410007
71	н	H71	-4.3879512	-1.729734	1.2007482
72	С	C72	4.9563804	-5.242274	-1.4749223

73	н	H73	5.824173	-5.8919108	-1.4625284
74	С	C74	-1.8415234	5.5234017	-0.6930409
75	н	H75	-1.5603562	6.3821567	-1.2929814
76	С	C76	1.0233713	0.4881547	4.568211
77	н	H77	0.9654167	0.1162507	5.5851161
78	С	C78	-1.1508627	5.2310883	0.4762816
79	н	H79	-0.3236317	5.8582372	0.7911444
80	Н	H80	-1.6497909	2.9510599	-
					1.8792127
81	Н	H81	-2.2636282	-3.6817295	1.413501

Figure S49. The time-dependent root-mean-square deviation (RMSD) plots of $6-Li^+$ (left) and $8-Li^+$ (right).

第3章. [Ag⁺--銀食い分子⊃アセトニトリル]包接錯体における C

(*sp*²) -H…π (C≡N) 相互作用

3-1. 緒言

カチオンやアニオンに応答した構造や物性の変化は、超分子化学や生化学に おいて極めて重要である.カチオンやアニオンは動的な構造変化を引き起こし, ゲスト分子の構造,包接能力,特性を劇的に変化させる.その結果,多くのイ オン応答性超分子が研究されてきた¹⁻⁵. 我々は特定の金属イオンに応答して劇 的な構造変化を示し、様々な機能を発現する超分子の開発を目指している.こ れまでに、芳香族側鎖を持つサイクレン(図1のL1)の構造変化を利用した 様々な機能性分子を報告してきた. 例えば, Ag+による蛍光のスイッチオン/オ フシステム⁶,キラリティの向上,二次配位部位の選択性制御⁷,自己組織化超 分子の構造変換⁸などである. L1 が Ag⁺と錯体を形成すると芳香環側鎖(ハエ トリソウの葉)が Ag+(昆虫)を捕らえるように、芳香環側鎖が Ag+を覆う? 側鎖がスチリルメチル基 (Ph-CH=CH-CH₂-, 図1のL2) の場合, Ag⁺と錯体を 形成すると 4 つのスチリルメチル側鎖が擬似的な空孔を形成し、中性ゲストを 空洞内に封じ込める¹⁰. この挙動は L1 では起こらない. これらの結果から, 我々は 2 つのベンジル基と 2 つのスチリルメチル基を側鎖に持つ新しいタイプ の銀食い分子(図1のL3)を作り、芳香環側鎖によって中性ゲストの結合に適 した空洞を形成するかどうかを確認した. 4-フルオロベンジル基とスチリルメ チル基を持つ1aと、4-フルオロベンジル基とスチリルメチル基の芳香環の4位 にフルオロ基を持つ 1bの2つを設計した.芳香環上のフルオロ基は 1a および 1bの¹H NMR スペクトルにおける芳香環プロトンシグナルの帰属を明確にする ために導入した.

図1. ベンジル基とスチリルメチル基を持つテトラアームドサイク レン. 半透明の楕円体は擬似空孔を表している.

CH…π相互作用は約 45 年前に西尾らによって提唱されて以来¹¹⁻¹²,超分子間 相互作用を説明する重要な概念の一つとなり、多くの総説が発表されている¹³⁻²⁴. これまでに報告されている CH…π相互作用のほとんどは C (*sp*³) -H, C (*sp*²) -H, または C (*sp*) -H と芳香環や二重結合上のπ電子との相互作用に関 するものであった. C (*sp*) -H と芳香環や二重結合上のπ電子との相互作用に関 するものであった. C (*sp*) -H…π (C=C)^{25,26}, OH…π (C=C)²⁷, Cp-CH… π (C=C)²⁸, C (*sp*²) -H…π (C=C)²⁹ のような例があり、また、OH (また は NH) とアセトニトリル間の XH…π (C=N) 相互作用 (それぞれ H₂O と NH₃ の X=O と N) に関する理論的研究もある³⁰. ここでは、2 つのベンジル基と 2 つのスチリルメチル基を側鎖に持つ新しい銀食い分子の合成、溶液中での Ag⁺ に対する錯形成特性、アセトニトリルと Ag⁺-銀食い分子からなる包接錯体にお ける固体状態での C (*sp*²) -H…π (C=N) 相互作用について報告する.

3-2. 結果と考察

3-2-1. 1a および 1d の合成と同定

新規配位子 1a および 1b の合成はスキーム1に従って3段階で行った.まず, 文献に従って合成したジオキソシクレン(2)と4-フルオロベンズアルデヒド を用いてオートクレーブ中で還元的アミノ化を行って3を得た.3を水素化ジ イソブチルアルミニウム(DIBAL-H)で還元してダブルアームドサイクレン (4)を得たのち,4をシンナムアルデヒド誘導体(5aおよび5b)で還元的ア ミノ化を行って,1aおよび1bを合成した.1aおよび1bの構造は¹H NMR,¹³C NMR, FAB-MS,元素分析,およびX線結晶構造解析によって確認した(図 S1-S9, S14, S15を参照).

スキーム 1. 1a と 1b の合成.

1aと **1b**の X線結晶構造を**図2**に示す.サイクレン環は **1a**と **1b**の両方で 12 員環いす型のようなコンフォメーションをとり、4-フルオロベンジル基の芳香 環プロトンは隣接するスチリルメチル基のフェニル基と CH…π相互作用してい た. **1a**と **1b**の水素 H7A とスチリルメチル基の芳香環との距離の差は 0.1Å であ った一方、水素 H8A と芳香環との距離は、**1a**(2.791Å)と **1b**(3.328Å)で約 0.5Å 異なる. これらの距離はスチリルメチル基の芳香環の電子密度に依存して おり(**図3**)、芳香環の電子密度が **1a**よりも低い **1b**では CH…π相互作用が弱い ことが示唆された ³¹.

図2. 1aと1bのX線結晶構造.

図3. B3LYP/6-311G*で計算した(a)(E)-プロプ-1-エン-1-イルベンゼンと(b) (E)-1-フルオロ-4-(プロプ-1-エン-1-イル)ベンゼンの静電ポテンシャルマップ.カ ラースケールは赤が-90 kJ,青が+100 kJ である.

3-2-2. Ag+に対する 1a と 1d の錯形成特性

配位子 1a および 1b の側鎖がサイクレン環に取り込まれた Ag⁺を覆っている かどうかを確認するために Ag⁺を少量ずつ添加して¹H NMR 測定を行った.図 4 に示すように、4-フルオロベンジル基の芳香環の H_a(●) および H_b(○) プ ロトンはそれぞれ高磁場(約0.1 ppm)および低磁場(約0.08 ppm)にシフトし た.これらの化学シフトの変化はベンジル側鎖(図1のL1)について以前に報 告されたものと一致していた⁹. しかし, 1a と 1b のアルケニルプロトン (H_x と H_v, スキーム1参照)の化学シフト変化は4つのスチリルメチル基を持つL2の それとは異なっていた¹⁰. L2のH_x(■)プロトンはわずかに高磁場側にシフト したのに対し, H_v(□) プロトンは低磁場側にシフトした. 一方, 1a と 1b の H_xプロトンは約 0.5 ppm 高磁場側にシフトし、H_yプロトンもわずかに高磁場側 にシフトした(約0.03 ppm). したがって、L2と1a(1b)の化学シフト変化の 違いはスチリルメチル基の隣に磁気異方性の強いベンジル基を導入したことに よるものと考えられる.1b でも同様の化学シフトの変化が観察された(図 **S10**). これより, 1a と 1b が Ag⁺と錯体を形成する際, ベンジル基とスチリル メチル基の側鎖が Ag⁺を覆っていることが示された. 先に報告した L2 の ¹H NMR を用いた滴定実験では、芳香環およびアルケニルのプロトンシグナルの化 学シフト変化は等量の Ag⁺を添加した時点で止まり、それ以上添加しても変化 は見られなかった.一方, 1aおよび1bに1当量以上の Ag^+ を添加すると, H_x プ ロトンの低磁場シフトが観測された.そこで、ESI-MSを用いた滴定実験を行い、 配位子とAg⁺の化学量論を調べた.

図4. Ag⁺による 1a の ¹H NMR スペクトルの変化(CDCl₃/CD₃OD). [1a] = 5.0 mmol/0.5 mL (1.0 x 10⁻² M). 図中の●(H_a), ○(H_b), ■(H_x), □(H_y) の記号で 示した各プロトンシグナルの位置については, スキーム1を参照されたい.

図5はAg⁺によるESI-MS スペクトルの変化を示している.Ag⁺を2当量まで 添加しても、[1a+Ag⁺]⁺に由来するフラグメントイオンのピークが m/z 727-731に 現れた.この結果は過剰量のAg⁺の存在下でも1:1 錯体が排他的に存在すること を示唆している.れら配位子のAg⁺に対する会合定数はUV-vis分光法を用いた 滴定実験によって見積もり(図S12),1aと1bとの1:1 錯体のlogK値はそれぞ れ7.3(1)と7.4(1)であった³².1aの芳香環側鎖によって形成された擬似空 孔が有機分子を内包する能力を確認するため、1a,Ag⁺,アセトニトリルの混 合物の¹H NMRを測定した.図S13に示すように、1aとAg⁺の混合物(1a: Ag⁺=1:1)にアセトニトリルを加えても、アセトニトリルのメチルプロトン の有意な高磁場シフトは生じなかった.これは側鎖として4つのスチリルメチ ル基を導入したL2における変化とは対照的であった.このことは、1a-Ag⁺錯体 が溶液中でアセトニトリルを保持できるほどの強力な擬似空孔を形成していな いことを示唆している.また、これは後述する1a-Ag⁺錯体のX線結晶構造とも 一致する.この構造から、2本または3本の側鎖がAg⁺を覆うコンフォメーショ ンをとっていることが明らかになった.したがって、アセトニトリルが溶液中 で 1a-Ag⁺錯体と錯形成する可能性は低く,むしろ固体状態でのみ Ag⁺や芳香環 側鎖と相互作用することが考えられる.

図 5. Ag⁺による 1a の ESI-MS スペクトルの変化(CHCl₃/CH₃OH). [1a] = 1.0 x 10⁻⁴ mol/L.

3-2-3. [1a-Ag⊃N≡CCH₃]PF₆および[1a-Ag⊃N≡CCH₃]OTf 錯体の X 線構造

1aの AgX (X=PF₆, OTf, BF₄) 錯体をアセトニトリル中で合成し,単結晶を 得たので X 線結晶構造解析を行った. [**1a**-Ag \supset N \equiv CCH₃]PF₆ および[**1a**-Ag \supset N \equiv CCH₃]OTf錯体の構造は明らかにできたが, [**1a**-Ag]BF₄錯体は結晶の質が低い ため精密化できなかった. X 線構造解析の結果,いずれの錯体においても Ag⁺ がサイクレン部位とアセトニトリルの窒素原子と結合していることがわかった

(図 6, S16, S17). 例えば、[1a-Ag⊃N≡CCH₃]PF₆ 錯体では 2 つのスチリルメチル基と 1 つのベンジル基がサイクレンに取り込まれた Ag⁺を包み込むようにコンフォメーションが変化した. そして、スチリルメチル側鎖の芳香環水素(H29A と H17A) とアルケニル水素(H10A と H26A) はアセトニトリルの sp 炭素(C (sp))とsp 窒素(N (sp))原子と相互作用していた. 芳香環水素とア

セトニトリルの C (*sp*) 原子の原子間距離 (H29A-C41 と H17A-C41) はそれぞ れ 2.90 と 3.15Å であり, アルケニルの C (*sp*²) -H-N (*sp*) の原子間距離 (H17A-N9 と H33A-N9) はそれぞれ 2.75 と 2.72Å であった. これらの錯体では Ag⁺と芳香環側鎖との間に Ag^{+…}π相互作用は見られなかった. **1a**-Ag⊃N≡ CCH₃]OTf 錯体では単位格子内に 2 つの構造が存在しており, 1 つは 2 つのスチ リルメチル基と 1 つのベンジル基が同じような挙動をしている構造で あった. 我々が以前報告したように, それぞれ 4 つのベンジル基と 4 つのスチ リルメチル基を持つ L1 と L2 は, AgX (X=OTf, PF6, BF4) と錯形成するとき, Ag⁺と芳香環側鎖との間の Ag^{+…}π相互作用,および芳香環側鎖どうしの CH…π 相互作用により芳香環側鎖が Ag⁺を覆うようなコンフォメーション変化を起こ す. L1 や L2 の Ag⁺錯体とは異なり, 1a の Ag⁺錯体ではすべての芳香環側鎖が Ag⁺を覆うコンフォメーションはとっていない. この違いは 1a がベンジル基と スチリルメチル基を持ち, Ag^{+…}πおよび CH…π相互作用が有効に働かないため と考えられる. **図7**に 1a-Ag⊃N≡CCH₃部分の模式図を示す.

[1a Ag⊃N≡CCH₃]OTf complex

図 6. [1a Ag⊃N=CCH₃]PF₆と[1a Ag⊃N=CCH₃]OTfのX線結晶構造.アニ オンは省略.

図7. 1a·Ag⊃N≡CCH₃部分の模式図.

Spackman ら³⁴が開発したプログラムである CrystalExplorer によって計算され る Hirshfeld 表面解析 ³³は分子間相互作用を理解するための貴重なツールである。 Hirshfeld 表面解析ではファンデルワールス半径の和よりも近い分子間距離の領 域は赤、長い距離は青,ほぼ等しい距離は白で表示される. 図 8 と Supporting Information に記載した動画に示したように,図 8a と 8b のそれぞれ赤と白の部 分は C (sp^2) -H… π (C=N) の距離である.

図8. (a) [**1a**-Ag⊃N≡CCH₃]OTf と(b)[**1a**-Ag⊃N≡CCH₃]PF₆中の アセトニトリル分子の Hirshfeld 表面解析(アニオンは省略).

3-2-4. 計算化学的研究

Cao らは B3LYP/6-311++G (2df,2p) と B3LYP/aug-cc-pVTZ 計算を用いて H₂O, NH₃, アセチレン分子がアセトニトリル (CH₃CN) とメチルイソシアニド (CH₃NC) と T型 X-H (X=C, N) …π相互作用することを報告した ³⁰. CH₃C \equiv N…H₂O と CH₃C \equiv N…NH₃の C \equiv N 三重結合は炭素原子と窒素原子のπ電子を H₂O の反結合軌道 (σ *) に供与する. これらの包接錯体におけるアセトニトリ ルの C (*sp*²) -H と π (C \equiv N) の間に存在する相互作用のタイプを決定するため, X線構造を用いて HF, B3LYP, ω B97X-V 計算を行い, アセトニトリル分子の C

(sp) 原子とN(sp) 原子の Mulliken 原子電荷を得た.まず, CH₃CN/H₂O系と CH₃CN/NH₃系について B3LYP/aug-cc-pVTZ と HF/6-311+G (2df,2p) [6-311G*], B3LYP/6-311+G (2df,2p) [6-311G*], ωB97X-V/6-311+G (2df,2p) [6-311G*]を用 いて同様の計算を行い Spartan 20[™]による計算の精度を検証した(表 S5-S7) ³¹. Spartan 20[™]による計算結果は既報の値をよく再現していた. 次に, 図9に 示した部分構造における C (sp) 原子および N (sp) 原子の原子電荷を次のよ うに算出した(図 S8-S15), (i) CH₃CN (AN と略記)-Ag⁺-Cy (仮想的な Ag⁺/ サイクレン錯体における C(sp) 原子と N(sp) 原子の原子電荷を決定する; Cy は, N, N', N'', N'''-テトラメチルサイクレンを意味する), (ii) 1a-AN (C (sp^2) -H… π (C=N) 相互作用を有する仮想的な錯体における C (sp) 原子お よび N (sp) 原子の原子電荷を決定する), (iii) 1a-Ag⁺-AN. 表 S16 および図 S18-S20 に示すようにアセトニトリル単体, AN/H₂O, および AN/NH₃の原子 荷電は既報のようにそれぞれ正および負であった.芳香族側鎖を持たない仮想 構造である AN-Ag⁺-Cy 錯体ではアセトニトリルが Ag⁺に配位するため,アセト ニトリルの C (sp) と N (sp) の電荷はほとんど正であった. Ag⁺を含まない仮 想構造である **1a**-AN 中の C (*sp*) 原子と N (*sp*) 原子はそれぞれ正と負に帯電 しており、その正負の電荷はアセトニトリルそのものと同じ傾向を示している. しかし、C(sp)の原子荷電値はアセトニトリルの原子荷電値よりも低い.興 味深いことに、1a-Ag⁺-AN 中の C (sp) 原子の原子荷電は負であった. これら の結果は決定的ではないが、C (sp^2) -H ϵ_{π} (C=N) との間の相互作用は三重 結合のπ軌道から C (sp²)-H への電子の供与だけでは説明できないことを示唆 している.

63

図9. AN-Ag⁺-Cy: 1a-Ag⊃N≡CCH₃]OTfの芳香環側鎖をメチル基で置換した部分構造. 1a-AN: [1a-Ag⊃N≡CCH₃]OTfから Ag⁺と OTfを取り除いた部分構造. 1a-Ag⁺-AN: [1a-Ag ⊃N≡CCH₃]OTfから OTfを取り除いた部分構造.

図 10a および 10b はアセトニトリルの HOMO[-36]と側鎖の LUMO および LUMO[+1]の組み合わせ(黒丸はこれらの相互作用を示す),および,アセトニ トリルの LUMO[+4]と側鎖の HOMO[-1]および HOMO[-2]の組み合わせ(青丸は これらの相互作用を示す)をそれぞれ示すコンピューターグラフィックスであ る.さらに,アセトニトリルの π (C=N)から C (*sp*²)-Hへの電子移動,およ び C (*sp*²)-Hから π (C=N)への電子移動に関与する HOMO-LUMO ギャップ は約 9.4 (=-12.89-(-3.52)) eV および 5.8 (=-8.58-(-2.78)) eV であり, C (*sp*²)-Hからアセトニトリルの π (C=N)への電子移動が好ましいことを示し ている.したがって,これらの Ag⁺錯体における C (*sp*²)-H… π (C=N)の相 互作用は,アセトニトリルの反結合軌道と側鎖の結合軌道との相互作用として 説明するのが適切であると考えられる.C (*sp*²)-H… π (C=N)相互作用に関 する報告はなく,今回の発見は最初の例である.

図 10. (a) アセトニトリル (透明)の HOMO[-36] (-12.89eV), 側鎖 (メッシュ)の LUMO (-3.52eV) と LUMO[+1] (-3.42eV). (b) アセトニトリル (メッシュ)の LUMO[+4] (-2.78eV), 側鎖 (透明)の HOMO[-1] (-8.54eV) と HOMO[-2] (-8.58eV). 分子軌道の等値面は 0.0125 electrons/au³である. これらの HOMO と LUMO は [1a-Ag⊃N≡CCH₃]OTfのX線結晶構造の一部を用いて B3LYP (6-311+G (2df,2p) [6-311G*]で計算した.

3-3. 結論

2つのスチリルメチル基と2つのベンジル基を持つ銀食い分子(1aと1b)を 合成した.¹H NMR 滴定実験から1aと1bの4本の芳香環側鎖はサイクレン部位 に取り込まれたAg⁺を覆っているが、4本の芳香環側鎖によって形成された擬似 空孔には溶液中では有機分子を取り込まないことが示唆された.一方、固体状 態では1aのAgPF₆とAgOTf錯体において、サイクレン部位に捕捉されたAg⁺に アセトニトリル分子が配位していた.アセトニトリルの π (C=N)は芳香環側 鎖のC(*sp*²)-Hと相互作用する.C(*sp*²)-H…N(C=N)およびC(*sp*²)-H… C (C=N)の距離はそれぞれ約2.63-2.75および2.69-3.15Åである.分子計算から、この相互作用は主にスチリルメチル基のC (sp^2)-HからアセトニトリルのC (sp)原子とN (sp)原子への電子供与によるものであることが示唆された. このC (sp^2)-H… π (C=N)相互作用は実験的に観測された最初の例であった.

3-4. 実験項

3-4-1. 試薬および実験装置

すべての試薬は標準的な分析グレードのもので、さらに精製することなく使用した。シリカゲルカラムクロマトグラフィーにはシリカゲル 60N(球状、中性;和光ケミカル)を用いた。化合物 2 は当研究室の既報の手順に従って調製した。融点は Mel-Temp キャピラリー装置を使用し、補正はしなかった。FAB-MS スペクトルは日本電子 600H 質量分析計を,¹H および¹³C{¹H} NMR スペクトルは JEOL ECP400 と Bruker AVANCE II (400MHz)で測定した。元素分析は Yanaco MT-6 CHN Micro Corder で行った。紫外可視スペクトルは V-650 (JASCO) で測定した。DFT 計算は Spartan 20³¹,安定度定数は HypSpecTM ver. 1.1.33³²で算出した.

3-4-2. 1,4,7,10-Tetraazacyclododecane-2,6-dione (2)の合成³⁵

メタノール (4.5 L), ジエチレントリアミン (12.5 g, 0.121 mol), 2,2'-アザン ジイルジアセテートジエチル (21.5 g, 0.114 mol) を 5 L 丸底フラスコに入れ, 90 °C で 8 日間還流した. 反応後, 溶媒を減圧留去し, エタノールから再結晶し て 2 を無色結晶として得た. Yield 15% (3.45 g) (lit. 22%³⁵); mp 172.6–173.2 °C (lit.164–166 °C); ¹H NMR (400 MHz, CDCl₃) *δ*7.54 (s, 2H), 3.39 (s, 4H), 3.30 (q, J = 5.6 Hz, 4H), 2.80 (t, J = 5.6 Hz, 4H), 2.23 (s, 1H); FAB-MS (matrix, dithiothreitol (DTT):(α-thioglycerol) TG = 1:1): *m/z* 201 ([M+H]⁺, 10%).

3-4-3. 4,10-Bis(4-fluorobenzyl)-1,4,7,10-tetraazacyclododecane-2,6-dione (3)の合成

2 (1.50 g, 7.50 mmol), 4-フルオロベンズアルデヒド (3.78 g, 30.5 mmol) および 1,2-ジクロロエタン (120 mL) の混合物を 1 MPa (アルゴン雰囲気)下,室 温で3日間撹拌した. 撹拌後,トリアセトキシ水素化ホウ素ナトリウム (6.38 g, 30.1 mmol) を加え,アルゴン雰囲気下,室温でさらに1日間撹拌した. 反応終 了後,反応溶液を塩酸 (2 mol/L) 120 mL で 3 回抽出し,水層を回収した. そこ に飽和炭酸ナトリウム水溶液を加えて中和した後,クロロホルム 100 mL で 3 回 抽出して有機層を回収した. 硫酸ナトリウムを用いて脱水乾燥した後,吸引ろ 過をして溶媒を減圧留去した.アセトニトリルから再結晶を行い,3 を無色結 晶として得た. Yield 77% (2.41 g); mp 128.1–131.0 °C; ¹H NMR (400 MHz; CDCl₃) *δ*
7.35–7.25 (m, 4H), 7.08 (td, J_1 = 8.6 Hz, J_2 = 1.1 Hz, 4H), 7.02 (s, 2H), 3.80 (s, 2H), 3.66 (s, 2H), 3.26 (s, 4H), 3.24 (s, 4H), 2.60 (t, J = 5.6 Hz, 4H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 133.4, 127.1 (d, ² J_{CF} = 27.3 Hz), 124.6 (d, ² J_{CF} = 26.6 Hz), 97.7 (d, ⁴ J_{CF} = 3.2 Hz), 96.8 (d, ⁴ J_{CF} = 3.2 Hz), 94.3 (d, ³ J_{CF} = 8.0 Hz), 94.0 (d, ³ J_{CF} = 8.0 Hz), 40.5 (t, ² J_{CF} = 31.8 Hz), 25.7, 24.4, 21.8, 15.0; FAB-MS (matrix, DTT:TG = 1:1); *m/z* 417 ([M+H]⁺, 33%); Anal. Calcd. for C₂₂H₂₆N₄O₂F₂: C, 63.45; H, 6.29; N, 13.45. Found: C, 63.35; H, 6.23; N, 13.44.

3-4-4. 1,7-Bis(4-fluorobenzyl)-1,4,7,10-tetraazacyclododecane (4)の合成

500 mL 三口丸底フラスコ中に3 (1.75 g, 4.20 mmol) を入れて氷浴させたところに 1.0 mol/L のジイソブチルアルミニウムヒドリド (テトラヒドロフラン溶液) (84 mL) を加え,室温で1日撹拌した.撹拌後,氷浴中でベンゼン (250 mL) およびフッ化ナトリウム (14.7 g, 0.351 mol) を加え,さらに 30 分間撹拌した. 吸引ろ過を行い,溶媒を減圧留去した.水 50 mL を加えた後,ジクロロメタン 60 mL で 3 回抽出した. 有機層に硫酸ナトリウムを加えて脱水乾燥し,吸引ろ 過した後,溶媒を減圧留去した. アセトニトリルから再結晶を行い,4 を白色 粉末として得た.

3-4-5. 1,7-Dicinnamyl-4,10-bis(4-fluorobenzyl)-1,4,7,10-tetraazacyclo-dodecane (1a) の合成

50 mL 二口フラスコに 1,2-ジクロロエタン (25 mL), 4 (0.290 g, 0.749 mmol), シンナムアルデヒド (0.595 g, 4.49 mmol), トリアセトキシ水素化ナトリウム

(0.763 g, 3.60 mmol) を入れ, 窒素雰囲気下で 6 日間撹拌した. 反応終了後, 飽和炭酸水素ナトリウム水溶液 (30 mL) を加え, クロロホルム (20 mL) で 3 回抽出した. 有機層を集めて硫酸ナトリウムで脱水乾燥した後,吸引ろ過を行 い,減圧下で溶媒を留去した. シリカゲルカラムクロマトグラフィー (トルエ ン:エタノール=10:9→トルエン:エタノール:アンモニア水=10:9:1) で分離し,メタノールとクロロホルムの混合溶媒から再結晶を行い, 1a を無色 結晶として得た. Yield 57% (0.266 g); mp 107.2–108.0 °C; ¹H NMR (400 MHz; CDCl₃) δ 7.55 (dd, J_1 = 8.0 Hz, J_2 = 6.0 Hz, 4H), 7.32–7.17 (m, 10H), 6.93 (t, J = 8.7 Hz, 4H), 6.42 (d, J = 16.0 Hz, 2H), 6.20 (dt, J_I = 16.0 Hz, J_2 = 6.6 Hz, 2H), 3.49 (s, 4H), 3.07 (d, J = 6.0 Hz, 4H), 2.67 (s, 16H); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 161.8 (d, ¹ J_{CF} = 242.6 Hz), 137.2, 135.7, 131.9, 130.4 (d, ³ J_{CF} = 7.6 Hz), 128.5, 128.2, 127.2, 126.2, 114.9 (d, ² J_{CF} = 21.0 Hz), 59.3, 57.8, 52.7, 52.6; FAB-MS (matrix, DTT:TG = 1:1) *m/z* 621 ([M+H]⁺, 30%); Anal. Calcd. for C₄₀H₄₆N₄F₂: C, 77.39; H, 7.47; N, 9.02. Found: C, 77.17; H, 7.48; N, 8.98.

3-4-6. 1,7-Bis(4-fluorobenzyl)-4,10-bis((E)-3-(4-fluorophenyl)allyl)-1,4,7,10tetraazacyclo dodecane (1b)の合成

1,2-ジクロロエタン (25 mL), 4 (0.190 g, 0.492 mmol), (E) -3- (4-フルオロ フェニル)アクリルアルデヒド (0.444 g, 2.96 mmol), トリアセトキシ水素化ホ ウ素ナトリウム(0.763 g, 3.60 mmol)を 50 mL 二口フラスコに入れ, 窒素雰囲 気下,6日間撹拌した.反応終了後,飽和炭酸水素ナトリウム水溶液(30 mL) を加え、クロロホルム(20mL)で3回抽出した. 有機層を集めて硫酸ナトリウ ムで脱水乾燥した後,吸引ろ過を行い,減圧下で溶媒を留去した.シリカゲル カラムクロマトグラフィー(トルエン:エタノール=10:9→トルエン:エタ ノール:アンモニア水=10:9:1) で分離し、メタノールとクロロホルムの混 合溶媒から再結晶を行い, 1b を無色結晶として得た. Yield 72% (0.234 g); mp 145.4-146.3 °C; ¹H NMR (400 MHz; CDCl₃) δ 7.36 (dd, $J_1 = 8.0$ Hz, $J_2 = 6.0$ Hz, 4H), 7.22 (dd, $J_1 = 8.0$ Hz, $J_2 = 6.0$ Hz, 4H), 6.96 (t, J = 8.4 Hz, 4H), 6.94 (t, J = 8.4 Hz, 4H), 6.37 (d, *J* = 16.0 Hz, 2H), 6.08 (dt, *J*₁ = 16.0 Hz, *J*₂ = 6.5 Hz, 2H), 3.49 (s, 4H), 3.05 (d, J = 5.6 Hz, 4H), 2.67 (s, 16H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.1 (d, ¹ $J_{CF} = 245.8$ Hz), 161.8 (d, ${}^{1}J_{CF} = 244.3$ Hz), 135.8 (d, ${}^{4}J_{CF} = 2.9$ Hz), 133.4 (d, ${}^{4}J_{CF} = 3.6$ Hz), 130.7, 130.3 (d, ${}^{3}J_{CF} = 7.5$ Hz), 128.0, 127.6 (d, ${}^{3}J_{CF} = 8.0$ Hz), 115.4 (d, ${}^{2}J_{CF} = 21.7$ Hz), 114.8 $(d, {}^{2}J_{CF} = 21.2 \text{ Hz}), 59.3, 57.8, 52.7 (d, {}^{3}J_{CF} = 8.2 \text{ Hz}); \text{FAB-MS} (matrix, DTT:TG = 1:1)$ *m*/*z* 658 ([M+H]⁺, 89%); Anal. Calcd. for C₄₀H₄₄N₄F₄: C, 73.15; H, 6.75; N, 8.53. Calcd. for C₄₀H₄₄N₄F₄+0.1CH₃Cl: C, 72.02; H, 6.65; N, 8.34. Found: C, 72.27; H, 6.56; N, 8.27.

3-4-7. Ag⁺添加による紫外可視分光スペクトル測定

配位子 1a または 1b (6.31 x 10⁻³ mmol) を 25.0 mL のクロロホルム (2.52 x 10⁻⁴ mol/L) に溶かし、メタノール (2.52 x 10⁻⁵ mol/L) で 10 倍希釈した. この溶液 3.0 mL を石英セルに加えた. これに、AgOTf (75.8 mmol/L) のメタノール溶液 を[Ag⁺]/[配位子]=0.00, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00, 1.20, 1.40, 1.60, 1.80, 2.00 となるように加え、UV-vis スペクトルを測定した.

3-4-8. [1a-Ag⊃N≡CCH₃]PF₆の合成

1,2-ジクロロエタン1 mL に溶解した 1a (10.0 mg, 0.0162 mmol) にヘキサフル オロリン酸銀(I) (53.0 μ mol) のメタノール溶液 64.4 mL (64.4 μ L, 0.0171 mmol) を加え,完全に溶解させた.この溶液にジクロロメタン 1.0 mL とアセトニトリ ル 1.0 mL を加えて再結晶を行い,[1a-Ag⊃N≡CCH₃]PF₆の結晶を定量的に得た. 結晶を減圧下で乾燥させると結晶からアセトニトリルが消失した.Anal. Calcd for C₄₀H₄₆N₄F₂AgPF₆, C, 54.99; H, 5.31; N, 6.41. Found, C, 54.56; H, 5.45; N, 6.80.

3-4-9. [1a-Ag⊃N≡CCH₃]OTfの合成

1,2-ジクロロエタン1mLに1a (9.87 mg, 0.0159 mmol) を溶解させたとことに AgOTfのメタノール溶液 (64.4 μ L, 0.0161 mmol) を加えた. この溶液にジクロ ロメタン1.0 mLとアセトニトリル 1.0 mLを加えて再結晶を行い, [1a-Ag⊃N≡ CCH₃]OTf を定量的に得た. 結晶を減圧下で乾燥させると結晶からアセトニト リルが消失した. Calcd. for C₄₀H₄₆N₄F₂AgCF₃SO₃+0.5CH₃CN, C,56.16; H, 5.33; N, 7.02. Found, C, 56.4; H, 5.74; N, 6.63.

3-4-10. X 線結晶構造解析

X線データは Bruker SMART APEX II ULTRA 回折計で収集された. 化合物の セルパラメーターは、スポットの最小二乗法による精密化から得られた. デー タ収集、データ削減、半経験的吸収補正は、APEX2³⁶のソフトウェアパッケー ジを用いて行った. 構造決定のための計算はすべて SHELXTL パッケージ³⁷を 用いて行った. すべての場合において、非水素原子は異方的に精密化され、水 素原子は理想化された位置に配置され、それぞれの親原子とともに等方的に並 走的に精密化された. 関連する結晶構造のデータ収集と精密化データを表 S1-S4 にまとめた. CCDC 2218229 (1a)、2218230 ([1a-Ag⊃N≡CCH3]OTf)、 2218231 ([1a-Ag⊃N≡CCH3]PF6,)、2218232 (1b))には、本論文の補足結晶 学的データが含まれている. これらのデータは The Cambridge Crystallographic Data Centre (www.ccdc.cam.ac.uk/data_request/cif) から入手できる.

3-5. 参考文献

- M. Albrecht, "Let's Twist Again"-Double-Stranded, Triple-Stranded, and Circular Helicates, Chem. Rev. 101 (11) (2001) 3457-3497, https://pubs.acs.org/doi/10.1021/cr0103672.
- D. T. Quang, J. S. Kim, Fluoro- and Chromogenic Chemodosimeters for Heavy Metal Ion Detection in Solution and Biospecimens, Chem. Rev. 110 (10) (2010) 6280-6301, https://pubs.acs.org/doi/10.1021/cr100154p.
- D. Pellico, M. Gomez-Gallego, P. Ramirez-Lopez, M. J. Mancheno, M. A. Sierra, M. R. Torres, The Assembly of Macrocyclic Bis- and Tetra-β-lactams with Embedded Platinum or Palladium Square-Planar Centers, Chem. Eur. J. 15 (28) (2009) 6940-6952, S6940/6941-S6940/6937, https://doi.org/10.1002/chem.200900374.
- S. Dong, B. Zheng, F. Wang, F. Huang, Supramolecular Polymers Constructed from Macrocycle-Based Host-Guest Molecular Recognition Motifs, Acc. Chem. Res. 47 (7) (2014) 1982-1994, https://doi.org/10.1021/ar5000456.
- H. Maeda, Anion-responsive supramolecular gels, Chem. Eur. J. 14 (36) (2008) 11274-11282, <u>https://doi.org/10.1002/chem.200801333</u>.
- H. Ju, A. Taniguchi, K. Kikukawa, H. Horita, M. Ikeda, S. Kuwahara, Y. Habata, Inorg. Chem. 60 (2021) 9141-9147, DOI: 10.1021/acs.inorgchem.1c01161.
- H. Ju, M. Uchiyama, H. Horita, M. Ikeda, S. Kuwahara, Y. Habata, Inorg. Chem. 60 (15) (2021) 11320-11327, <u>https://doi.org/10.1021/acs.inorgchem.1c01289</u>.
- H. Ju, Y. Tsuruoka, M. Hayano, E. Lee, K-M. Park, M. Ikeda, J. Ishi-i, S. Kuwahara, Y. Habata, Angew. Chem. Int. Ed. 60 (2021) 650-654, oi.org/10.1002/anie.202010436.
- Y. Habata, M. Ikeda, S. Yamada, H. Takahashi, S. Ueno, T. Suzuki, S. Kuwahara, Argentivorous Molecules: Structural Evidence for Ag⁺-π Interactions in Solution, Org. Lett. 14 (17) (2012) 4576-4579, <u>https://doi.org/10.1021/ol3019538</u>.
- H. Ju, H. Tenma, M. Iwase, E. Lee, M. Ikeda, S. Kuwahara, Y. Habata, Inclusion of alkyl nitriles by tetra-armed cyclens with styrylmethyl groups, Dalton Trans. 49 (10) (2020) 3112-3119, https://pubs.rsc.org/en/content/articlelanding/2020/dt/d0dt00335b.

- Y. Kodama, K. Nishihata, M. Nishio, N. Nakagawa, Attractive interaction between aliphatic and aromatic systems, Tetrahedron Lett. 18 (24) (1977) 2105-2108, https://doi.org/10.1016/S0040-4039(01)83692-3.
- 12. M. Nishio, Stereochemistry and interactions between groups I. Conformation and reaction specificity, Kagaku No Ryoiki 33 (5) (1979) 422-432.
- M. Nishio, The CH/π hydrogen bond in chemistry. Conformation, supramolecules, optical resolution and interactions involving carbohydrates, Phys. Chem. Chem. Phys. 13 (31) (2011) 13873-13900, https://pubs.rsc.org/en/content/articlelanding/2011/cp/c1cp20404a.
- M. Nishio, M. Hirota, CH/π interaction: implications in organic chemistry, Tetrahedron 45 (23) (1989) 7201-7245, https://doi.org/10.1016/S0040-4020(01)89185-7.
- M. Nishio, Y. Umezawa, J. Fantini, M. S. Weiss, P. Chakrabarti, CH-π hydrogen bonds in biological macromolecules, Phys. Chem. Chem. Phys. 16 (25) (2014) 12648-12683, https://pubs.rsc.org/en/content/articlelanding/2014/cp/c4cp00099d.
- M. Nishio, Y. Umezawa, K. Honda, S. Tsuboyama, H. Suezawa, CH/π hydrogen bonds in organic and organometallic chemistry, CrystEngComm 11 (9) (2009) 1757-1788, https://doi.org/10.1039/B902318F.
- H. Suezawa, T. Yoshida, M. Hirota, H. Takahashi, Y. Umezawa, K. Honda, S. Tsuboyama, M. Nishio, The CH…π interaction as an important factor in the crystal packing and in determining the structure of clathrates, J. Chem. Soc., Perkin Trans. 2 (11) (2001) 2053-2058, https://doi.org/10.1039/B106052J.
- H. Takahashi, S. Tsuboyama, Y. Umezawa, K. Honda, M. Nishio, CH/π Interactions as Demonstrated in the Crystal Structure of Host/Guest Compounds. A Database Study, Tetrahedron 56 (34) (2000) 6185-6191, https://doi.org/10.1016/S0040-4020(00)00575-5.
- O. Takahashi, Y. Kohno, S. Iwasaki, K. Saito, M. Iwaoka, S. Tomoda, Y. Umezawa, S. Tsuboyama, M. Nishio, Hydrogen-bond-like nature of the CH/π interaction as evidenced by crystallographic database analyses and ab initio molecular orbital calculations, Bull. Chem. Soc. Jpn. 74 (12) (2001) 2421-2430, https://doi.org/10.1246/bcsj.74.2421.

- O. Takahashi, Y. Kohno, M. Nishio, Relevance of Weak Hydrogen Bonds in the Conformation of Organic Compounds and Bioconjugates: Evidence from Recent Experimental Data and High-Level ab Initio MO Calculations, Chem. Rev. 110 (10) (2010) 6049-6076, https://doi.org/10.1021/cr100072x.
- S. Tsuzuki, K. Honda, T. Uchimaru, M. Mikami, K. Tanabe, The Magnitude of the CH/π Interaction between Benzene and Some Model Hydrocarbons, J. Am. Chem. Soc. 2000, 122 (15), 3746-3753, https://doi.org/10.1021/ja993972j.
- Y. Umezawa, M. Nishio, CH/π interactions as demonstrated in the crystal structure of guanine-nucleotide binding proteins, Src homology-2 domains and human growth hormone in complex with their specific ligands, Bioorg. Med. Chem. 6 (4) (1998) 493-504. https://doi.org/10.1016/S0968-0896(98)00002-9.
- Y. Umezawa, S. Tsuboyama, K. Honda, J. Uzawa, M. Nishio, CH/π interaction in the crystal structure of organic compounds. A database study, Bull. Chem. Soc. Jpn. 71 (5) (1998) 1207-1213, https://doi.org/10.1246/bcsj.71.1207.
- Y. Umezawa, S. Tsuboyama, H. Takahashi, J. Uzawa, M. Nishio, CH/π interaction in the conformation of organic compounds. A database study, Tetrahedron 55 (33) (1999) 10047-10056. <u>https://doi.org/10.1016/S0040-4020(99)00539-6</u>.
- T. Steiner, Cooperative C≡C-H…C≡C-H interactions: crystal structure of DLprop-2-ynylglycine and database study of terminal alkynes, J. Chem. Soc., Chem. Commun. (1), 95-96 (1995) https://doi.org/10.1039/C39950000095.
- T. Steiner, E. B. Starikov, A. M. Amado, J. J. C. Teixeira-Dias, Weak hydrogen bonding. Part 2. The hydrogen bonding nature of short C-H···π contacts: crystallographic, spectroscopic and quantum mechanical studies of some terminal alkynes, J. Chem. Soc., Perkin Trans. 2 (7) (1995) 1321-1326, <u>https://doi.org/10.1039/P29950001321</u>.
- 27. T. Steiner, M. Tamm, B. Lutz, J. van der Maas, Weak hydrogen bonding. 4. First example of cooperative O-H…C≡C-H…Ph hydrogen bonding: crystalline 7-ethynyl-6,8-diphenyl-7H-benzocyclohepten-7-ol, Chem. Commun. (10) (1996) 1127-1128, https://doi.org/10.1039/CC9960001127.

- T. Steiner, M. Tamm, Weak hydrogen bonds from Cp donors to C≡C acceptors, J. Organomet. Chem. 570 (2) (1998) 235-239, <u>https://doi.org/10.1016/S0022-328X(98)00867-5</u>.
- L. Carlucci, G. Ciani, D. M. Proserpio, A new type of supramolecular entanglement in the silver(I) coordination polymer [Ag₂(bpethy)₅](BF₄)₂ [bpethy = 1,2-bis(4pyridyl)ethyne]. Chem. Commun. (5), 449-450 (1999), <u>https://doi.org/10.1039/A809361J</u>.
- 30. D.-l. Cao, F.-d. Ren, X.-q. Feng, J.-l. Wang, Y.-x. Li, Z.-y. Hu, S.-s. Chen, Unusual intermolecular T-shaped X– $H\cdots\pi$ interactions between CH₃CN/CH₃NC and H₂O, NH₃ or C₂H₂: A B3LYP and MP2 theoretical study, Journal of Molecular Structure: THEOCHEM 849 (1) (2008) 76-83, https://doi.org/10.1016/j.theochem.2007.10.018.
- 31. Spartan 20, ver. 1.0.0. Wavefunction Inc.: Irvine, CA., 2020.
- P. Gans, A. Sabatini, A. Vacca, Investigation of equilibria in solution. Determination of equilibrium constants with HYPERQUAD suite of programs, Talanta 43 (10) (1996) 1739-1753, <u>https://doi.org/10.1016/0039-9140(96)01958-3</u>.
- P. R. Spackman, M. J. Turner, J. J. McKinnon, S. K. Wolff, D. J. Grimwood, D. Jayatilaka, M. A. Spackman, CrystalExplorer: a program for Hirshfeld surface analysis, visualization and quantitative analysis of molecular crystals, J. Appl. Crystallogr. 54 (3) (2021) 1006-1011, https://doi.org/10.1107/S1600576721002910.
- M. A. Spackman, D. Jayatilaka, Hirshfeld surface analysis, CrystEngComm 11 (1) (2009) 19-32. <u>https://doi.org/10.1039/B818330A</u>.
- L. Fabbrizzi, T. A. Kaden, A. Perotti, B. Seghi, L. Siegfried, Complexation of divalent and trivalent nickel and copper ions by rigid and flexible dioxo tetraaza macrocycles, Inorg. Chem. 25 (3) (1986) 321, <u>https://doi.org/10.1021/ic00223a018</u>.
- APEX2: Data Collection and Processing Software. Ver. 2009 1-0; Bruker AXS: Madison, WI, USA: 2008.
- G. M. Sheldrick, Crystal structure refinement with SHELXL, Acta Crystallographica Section C Structural Chemistry 71 (1) (2015) 3-8, https://doi.org/10.1107/S2053229614024218.

3-6. Supporting Information

Scheme S1. Synthesis of 1a and 1b.

Figure S1. ¹H NMR spectrum of 1,4,7,10-tetraazacyclododecane-2,6-dion (2) (in CDCl₃).

Figure S2. ¹H NMR spectrum of 4,10-bis(4-fluorobenzyl)-1,4,7,10-tetraazacyclododecane-2,6-dione (**3**) (in CDCl₃).

Figure S3. ¹³C NMR spectrum of 4,10-bis(4-fluorobenzyl)-1,4,7,10-tetraazacyclododecane-2,6-dione (**3**) (in CDCl₃).

Figure S4. ¹H NMR spectrum of 1,7-bis(4-fluorobenzyl)-1,4,7,10-tetraazacyclododecane (4) (in CDCl₃).

Figure S5. ¹³C NMR spectrum of 1,7-bis(4-fluorobenzyl)-1,4,7,10-tetraazacyclododecane (**4**) (in CDCl₃).

Figure S6. ¹H NMR spectrum of 1,7-dicinnamyl-4,10-bis(4-fluorobenzyl)-1,4,7,10-tetraazacyclododecane (**1a**) (in CDCl₃).

Figure S7. ¹³C NMR spectrum of 1,7-dicinnamyl-4,10-bis(4-fluorobenzyl)-1,4,7,10-tetraazacyclododecane (**1a**) (in CDCl₃).

Figure S8. ¹H NMR spectrum of 1,7-bis(4-fluorobenzyl)-4,10-bis((E)-3-(4-fluorophenyl)allyl)-1,4,7,10-tetraazacyclododecane (**1b**) (in CDCl₃).

Figure S9. ¹³C NMR spectrum of 1,7-bis(4-fluorobenzyl)-4,10-bis((E)-3-(4-fluorophenyl)allyl)-1,4,7,10-tetraazacyclododecane (**1b**) (in CDCl₃).

Figure S10. Ag⁺-ion-induced 1 H NMR spectral changes of 1b.

Figure S11. Ag⁺-ion-induced Cold ESI mass spectral changes of **1b**.

Figure S12. Ag⁺-ion-induced UV spectral changes of 1a (top)and 1b (bottom).

" \diamond " and " $\cdot \cdot \cdot$ " marks in the titration curves (left graphs) indicated observed and calculated intensities, respectively. The ligand concentration was [Ligand] = 2.5 x 10⁻⁵ M in CHCl₃. [AgOTf] = 6.3 x 10⁻³ M in CH₃OH. Using the data, the stability constants between the ligands and Ag⁺ ion were calculated by HypSpec ver 1.1.33.

Figure S13. ¹H NMR spectra of **1a**, a mixture of **1a** and Ag^+ , a mixture of **1a**, Ag^+ , and acetonitrile, a mixture of **1a**, Ag^+ , acetonitrile, and D₂O water, acetonitrile only, and a mixture of acetonitrile and D₂O water in CDCl₃.

Figure S14. ORTEP diagram of 1a as 50% probability ellipsoids.

Figure S15. ORTEP diagram of 1b as 50% probability ellipsoids.

Figure S16. ORTEP diagram of $[1a \cdot Ag \supset N \equiv CCH_3]$ OTf as 50% probability ellipsoids. Anion is omitted.

Figure S17. ORTEP diagram of $[1a \cdot Ag \supset N \equiv CCH_3]PF_6$ as 50% probability ellipsoids. Anions and solvent are omitted.

Figure S18. Milliken atomic charges of AN, AN/H₂O, and. AN/NH₃ calculated by (a) B3LYP/aug-cc-p-VTZ, (b) HF/6-311+G(2df,2p)[6-311G*], and (c) ω B97X-V/6-311+G(2df,2p)[6-311G*].

Figure S19 Mulliken atomic charges of AN-Ag⁺-Cy, 1a-AN, and 1a-Ag⁺-AN (from $[1a \cdot Ag \supset N \equiv CCH_3]$ OTf complex) calculated by (a) B3LYP/aug-cc-p-VTZ, (b) HF/6-311+G(2df,2p)[6-311G*], and (c) ω B97X-V/6-11+G(2df,2p)[6-311G*].

Figure S20. Mulliken atomic charges of AN-Ag⁺-Cy, 1a-AN, and 1a-Ag⁺-AN (from $[1a \cdot Ag \supset N \equiv CCH_3]PF_6$ complex) calculated by (a) B3LYP/aug-cc-p-VTZ, (b) HF/6-311+G(2df,2p)[6-311G*], and (c) ω B97X-V/6-11+G(2df,2p)[6-311G*].

Table S1. Crystal data and structure refinement for 1a.

Identification code	aaa		
Empirical formula	C40 H46 F2 N4		
Formula weight	620.81		
Temperature	120(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	$P2_1/n$		
Unit cell dimensions	a = 16.302(9) Å	$\alpha = 90^{\circ}$.	
	b = 5.714(3) Å	$\beta = 90.603(7)^{\circ}$.	
	c = 17.747(9) Å	$\gamma = 90^{\circ}$.	
Volume	1652.8(15) Å ³		
Z	2		
Density (calculated)	1.247 Mg/m ³		
Absorption coefficient	0.081 mm ⁻¹		
F(000)	664		
Crystal size	0.230 x 0.220 x 0.210 mm ³		
Theta range for data collection	1.687 to 25.998°.		
Index ranges	-20 <= <i>h</i> <= 18, -7 <= <i>k</i> <= 6, -21 <= <i>l</i> <= 15		
Reflections collected	6514		
Independent reflections	3162 [R(int) = 0.0743]		
Completeness to theta = 25.242°	97.7 %		
Absorption correction	Semi-empirical from equivalents		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	3162 / 0 / 208		
Goodness-of-fit on F^2	1.116		
Final R indices $[I > 2 \operatorname{sigma}(I)]$	$R_1 = 0.0775, wR_2 = 0.1849$		
R indices (all data)	$R_1 = 0.1161, wR_2 = 0.2030$		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.230 and -0.368 e.Å ⁻³		

Table S2. Crystal data and structure refinement for $[1a \cdot Ag^+ \supset N \equiv CCH_3]PF_6$.

Identification code	aaa		
Empirical formula	C170 H199 Ag4 F32 N21 P4		
Formula weight	911.68		
Temperature	120(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	<i>P</i> -1		
Unit cell dimensions	<i>a</i> = 10.6031(16) Å	$\alpha = 68.9213(19)^{\circ}.$	
	<i>b</i> = 19.794(3) Å	$\beta = 84.5533(19)^{\circ}.$	
	c = 22.225(3) Å	$\gamma = 83.719(2)^{\circ}$.	
Volume	4318.4(11) Å ³		
Ζ	1		
Density (calculated)	1.423 Mg/m ³		
Absorption coefficient	0.575 mm ⁻¹		
<i>F</i> (000)	1902		
Crystal size	0.300 x 0.190 x 0.080 mm ³		
Theta range for data collection	0.984 to 26.000°.		
Index ranges	-13 <= h <= 13, -24 <= k <= 24, -27 <= l <= 27		
Reflections collected	48991		
Independent reflections	16965 [$R(int) = 0.0975$]		
Completeness to theta = 25.242°	100.0 %		
Absorption correction	Semi-empirical from equivalents		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	16965 / 96 / 1037		
Goodness-of-fit on F^2	1.032		
Final R indices $[I > 2 \operatorname{sigma}(I)]$	$R_1 = 0.0812, wR_2 = 0.2016$		
R indices (all data)	$R_1 = 0.1491, wR_2 = 0.2422$		
Extinction coefficient	n/a		
Largest diff. peak and hole	2.045 and -1.284 e.Å ⁻³		

Table S3. Crystal data and structure refinement for $[1a \cdot Ag^+ \supset N \equiv CCH_3]OTf$.

Identification code	aaa		
Empirical formula	C43 H49 Ag F5 N5 O3 S		
Formula weight	918.80		
Temperature	120(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P21/c		
Unit cell dimensions	a = 11.2818(6) Å	$\alpha = 90^{\circ}$.	
	<i>b</i> = 28.2770(13) Å	$\beta = 110.8582(9)^{\circ}.$	
	c = 14.3246(7) Å	$\gamma = 90^{\circ}$.	
Volume	4270.3(4) Å ³		
Ζ	4		
Density (calculated)	1.429 Mg/m ³		
Absorption coefficient	0.587 mm ⁻¹		
<i>F</i> (000)	1896		
Crystal size	0.240 x 0.190 x 0.040 mm ³		
Theta range for data collection	1.683 to 28.308°.		
Index ranges	-13 <= <i>h</i> <= 15, -37 <= <i>k</i> <= 32, -19 <= <i>l</i> <= 12		
Reflections collected	29127		
Independent reflections	10600 [R(int) = 0.0626]		
Completeness to theta = 25.242°	99.9 %		
Absorption correction	None		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	10600 / 6 / 561		
Goodness-of-fit on F^2	1.062		
Final R indices $[I > 2 \operatorname{sigma}(I)]$	$R_1 = 0.0607, wR_2 = 0.1492$		
R indices (all data)	$R_1 = 0.0995, wR_2 = 0.1704$		
Extinction coefficient	n/a		
Largest diff. peak and hole	1.180 and -1.573 e.Å ⁻³		

Table S4. Crystal data and structure refinement for 1b.

Identification code	aaa_a		
Empirical formula	C40 H44 F4 N4		
Formula weight	656.79		
Temperature	180(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	$P2_1/n$		
Unit cell dimensions	a = 9.932(7) Å	$\alpha = 90^{\circ}$.	
	<i>b</i> = 11.279(8) Å	$\beta = 90.189(12)^{\circ}$	
	c = 15.752(11) Å	$\gamma = 90^{\circ}$.	
Volume	1765(2) Å ³		
Ζ	2		
Density (calculated)	1.236 Mg/m ³		
Absorption coefficient	0.087 mm ⁻¹		
F(000)	696		
Crystal size	0.230 x 0.220 x 0.150 mm ³		
Theta range for data collection	2.223 to 25.998°.		
Index ranges	-12 <= <i>h</i> <= 11, -13 <= <i>k</i> <= 6, -19 <= <i>l</i> <= 18		
Reflections collected	9651		
Independent reflections	3454 [R(int) = 0.0718]		
Completeness to theta = 25.242°	99.8 %		
Absorption correction	Semi-empirical from equivalents		
Refinement method	Full-matrix least-squares on F^2		
Data / restraints / parameters	3454 / 0 / 217		
Goodness-of-fit on F^2	1.021		
Final R indices $[I > 2 \text{sigma}(I)]$	$R_1 = 0.0510, wR_2 = 0.1204$		
R indices (all data)	$R_1 = 0.0958, wR_2 = 0.1460$		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.148 and -0.192 e.Å ⁻³		

Table S5. Molecular calculations of $CH_3CN/H_2O.$

SPARTAN'20 Quantum Mechanics Driver: (Win/64b) Release 1.0.0 Job type: Single point. Method: RB3LYP Basis set: AUG-CC-PVTZ Number of basis functions: 299 Number of electrons: 32 Parallel Job: 8 threads SCF model: A restricted hybrid HF-DFT SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization SCF total energy: -209.2803973 hartrees Reason for exit: Successful completion Quantum Calculation CPU Time : 2:31.09 Quantum Calculation Wall Time: 19.54

SPARTAN'20 Quantum Mechanics Driver: (Win/64b) Release 1.0.0 Job type: Single point. Method: RHF Basis set: 6-311+G(2DF,2P) [6-311G*] Number of basis functions: 87 (small basis) Number of electrons: 32 Parallel Job: 8 threads SCF model: A restricted Hartree-Fock SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization Number of basis functions: 181 (large basis) SCF total energy: -208.0275847 hartrees Reason for exit: Successful completion Quantum Calculation CPU Time : 12.72 Quantum Calculation Wall Time: 2.04

SPARTAN'20 Quantum Mechanics Driver: (Win/64b) Release 1.0.0 Job type: Single point. Method: RB3LYP Basis set: 6-311+G(2DF,2P) [6-311G*] Number of basis functions: 87 (small basis) Number of electrons: 32 Parallel Job: 8 threads SCF model: A restricted hybrid HF-DFT SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization Number of basis functions: 181 (large basis) SCF total energy: -209.2720329 hartrees Reason for exit: Successful completion Quantum Calculation CPU Time : 17.16 Quantum Calculation Wall Time: 2.53

SPARTAN'20 Quantum Mechanics Driver: (Win/64b) Release 1.0.0 Job type: Single point. Method: RWB97XRV Basis set: 6-311+G(2DF,2P) [6-311G*] Number of basis functions: 87 (small basis) Number of electrons: 32 Parallel Job: 8 threads SCF model: A restricted hybrid HF-DFT SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization Number of basis functions: 181 (large basis) SCF total energy: -209.1885857 hartrees Reason for exit: Successful completion Quantum Calculation CPU Time : 58.63 Quantum Calculation Wall Time: 7.95

Table S6. Molecular calculations ofCH₃CN/NH₃.

SPARTAN'20 Quantum Mechanics Driver: (Win/64b) Release 1.0.0 Job type: Single point. Method: RB3LYP Basis set: AUG-CC-PVTZ Number of basis functions: 322 Number of electrons: 32 Parallel Job: 8 threads SCF model: A restricted hybrid HF-DFT SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization SCF total energy: -189.4020041 hartrees Reason for exit: Successful completion Quantum Calculation CPU Time : 2:39.02 Quantum Calculation Wall Time: 20.46

SPARTAN'20 Quantum Mechanics Driver: (Win/64b) Release 1.0.0 Job type: Single point. Method: RHF Basis set: 6-311+G(2DF,2P) [6-311G*] Number of basis functions: 90 (small basis) Number of electrons: 32 Parallel Job: 8 threads SCF model: A restricted Hartree-Fock SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization Number of basis functions: 190 (large basis) SCF total energy: -188.1897288 hartrees Reason for exit: Successful completion Quantum Calculation CPU Time : 11.88 Quantum Calculation Wall Time: 1.88

SPARTAN'20 Quantum Mechanics Driver: (Win/64b) Release 1.0.0 Job type: Single point. Method: RB3LYP Basis set: 6-311+G(2DF,2P) [6-311G*] Number of basis functions: 90 (small basis) Number of electrons: 32 Parallel Job: 8 threads SCF model: A restricted hybrid HF-DFT SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization Number of basis functions: 190 (large basis) SCF total energy: -189.3945799 hartrees Reason for exit: Successful completion Quantum Calculation CPU Time : 18.30 Quantum Calculation Wall Time: 2.68

SPARTAN'20 Quantum Mechanics Driver: (Win/64b) Release 1.0.0 Job type: Single point. Method: RWB97XRV Basis set: 6-311+G(2DF,2P) [6-311G*] Number of basis functions: 90 (small basis) Number of electrons: 32 Parallel Job: 8 threads SCF model: A restricted hybrid HF-DFT SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization Number of basis functions: 190 (large basis) SCF total energy: -189.3191230 hartrees Reason for exit: Successful completion Quantum Calculation CPU Time : 1:05.91 Quantum Calculation Wall Time: 8.88

Table S7. Molecular calculations of $CH_3CN.$

SPARTAN'20 Quantum Mechanics Driver: (Win/64b) Release 1.0.0 Job type: Single point. Method: RB3LYP Basis set: AUG-CC-PVTZ Number of basis functions: 207 Number of electrons: 22 Parallel Job: 8 threads SCF model: A restricted hybrid HF-DFT SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization SCF total energy: -132.8086373 hartrees Reason for exit: Successful completion Quantum Calculation CPU Time : 44.89 Quantum Calculation Wall Time: 6.05

SPARTAN'20 Quantum Mechanics Driver: (Win/64b) Release 1.0.0 Job type: Single point. Method: RHF Basis set: 6-311+G(2DF,2P) [6-311G*] Number of basis functions: 63 (small basis) Number of electrons: 22 Parallel Job: 8 threads SCF model: A restricted Hartree-Fock SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization Number of basis functions: 129 (large basis) SCF total energy: -131.9697620 hartrees Reason for exit: Successful completion Quantum Calculation CPU Time : 8.39 Quantum Calculation Wall Time: 1.37

SPARTAN'20 Quantum Mechanics Driver: (Win/64b) Release 1.0.0 Job type: Single point. Method: RB3LYP Basis set: 6-311+G(2DF,2P) [6-311G*] Number of basis functions: 63 (small basis) Number of electrons: 22 Parallel Job: 8 threads SCF model: A restricted hybrid HF-DFT SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization Number of basis functions: 129 (large basis) SCF total energy: -132.8036893 hartrees Reason for exit: Successful completion Quantum Calculation CPU Time : 10.88 Quantum Calculation Wall Time: 1.68

SPARTAN'20 Quantum Mechanics Driver: (Win/64b) Release 1.0.0 Job type: Single point. Method: RWB97XRV Basis set: 6-311+G(2DF,2P) [6-311G*] Number of basis functions: 63 (small basis) Number of electrons: 22 Parallel Job: 8 threads SCF model: A restricted hybrid HF-DFT SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization Number of basis functions: 129 (large basis) SCF total energy: -132.7542170 hartrees Reason for exit: Successful completion Quantum Calculation CPU Time : 34.48 Quantum Calculation Wall Time: 4.76

 Table S8. Molecular calculations of AN

 Ag^+ -Cy ([1a· Ag^+ \supset NCCH₃]OTf).

SPARTAN'20 Quantum Mechanics Driver: (Win/64b) Release 1.0.0 Job type: Single point. Method: RHF Basis set: 6-311+G(2DF,2P)<KR [6-311G(D)<KR] Number of basis functions: 475 (small basis) Number of electrons: 168 Parallel Job: 8 threads SCF model: A restricted Hartree-Fock SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization Number of basis functions: 965 (large basis) SCF total energy: -966.6003929 hartrees Reason for exit: Successful completion Quantum Calculation CPU Time : 22:48.95 Quantum Calculation Wall Time: 5:57.77

SPARTAN'20 Quantum Mechanics Driver: (Win/64b) Release 1.0.0 Job type: Single point. Method: RB3LYP Basis set: 6-311+G(2DF,2P)<KR [6-311G(D)<KR] Number of basis functions: 475 (small basis) Number of electrons: 168 Parallel Job: 8 threads SCF model: A restricted hybrid HF-DFT SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization Number of basis functions: 965 (large basis) SCF total energy: -973.0062916 hartrees Reason for exit: Successful completion Quantum Calculation CPU Time : 26:49.19

SPARTAN'20 Quantum Mechanics Driver: (Win/64b) Release 1.0.0 Job type: Single point. Method: RWB97XRV Basis set: 6-311+G(2DF,2P)<KR [6-311G(D)<KR] Number of basis functions: 475 (small basis) Number of electrons: 168 Parallel Job: 8 threads SCF model: A restricted hybrid HF-DFT SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization Number of basis functions: 965 (large basis) SCF total energy: -972.7170961 hartrees Reason for exit: Successful completion Quantum Calculation CPU Time: 54:55.03 Quantum Calculation Wall Time: 12:03.01

Table S9. Cartesian coordinates of AN-

 $Ag^+\text{-}Cy\ ([\textbf{1a}\text{-}Ag^+ \bigcirc NCCH_3]OTf).$

1 Ag Ag1 -0.5604792 -0.192249 0.4613051 2 N N8 -0.8119167 1.8646212 -0.8577321 3 N N9 -0.627428 -1.0117169 -1.9178593 4 N N6 1.5084761 -1.543255 0.2420935 5 N N 7 2.2490609 -2.1553302 7 C C14 -1.0828574 0.1781798 -2.6883183 8 C C2 0.8116203 -1.2786521 -2.1553302 9 C C3 1.4294077 -2.1679642 1.0871846 10 C C12 2.4488623 0.4391768 1.1413649 11 C C12 2.4488623 0.4391768 1.247181 12 C C6 1.4726318 2.2146906 0.0328578 13 C C7 0.1843447 2.8639308 -0.3791791 14 H 258 2.352962 -3.20316 0.9989781 </th <th></th> <th>Atom</th> <th></th> <th>х</th> <th>Y</th> <th>Z</th>		Atom		х	Y	Z
2 N N8 -0.8119167 1.8646212 -0.8577321 3 N N9 -0.6274238 -1.0117169 -1.9178593 4 N N6 1.5084761 -1.543325 0.2420935 5 N N7 1.2849762 1.3069983 1.2082165 6 C C9 -0.498806 1.5015442 -2.2490609 7 C C14 -1.0828574 0.1781798 -2.6883183 8 C C2 0.8116203 -1.2786521 -2.1553302 9 C C3 1.4294077 -2.1679642 -1.0871846 10 C C12 2.4488623 0.4391768 1.413649 12 C C6 1.4726318 2.2146906 0.0838558 13 C C7 0.1843447 2.8639308 -0.3792907 14 C C25 1.6539619 -2.514282 2.1247182 15 H H25A 3.525262 -3.230316	1	Ag	Ag1	-0.5604792	-0.192249	0.4613051
3 N N9 -0.6274238 -1.0117169 -1.9178593 4 N N6 1.5084761 -1.543325 0.2420935 5 N N7 1.2849762 1.3069833 1.2082165 6 C C9 -0.498806 1.5015442 -2.2490609 7 C C14 -1.0828574 0.1781798 -2.6883183 8 C C2 0.8116203 -1.2786521 -2.1553302 9 C C3 1.4294077 -2.1679642 -1.0871846 10 C C12 2.4488623 0.4391768 1.413649 12 C C6 1.4726318 2.2146906 0.0382558 13 C C7 0.1843447 2.8639308 -0.37907 14 C C25 1.6539619 -2.5819218 1.2839245 15 H H25A 1.958638 -2.10173 2.759513 17 C C11 -2.7938968 -1.201173	2	N	N8	-0.8119167	1.8646212	-0.8577321
4 N N6 1.5084761 -1.543325 0.2420935 5 N N7 1.2849762 1.3069983 1.2082165 6 C C9 -0.498806 1.5015442 -2.2490609 7 C C14 -1.0828574 0.1781798 -2.6883183 8 C C2 0.8116203 -1.2786521 -2.1553302 9 C C3 1.4294077 -2.1679642 -1.0871846 10 C C13 2.64470604 -0.6099006 0.3296776 11 C C12 2.4488623 0.4391768 1.413649 12 C C6 1.4726318 2.2146906 0.0838558 13 C C7 0.1843447 2.8639308 -0.3792907 14 H 2.3529262 -3.230316 0.9989781 17 C C11 -2.7938986 -1.20173 2.755513 18 H H1 0.7259543 -3.1384224 1.4799037	3	Ν	N9	-0.6274238	-1.0117169	-1.9178593
5 N N7 1.2849762 1.3069983 1.2082165 6 C C9 -0.498806 1.5015442 -2.2490609 7 C C14 -10828574 0.1781798 -2.6883183 8 C C2 0.8116203 -1.2786521 -2.1553302 9 C C3 1.4294077 -2.1679642 -1.0871846 10 C C12 2.4488623 0.4391768 1.413649 12 C C6 1.4726318 2.2146906 0.0838558 13 C C7 0.1843447 2.8639308 -0.3792907 14 C C25 1.6539619 -2.5892918 1.2839245 15 H H25A 1.9586386 -2.1642882 2.1247182 16 H H25B 2.3529262 -3.203316 0.9989781 17 C C11 -2.7939868 -1.201173 2.7559513 18 H H2 -3.3581552 -2.2511692	4	N	N6	1.5084761	-1.543325	0.2420935
6 C C9 -0.498806 1.5015442 -2.2490609 7 C C14 -1.0828574 0.1781798 -2.6883183 8 C C2 0.8116203 -1.2786521 -2.1553302 9 C C3 1.4294077 -2.1679642 -1.0871846 10 C C12 2.4488623 0.4391768 1.413649 12 C C6 1.4726318 2.2146906 0.0838558 13 C C7 0.1843447 2.8639308 -0.3792907 14 C C25 1.6539619 -2.5892918 1.2839245 15 H H25A 1.9586386 -2.1642882 2.1247182 16 H H25B 2.3529262 -3.230316 0.9989781 17 C C11 -2.7938968 -1.201173 2.759513 18 H H1 0.7259543 -3.184824 1.4799037 19 C C10 -3.852619 -1.181727	5	N	N7	1.2849762	1.3069983	1.2082165
7 C C14 -1.0828574 0.1781798 -2.6883183 8 C C2 0.8116203 -1.2786521 -2.1553302 9 C C3 1.4294077 -2.1679642 -1.0871846 10 C C13 2.6470604 -0.609906 0.3296776 11 C C12 2.4488623 0.4391768 1.413649 12 C C6 1.4726318 2.2146906 0.0838558 13 C C7 0.1843447 2.8639308 -0.3792907 14 C C25 1.559619 -2.5892918 1.2839245 15 H H258 2.3529262 -3.230316 0.9989781 17 C C11 -2.7938968 -1.20173 2.759513 18 H H1 0.7259543 -3.1384824 1.4799037 19 C C10 -3.85261 -1.7583984 3.7151942 20 H H2 -3.3581592 -2.2511692	6	С	C9	-0.498806	1.5015442	-2.2490609
8 C C2 0.8116203 -1.2786521 -2.1553302 9 C C3 1.4294077 -2.1679642 -1.0871846 10 C C13 2.6470604 -0.6099006 0.3296776 11 C C12 2.4488623 0.4391768 1.413649 12 C C6 1.4726318 2.2146906 0.0838558 13 C C7 0.1843447 2.8639308 -0.3792907 14 C C25 1.653619 -2.5892918 1.2839245 15 H H25A 1.9586386 -1.201173 2.759513 16 H H25B 2.3529262 -3.230316 0.9989781 17 C C11 -2.7938968 -1.201173 2.759513 18 H H1 0.7259543 -3.1384824 1.4799037 19 C C10 -3.8581592 -2.2511692 4.5603312 21 H H4 -4.4781388 -0.9383953 <td>7</td> <td>С</td> <td>C14</td> <td>-1.0828574</td> <td>0.1781798</td> <td>-2.6883183</td>	7	С	C14	-1.0828574	0.1781798	-2.6883183
9 C C3 1.4294077 -2.1679642 -1.0871846 10 C C13 2.6470604 -0.6099006 0.3296776 11 C C12 2.4488623 0.4391768 1.413649 12 C C6 1.4726318 2.2146906 0.0838558 13 C C7 0.1843447 2.8639308 -0.3792907 14 C C25 1.6539619 -2.5892918 1.2839245 15 H H25A 1.9586386 -2.1642882 2.1247182 16 H H25B 2.3529262 -3.230316 0.9989781 17 C C11 -2.7938968 -1.20173 2.75513 18 H H1 0.7259543 -3.1384824 1.4799037 19 C C10 -3.852161 -1.7583984 3.7151942 20 H H2 -3.3581592 -2.2511692 4.6803312 21 H H3 -4.4781388 -0.9383953 <td>8</td> <td>С</td> <td>C2</td> <td>0.8116203</td> <td>-1.2786521</td> <td>-2.1553302</td>	8	С	C2	0.8116203	-1.2786521	-2.1553302
10 C C13 2.6470604 -0.6099006 0.3296776 11 C C12 2.4488623 0.4391768 1.413649 12 C C6 1.4726318 2.2146906 0.0838558 13 C C7 0.1843447 2.8639308 -0.3792907 14 C C25 1.6539619 -2.5892918 1.2839245 15 H H25A 1.9586386 -2.1642882 2.1247182 16 H H25B 2.3529262 -3.230316 0.9989781 17 C C11 -2.7938968 -1.201173 2.759513 18 H H1 0.7259543 -3.1384824 1.4799037 19 C C10 -3.852261 -1.7583984 3.7151942 20 H H2 -3.3581592 -2.2511692 4.603312 21 H H3 -4.4781388 -0.9383953 4.0854484 23 N N5 -1.9907813 -0.7774441<	9	С	C3	1.4294077	-2.1679642	-1.0871846
11 C C12 2.4488623 0.4391768 1.413649 12 C C6 1.4726318 2.2146906 0.0838558 13 C C7 0.1843447 2.8639308 -0.3792907 14 C C25 1.6539619 -2.5892918 1.2839245 15 H H25A 1.9586386 -2.1642882 2.1247182 16 H H25B 2.3529262 -3.2303316 0.9989781 17 C C11 -2.7938968 -1.201173 2.759513 18 H H1 0.7259543 -3.1384824 1.4799037 19 C C10 -3.3581592 -2.2511692 4.5603312 21 H H2 -3.3581592 -2.2511692 4.5603312 23 N N5 -1.9907813 -0.774441 2.0581282 24 H H5 3.3448412 1.0693914 1.4492553 25 H H6 2.352965 -0.077035 2.3727267 26 H H7 3.5552619 -1.1811727	10	С	C13	2.6470604	-0.6099006	0.3296776
12 C C6 1.4726318 2.2146906 0.0838558 13 C C7 0.1843447 2.8639308 -0.3792907 14 C C25 1.6539619 -2.5892918 1.2839245 15 H H25A 1.9586386 -2.1642882 2.1247182 16 H H25B 2.3529262 -3.230316 0.9989781 17 C C11 -2.7938968 -1.201173 2.759513 18 H H1 0.7259543 -3.1384824 1.4799037 19 C C10 -3.852261 -1.7583984 3.7151942 20 H H2 -3.3581592 -2.2511692 4.6603312 21 H H3 -4.4781388 -0.9383953 4.0854484 23 N N5 -1.9907813 -0.777441 2.0581282 24 H H5 3.3448412 1.0693914 1.4492553 25 H H6 2.326965 -0.077035 <td>11</td> <td>С</td> <td>C12</td> <td>2.4488623</td> <td>0.4391768</td> <td>1.413649</td>	11	С	C12	2.4488623	0.4391768	1.413649
13 C C7 0.1843447 2.8639308 -0.3792907 14 C C25 1.6539619 -2.5892918 1.2839245 15 H H25A 1.9586386 -2.1642882 2.1247182 16 H H25B 2.3529262 -3.2303316 0.9989781 17 C C11 -2.7938968 -1.201173 2.759513 18 H H1 0.7259543 -3.1384824 1.4799037 19 C C10 -3.852261 -1.7583984 3.7151942 20 H H2 -3.3581592 -2.2511692 4.5603312 21 H H3 -4.4781388 -0.9383953 4.0854484 23 N N5 -1.9007813 -0.7774441 2.0581282 24 H H5 3.3448412 1.0693914 1.4492553 25 H H6 2.3269965 -0.0770935 2.3727267 26 H H7 3.5552619 -1.181172	12	С	C6	1.4726318	2.2146906	0.0838558
14 C C25 1.6539619 -2.5892918 1.2839245 15 H H25A 1.9586386 -2.1642882 2.1247182 16 H H25B 2.3529262 -3.2303316 0.9989781 17 C C11 -2.7938968 -1.201173 2.759513 18 H H1 0.7259543 -3.1384824 1.4799037 19 C C10 -3.852261 -1.7583984 3.7151942 20 H H2 -3.3581592 -2.2511692 4.5603312 21 H H3 -4.4781388 -0.9383953 4.0854484 23 N N5 -1.9907813 -0.7774441 2.0581282 24 H H5 3.3448412 1.0693914 1.4492553 25 H H6 2.326965 -0.077035 2.3727267 26 H H7 3.5552619 -1.1811727 0.55362 27 H H8 2.7627115 -0.1029105 <td>13</td> <td>С</td> <td>C7</td> <td>0.1843447</td> <td>2.8639308</td> <td>-0.3792907</td>	13	С	C7	0.1843447	2.8639308	-0.3792907
15 H H25A 1.9586386 -2.1642882 2.1247182 16 H H25B 2.3529262 -3.2303316 0.9989781 17 C C11 -2.7938968 -1.201173 2.759513 18 H H1 0.7259543 -3.1384824 1.4799037 19 C C10 -3.852261 -1.7583984 3.7151942 20 H H2 -3.3581592 -2.2511692 4.5603312 21 H H3 -4.4781388 -0.9383953 4.0854484 23 N N5 -1.9907813 -0.7774441 2.0581282 24 H H5 3.3448412 1.0693914 1.4492553 25 H H6 2.3269965 -0.0770935 2.3727267 26 H H7 3.5552619 -1.1811727 0.553362 27 H H8 2.7627115 -0.1029105 -0.6351033 28 C C5 0.9060085 1.9981975 2.4501782 29 H H9 1.7436263 2.61515	14	С	C25	1.6539619	-2.5892918	1.2839245
16 H H25B 2.3529262 -3.2303316 0.9989781 17 C C11 -2.7938968 -1.201173 2.759513 18 H H1 0.7259543 -3.1384824 1.4799037 19 C C10 -3.852261 -1.7583984 3.7151942 20 H H2 -3.3581592 -2.2511692 4.5603312 21 H H3 -4.4781388 -0.9383953 4.0854484 23 N N5 -1.9907813 -0.7774441 2.0581282 24 H H5 3.3448412 1.0693914 1.4492553 25 H H6 2.3269965 -0.0770935 2.3727267 26 H H7 3.5552619 -1.1811727 0.553362 27 H H8 2.7627115 -0.1029105 -0.6351033 28 C C5 0.9060085 1.9981975 2.4501782 29 H H9 1.7436263 2.6151504 <td>15</td> <td>н</td> <td>H25A</td> <td>1.9586386</td> <td>-2.1642882</td> <td>2.1247182</td>	15	н	H25A	1.9586386	-2.1642882	2.1247182
17 C C11 -2.7938968 -1.201173 2.759513 18 H H1 0.7259543 -3.1384824 1.4799037 19 C C10 -3.852261 -1.7583984 3.7151942 20 H H2 -3.3581592 -2.2511692 4.5603312 21 H H3 -4.4781388 -2.4845325 3.183948 22 H H4 -4.4781388 -0.9383953 4.0854484 23 N N5 -1.9907813 -0.7774441 2.0581282 24 H H5 3.3448412 1.0693914 1.4492553 25 H H6 2.3269965 -0.0770935 2.3727267 26 H H7 3.5552619 -1.1811727 0.553362 27 H H8 2.7627115 -0.1029105 -0.6351033 28 C C5 0.9060085 1.9981975 2.4501782 29 H H9 1.7436263 2.6151504 2.7951156 30 H H10 0.6567601 1.257806 <td>16</td> <td>н</td> <td>H25B</td> <td>2.3529262</td> <td>-3.2303316</td> <td>0.9989781</td>	16	н	H25B	2.3529262	-3.2303316	0.9989781
18 H H1 0.7259543 -3.1384824 1.4799037 19 C C10 -3.852261 -1.7583984 3.7151942 20 H H2 -3.3581592 -2.2511692 4.5603312 21 H H3 -4.4781388 -0.9383953 4.0854484 23 N N5 -1.9907813 -0.7774441 2.0581282 24 H H5 3.3448412 1.0693914 1.4492553 25 H H6 2.3269965 -0.077035 2.3727267 26 H H7 3.5552619 -1.1811727 0.553362 27 H H8 2.7627115 -0.1029105 -0.6351033 28 C C5 0.9060085 1.9981975 2.4501782 29 H H9 1.7436263 2.6151504 2.7951156 30 H H10 0.6567601 1.257806 3.2188862 31 H H13 1.898546 1.6494934	17	С	C11	-2.7938968	-1.201173	2.759513
19 C C10 -3.852261 -1.7583984 3.7151942 20 H H2 -3.3581592 -2.2511692 4.5603312 21 H H3 -4.4781388 -2.4845325 3.183948 22 H H4 -4.4781388 -0.9383953 4.0854484 23 N N5 -1.9907813 -0.7774441 2.0581282 24 H H5 3.3448412 1.0693914 1.4492553 25 H H6 2.3269965 -0.077035 2.3727267 26 H H7 3.5552619 -1.1811727 0.553362 27 H H8 2.7627115 -0.1029105 -0.6351033 28 C C5 0.9060085 1.9981975 2.4501782 29 H H9 1.7436263 2.6151504 2.7951156 30 H H10 0.6567601 1.257806 3.2188862 31 H H11 0.0352806 2.6366284 2.261883 32 H H12 2.1715143 3.0032557	18	н	H1	0.7259543	-3.1384824	1.4799037
20 H H2 -3.3581592 -2.2511692 4.5603312 21 H H3 -4.4781388 -2.4845325 3.183948 22 H H4 -4.4781388 -0.9383953 4.0854484 23 N N5 -1.9907813 -0.7774441 2.0581282 24 H H5 3.3448412 1.0693914 1.4492553 25 H H6 2.3269965 -0.077035 2.3727267 26 H H7 3.5552619 -1.1811727 0.553362 27 H H8 2.7627115 -0.1029105 -0.6351033 28 C C5 0.9060085 1.9981975 2.4501782 29 H H9 1.7436263 2.6151504 2.7951156 30 H H10 0.6567601 1.257806 3.2188862 31 H H11 0.0352806 2.6366284 2.261883 32 H H12 2.1715143 3.0032557	19	С	C10	-3.852261	-1.7583984	3.7151942
21 H H3 -4.4781388 -2.4845325 3.183948 22 H H4 -4.4781388 -0.9383953 4.0854484 23 N N5 -1.9907813 -0.7774441 2.0581282 24 H H5 3.3448412 1.0693914 1.4492553 25 H H6 2.3269965 -0.077035 2.3727267 26 H H7 3.5552619 -1.1811727 0.553362 27 H H8 2.7627115 -0.1029105 -0.6351033 28 C C5 0.9060085 1.9981975 2.4501782 29 H H9 1.7436263 2.6151504 2.7951156 30 H H10 0.6567601 1.257806 3.2188862 31 H H11 1.0352806 2.6366284 2.261883 32 H H12 2.1715143 3.0032557 0.3854261 33 H H13 1.898546 1.6494934 -0.7530183 34 H H14 0.4125408 3.5545659	20	н	H2	-3.3581592	-2.2511692	4.5603312
22 H H4 -4.4781388 -0.9383953 4.0854484 23 N N5 -1.9907813 -0.7774441 2.0581282 24 H H5 3.3448412 1.0693914 1.4492553 25 H H6 2.3269965 -0.077035 2.3727267 26 H H7 3.5552619 -1.1811727 0.553362 27 H H8 2.7627115 -0.1029105 -0.6351033 28 C C5 0.9060085 1.9981975 2.4501782 29 H H9 1.7436263 2.6151504 2.7951156 30 H H10 0.6567601 1.257806 3.2188862 31 H H11 1.0352806 2.6366284 2.261883 32 H H12 2.1715143 3.0032557 0.3854261 33 H H13 1.898546 1.6494934 -0.7530183 34 H H14 0.4125408 3.5545659	21	н	НЗ	-4.4781388	-2.4845325	3.183948
23 N N5 -1.9907813 -0.7774441 2.0581282 24 H H5 3.3448412 1.0693914 1.4492553 25 H H6 2.3269965 -0.077035 2.3727267 26 H H7 3.5552619 -1.1811727 0.553362 27 H H8 2.7627115 -0.1029105 -0.6351033 28 C C5 0.9060085 1.9981975 2.4501782 29 H H9 1.7436263 2.6151504 2.7951156 30 H H10 0.6567601 1.257806 3.2188862 31 H H11 0.0352806 2.6366284 2.261883 32 H H12 2.1715143 3.0032557 0.3854261 33 H H13 1.8985546 1.6494934 -0.7530183 34 H H14 0.4125408 3.5545659 -1.1991481 35 H H15 -0.2501545 3.4217998	22	Н	H4	-4.4781388	-0.9383953	4.0854484
24 H H5 3.3448412 1.0693914 1.4492553 25 H H6 2.3269965 -0.0770935 2.3727267 26 H H7 3.5552619 -1.1811727 0.553362 27 H H8 2.7627115 -0.1029105 -0.6351033 28 C C5 0.9060085 1.9981975 2.4501782 29 H H9 1.7436263 2.6151504 2.7951156 30 H H10 0.6567601 1.257806 3.2188862 31 H H11 0.0352806 2.6366284 2.261883 32 H H12 2.1715143 3.0032557 0.3854261 33 H H13 1.8985546 1.6494934 -0.7530183 34 H H14 0.4125408 3.5545659 -1.1991481 35 H H15 -0.2501545 3.4217998 0.4580915 36 C C8 -2.1478731 2.4725191	23	N	N5	-1.9907813	-0.7774441	2.0581282
25 H H6 2.3269965 -0.0770935 2.3727267 26 H H7 3.5552619 -1.1811727 0.553362 27 H H8 2.7627115 -0.1029105 -0.6351033 28 C C5 0.9060085 1.9981975 2.4501782 29 H H9 1.7436263 2.6151504 2.7951156 30 H H10 0.6567601 1.257806 3.2188862 31 H H11 0.0352806 2.6366284 2.261883 32 H H12 2.1715143 3.0032557 0.3854261 33 H H13 1.8985546 1.6494934 -0.7530183 34 H H14 0.4125408 3.5545659 -1.1991481 35 H H15 -0.2501545 3.4217998 0.4580915 36 C C8 -2.1478731 2.4725191 -0.7601503 37 H H16 -2.1830406 3.378192	24	н	H5	3.3448412	1.0693914	1.4492553
26 H H7 3.5552619 -1.1811727 0.553362 27 H H8 2.7627115 -0.1029105 -0.6351033 28 C C5 0.9060085 1.9981975 2.4501782 29 H H9 1.7436263 2.6151504 2.7951156 30 H H10 0.6567601 1.257806 3.2188862 31 H H11 0.0352806 2.6366284 2.261883 32 H H12 2.1715143 3.0032557 0.3854261 33 H H13 1.8985546 1.6494934 -0.7530183 34 H H14 0.4125408 3.5545659 -1.1991481 35 H H15 -0.2501545 3.4217998 0.4580915 36 C C8 -2.1478731 2.4725191 -0.7601503 37 H H16 -2.1830406 3.378192 -1.3763779 38 H H17 -2.3554092 2.7328424	25	н	H6	2.3269965	-0.0770935	2.3727267
27 H H8 2.7627115 -0.1029105 -0.6351033 28 C C5 0.9060085 1.9981975 2.4501782 29 H H9 1.7436263 2.6151504 2.7951156 30 H H10 0.6567601 1.257806 3.2188862 31 H H11 0.0352806 2.6366284 2.261883 32 H H12 2.1715143 3.0032557 0.3854261 33 H H13 1.8985546 1.6494934 -0.7530183 34 H H14 0.4125408 3.5545659 -1.1991481 35 H H15 -0.2501545 3.4217998 0.4580915 36 C C8 -2.1478731 2.4725191 -0.7601503 37 H H16 -2.1830406 3.378192 -1.3763779 38 H H17 -2.3554092 2.7328424 0.2840608 39 H H18 -2.9005526 1.7594501 -1.1154282 40 H H20 -0.8913911 2.2860	26	Н	H7	3.5552619	-1.1811727	0.553362
Init Init <thinit< th=""> Init Init <thi< td=""><td>27</td><td>н</td><td>H8</td><td>2.7627115</td><td>-0.1029105</td><td>-0.6351033</td></thi<></thinit<>	27	н	H8	2.7627115	-0.1029105	-0.6351033
29 H H9 1.7436263 2.6151504 2.7951156 30 H H10 0.6567601 1.257806 3.2188862 31 H H11 0.0352806 2.6366284 2.261883 32 H H12 2.1715143 3.0032557 0.3854261 33 H H13 1.8985546 1.6494934 -0.7530183 34 H H14 0.4125408 3.5545659 -1.1991481 35 H H15 -0.2501545 3.4217998 0.4580915 36 C C8 -2.1478731 2.4725191 -0.7601503 37 H H16 -2.1830406 3.378192 -1.3763779 38 H H17 -2.3554092 2.7328424 0.2840608 39 H H18 -2.9005526 1.7594501 -1.1154282 40 H H20 -0.8913911 2.2860085 -2.9061066 41 H H21 0.5908723 1.4485696	28	C	C5	0.9060085	1,9981975	2.4501782
30 H H10 0.6567601 1.257806 3.2188862 31 H H11 0.0352806 2.6366284 2.261883 32 H H12 2.1715143 3.0032557 0.3854261 33 H H13 1.8985546 1.6494934 -0.7530183 34 H H14 0.4125408 3.5545659 -1.1991481 35 H H15 -0.2501545 3.4217998 0.4580915 36 C C8 -2.1478731 2.4725191 -0.7601503 37 H H16 -2.1830406 3.378192 -1.3763779 38 H H17 -2.3554092 2.7328424 0.2840608 39 H H18 -2.9005526 1.7594501 -1.1154282 40 H H20 -0.8913911 2.2860085 -2.9061066 41 H H21 0.5908723 1.4485696 -2.353996 42 H H22 -0.813949 0.022840	29	н	H9	1.7436263	2.6151504	2.7951156
31 H H11 0.0352806 2.6366284 2.261883 32 H H12 2.1715143 3.0032557 0.3854261 33 H H13 1.8985546 1.6494934 -0.7530183 34 H H14 0.4125408 3.5545659 -1.1991481 35 H H15 -0.2501545 3.4217998 0.4580915 36 C C8 -2.1478731 2.4725191 -0.7601503 37 H H16 -2.1830406 3.378192 -1.3763779 38 H H17 -2.3554092 2.7328424 0.2840608 39 H H18 -2.9005526 1.7594501 -1.1154282 40 H H20 -0.813911 2.2860085 -2.9061066 41 H H21 0.5908723 1.4485696 -2.353996 42 H H22 -0.813949 0.0228405 -3.7394007 43 H H23 -2.1730216 0.2430874 -2.5958765 44 C C1 -1.3993693 -	30	н	H10	0.6567601	1.257806	3.2188862
32 H H12 2.1715143 3.0032557 0.3854261 33 H H13 1.8985546 1.6494934 -0.7530183 34 H H14 0.4125408 3.5545659 -1.1991481 35 H H15 -0.2501545 3.4217998 0.4580915 36 C C8 -2.1478731 2.4725191 -0.7601503 37 H H16 -2.1830406 3.378192 -1.3763779 38 H H17 -2.3554092 2.7328424 0.2840608 39 H H18 -2.9005526 1.7594501 -1.1154282 40 H H20 -0.813911 2.2860085 -2.9061066 41 H H21 0.5908723 1.4485696 -2.353996 42 H H22 -0.813949 0.0228405 -3.7394007 43 H H23 -2.1730216 0.2430874 -2.5958765 44 C C1 -1.3993693 -2.1	31	Н	H11	0.0352806	2.6366284	2.261883
33 H H13 1.8985546 1.6494934 -0.7530183 34 H H14 0.4125408 3.5545659 -1.1991481 35 H H15 -0.2501545 3.4217998 0.4580915 36 C C8 -2.1478731 2.4725191 -0.7601503 37 H H16 -2.1830406 3.378192 -1.3763779 38 H H17 -2.3554092 2.7328424 0.2840608 39 H H18 -2.9005526 1.7594501 -1.1154282 40 H H20 -0.813911 2.2860085 -2.9061066 41 H H21 0.5908723 1.4485696 -2.353996 42 H H22 -0.813949 0.0228405 -3.7394007 43 H H23 -2.1730216 0.2430874 -2.5958765 44 C C1 -1.3993693 -2.1852927 -2.3545077 45 H H19 -1.071692 -3.0676624 -1.7930205 46 H H24 -1.2360115	32	н	H12	2.1715143	3.0032557	0.3854261
34 H H14 0.4125408 3.5545659 -1.1991481 35 H H15 -0.2501545 3.4217998 0.4580915 36 C C8 -2.1478731 2.4725191 -0.7601503 37 H H16 -2.1830406 3.378192 -1.3763779 38 H H17 -2.3554092 2.7328424 0.2840608 39 H H18 -2.9005526 1.7594501 -1.1154282 40 H H20 -0.8913911 2.2860085 -2.9061066 41 H H21 0.5908723 1.4485696 -2.353996 42 H H22 -0.813949 0.0228405 -3.7394007 43 H H23 -2.1730216 0.2430874 -2.5958765 44 C C1 -1.3993693 -2.1852927 -2.3545077 45 H H19 -1.071692 -3.0676624 -1.7930205 46 H H24 -1.2360115 <t-< td=""><td>33</td><td>н</td><td>H13</td><td>1.8985546</td><td>1.6494934</td><td>-0.7530183</td></t-<>	33	н	H13	1.8985546	1.6494934	-0.7530183
35 H H15 -0.2501545 3.4217998 0.4580915 36 C C8 -2.1478731 2.4725191 -0.7601503 37 H H16 -2.1830406 3.378192 -1.3763779 38 H H17 -2.3554092 2.7328424 0.2840608 39 H H18 -2.9005526 1.7594501 -1.1154282 40 H H20 -0.8913911 2.2860085 -2.9061066 41 H H21 0.5908723 1.4485696 -2.353996 42 H H22 -0.813949 0.0228405 -3.7394007 43 H H23 -2.1730216 0.2430874 -2.5958765 44 C C1 -1.3993693 -2.1852927 -2.3545077 45 H H19 -1.071692 -3.0676624 -1.7930205 46 H H24 -1.2360115 -2.3522495 -3.425328 47 H H25 -2.465559 <td< td=""><td>34</td><td>н</td><td>H14</td><td>0.4125408</td><td>3.5545659</td><td>-1.1991481</td></td<>	34	н	H14	0.4125408	3.5545659	-1.1991481
36 C C8 -2.1478731 2.4725191 -0.7601503 37 H H16 -2.1830406 3.378192 -1.3763779 38 H H17 -2.3554092 2.7328424 0.2840608 39 H H18 -2.9005526 1.7594501 -1.1154282 40 H H20 -0.8913911 2.2860085 -2.9061066 41 H H21 0.5908723 1.4485696 -2.353996 42 H H22 -0.813949 0.0228405 -3.7394007 43 H H23 -2.1730216 0.2430874 -2.5958765 44 C C1 -1.3993693 -2.1852927 -2.3545077 45 H H19 -1.071692 -3.0676624 -1.7930205 46 H H24 -1.2360115 -2.3522495 -3.425328 47 H H25 -2.465559 -2.0103636 -2.1705092 48 H H26 0.9205689 <t< td=""><td>35</td><td>Н</td><td>H15</td><td>-0.2501545</td><td>3.4217998</td><td>0.4580915</td></t<>	35	Н	H15	-0.2501545	3.4217998	0.4580915
37 H H16 -2.1830406 3.378192 -1.3763779 38 H H17 -2.3554092 2.7328424 0.2840608 39 H H18 -2.9005526 1.7594501 -1.1154282 40 H H20 -0.8913911 2.2860085 -2.9061066 41 H H21 0.5908723 1.4485696 -2.353996 42 H H22 -0.813949 0.0228405 -3.7394007 43 H H23 -2.1730216 0.2430874 -2.5958765 44 C C1 -1.3993693 -2.1852927 -2.3545077 45 H H19 -1.071692 -3.0676624 -1.7930205 46 H H24 -1.2360115 -2.3522495 -3.425328 47 H H25 -2.465559 -2.0103636 -2.1705092 48 H H26 0.9205689 -1.7719904 -3.1279369 49 H H27 1.3477216 -0.3228069 -2.1684357 50 H H28 2.4447113	36	с	C8	-2.1478731	2.4725191	-0.7601503
38 H H17 -2.3554092 2.7328424 0.2840608 39 H H18 -2.9005526 1.7594501 -1.1154282 40 H H20 -0.8913911 2.2860085 -2.9061066 41 H H21 0.5908723 1.4485696 -2.353996 42 H H22 -0.813949 0.0228405 -3.7394007 43 H H23 -2.1730216 0.2430874 -2.5958765 44 C C1 -1.3993693 -2.1852927 -2.3545077 45 H H19 -1.071692 -3.0676624 -1.7930205 46 H H24 -1.2360115 -2.3522495 -3.425328 47 H H25 -2.465559 -2.0103636 -2.1705092 48 H H26 0.9205689 -1.7719904 -3.1279369 49 H H27 1.3477216 -0.3228069 -2.1684357 50 H H28 2.4447113	37	Н	H16	-2.1830406	3.378192	-1.3763779
39 H H18 -2.9005526 1.7594501 -1.1154282 40 H H20 -0.8913911 2.2860085 -2.9061066 41 H H21 0.5908723 1.4485696 -2.353996 42 H H22 -0.813949 0.0228405 -3.7394007 43 H H23 -2.1730216 0.2430874 -2.5958765 44 C C1 -1.3993693 -2.1852927 -2.3545077 45 H H19 -1.071692 -3.0676624 -1.7930205 46 H H24 -1.2360115 -2.3522495 -3.425328 47 H H25 -2.465559 -2.0103636 -2.1705092 48 H H26 0.9205689 -1.7719904 -3.1279369 49 H H27 1.3477216 -0.3228069 -2.1684357 50 H H28 2.4447113 -2.4322173 -1.4042733 51 H H29 0.824052	38	н	H17	-2.3554092	2.7328424	0.2840608
40 H H20 -0.8913911 2.2860085 -2.9061066 41 H H21 0.5908723 1.4485696 -2.353996 42 H H22 -0.813949 0.0228405 -3.7394007 43 H H23 -2.1730216 0.2430874 -2.5958765 44 C C1 -1.3993693 -2.1852927 -2.3545077 45 H H19 -1.071692 -3.0676624 -1.7930205 46 H H24 -1.2360115 -2.3522495 -3.425328 47 H H25 -2.465559 -2.0103636 -2.1705092 48 H H26 0.9205689 -1.7719904 -3.1279369 49 H H27 1.3477216 -0.3228069 -2.1684357 50 H H28 2.4447113 -2.4322173 -1.4042733 51 H H29 0.824052 -3.0778654 -1.0044774	39	н	H18	-2.9005526	1.7594501	-1.1154282
41 H H21 0.5908723 1.4485696 -2.353996 42 H H22 -0.813949 0.0228405 -3.7394007 43 H H23 -2.1730216 0.2430874 -2.5958765 44 C C1 -1.3993693 -2.1852927 -2.3545077 45 H H19 -1.071692 -3.0676624 -1.7930205 46 H H24 -1.2360115 -2.3522495 -3.425328 47 H H25 -2.465559 -2.0103636 -2.1705092 48 H H26 0.9205689 -1.7719904 -3.1279369 49 H H27 1.3477216 -0.3228069 -2.1684357 50 H H28 2.4447113 -2.4322173 -1.4042733 51 H H29 0.824052 -3.0778654 -1.0044774	40	н	H20	-0.8913911	2.2860085	-2.9061066
42 H H22 -0.813949 0.0228405 -3.7394007 43 H H23 -2.1730216 0.2430874 -2.5958765 44 C C1 -1.3993693 -2.1852927 -2.3545077 45 H H19 -1.071692 -3.0676624 -1.7930205 46 H H24 -1.2360115 -2.3522495 -3.425328 47 H H25 -2.465559 -2.0103636 -2.1705092 48 H H26 0.9205689 -1.7719904 -3.1279369 49 H H27 1.3477216 -0.3228069 -2.1684357 50 H H28 2.4447113 -2.4322173 -1.4042733 51 H H29 0.824052 -3.0778654 -1.0044774	41	Н	H21	0.5908723	1.4485696	-2.353996
43 H H23 -2.1730216 0.2430874 -2.5958765 44 C C1 -1.3993693 -2.1852927 -2.3545077 45 H H19 -1.071692 -3.0676624 -1.7930205 46 H H24 -1.2360115 -2.3522495 -3.425328 47 H H25 -2.465559 -2.0103636 -2.1705092 48 H H26 0.9205689 -1.7719904 -3.1279369 49 H H27 1.3477216 -0.3228069 -2.1684357 50 H H28 2.4447113 -2.4322173 -1.4042733 51 H H29 0.824052 -3.0778654 -1.0044774	42	н	H22	-0.813949	0.0228405	-3.7394007
44 C C1 -1.3993693 -2.1852927 -2.3545077 45 H H19 -1.071692 -3.0676624 -1.7930205 46 H H24 -1.2360115 -2.3522495 -3.425328 47 H H25 -2.465559 -2.0103636 -2.1705092 48 H H26 0.9205689 -1.7719904 -3.1279369 49 H H27 1.3477216 -0.3228069 -2.1684357 50 H H28 2.4447113 -2.4322173 -1.4042733 51 H H29 0.824052 -3.0778654 -1.0044774	43	н	H23	-2.1730216	0.2430874	-2.5958765
45 H H19 -1.071692 -3.0676624 -1.7930205 46 H H24 -1.2360115 -2.3522495 -3.425328 47 H H25 -2.465559 -2.0103636 -2.1705092 48 H H26 0.9205689 -1.7719904 -3.1279369 49 H H27 1.3477216 -0.3228069 -2.1684357 50 H H28 2.4447113 -2.4322173 -1.4042733 51 H H29 0.824052 -3.0778654 -1.0044774	44	C	C1	-1.3993693	-2.1852927	-2.3545077
46 H H24 -1.2360115 -2.3522495 -3.425328 47 H H25 -2.465559 -2.0103636 -2.1705092 48 H H26 0.9205689 -1.7719904 -3.1279369 49 H H27 1.3477216 -0.3228069 -2.1684357 50 H H28 2.4447113 -2.4322173 -1.4042733 51 H H29 0.824052 -3.0778654 -1.0044774	45	н	H19	-1.071692	-3.0676624	-1.7930205
47 H H25 -2.465559 -2.0103636 -2.1705092 48 H H26 0.9205689 -1.7719904 -3.1279369 49 H H27 1.3477216 -0.3228069 -2.1684357 50 H H28 2.4447113 -2.4322173 -1.4042733 51 H H29 0.824052 -3.0778654 -1.0044774	46	н	H24	-1.2360115	-2.3522495	-3.425328
48 H H26 0.9205689 -1.7719904 -3.1279369 49 H H27 1.3477216 -0.3228069 -2.1684357 50 H H28 2.4447113 -2.4322173 -1.4042733 51 H H29 0.824052 -3.0778654 -1.0044774	47	н	H25	-2.465559	-2.0103636	-2.1705092
49 H H27 1.3477216 -0.3228069 -2.1684357 50 H H28 2.4447113 -2.4322173 -1.4042733 51 H H29 0.824052 -3.0778654 -1.0044774	48	Н	H26	0.9205689	-1.7719904	-3.1279369
50 H H28 2.4447113 -2.4322173 -1.4042733 51 H H29 0.824052 -3.0778654 -1.0044774	49	н	H27	1.3477216	-0.3228069	-2.1684357
51 H H29 0.824052 -3.0778654 -1.0044774	50	Н	H28	2.4447113	-2.4322173	-1.4042733
	51	н	H29	0.824052	-3.0778654	-1.0044774

Table S10. Molecular calculations of **1a**-AN ([**1a** \cdot Ag⁺ \supset NCCH₃]OTf).

Quantum Calculation Wall Time: 1:27:36.25

SPARTAN'20 Quantum Mechanics Driver: (Win/64b) Release 1.0.0 Job type: Single point. Method: RHF Basis set: 6-311+G(2DF,2P) [6-311G*] Number of basis functions: 1029 (small basis) Number of electrons: 354 Parallel Job: 8 threads SCF model: A restricted Hartree-Fock SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization Number of basis functions: 2107 (large basis) SCF total energy: -2090.1037119 hartrees Reason for exit: Successful completion Quantum Calculation CPU Time : 2:26:15.73 Quantum Calculation Wall Time: 1:05:19.02

SPARTAN'20 Quantum Mechanics Driver: (Win/64b) Release 1.0.0 Job type: Single point. Method: RB3LYP Basis set: 6-311+G(2DF,2P) [6-311G*] Number of basis functions: 1029 (small basis) Number of electrons: 354 Parallel Job: 8 threads SCF model: A restricted hybrid HF-DFT SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization Number of basis functions: 2107 (large basis) SCF total energy: -2103.4210544 hartrees Reason for exit: Successful completion Quantum Calculation CPU Time: 2:48:27.78

SPARTAN'20 Quantum Mechanics Driver: (Win/64b) Release 1.0.0 Job type: Single point. Method: RWB97XRV Basis set: 6-311+G(2DF,2P) [6-311G*] Number of basis functions: 1029 (small basis) Number of electrons: 354 Parallel Job: 8 threads SCF model: A restricted hybrid HF-DFT SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization Number of basis functions: 2107 (large basis) SCF total energy: -2102.7944112 hartrees Reason for exit: Successful completion Quantum Calculation CPU Time: 6:20:29.69 Quantum Calculation Wall Time: 2:40:00.28

Table S11. Molecular calculations of **1a**- Ag^+ -AN ([**1a**·Ag+ \supset NCCH₃]OTf).

SPARTAN'20 Quantum Mechanics Driver: (Win/64b) Release 1.0.0 Job type: Single point. Method: RHF Basis set: 6-311+G(2DF,2P)<KR [6-311G(D)<KR] Number of basis functions: 1069 (small basis) Number of electrons: 372 Parallel Job: 8 threads SCF model: A restricted Hartree-Fock SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization Number of basis functions: 2147 (large basis) SCF total energy: -2236.1386271 hartrees Reason for exit: Successful completion Quantum Calculation CPU Time: 1:54:28.69 Quantum Calculation Wall Time: 14:44.95

SPARTAN'20 Quantum Mechanics Driver: (Win/64b) Release 1.0.0 Job type: Single point. Method: RB3LYP Basis set: 6-311+G(2DF,2P)<KR [6-311G(D)<KR] Number of basis functions: 1069 (small basis) Number of electrons: 372 Parallel Job: 8 threads SCF model: A restricted hybrid HF-DFT SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization Number of basis functions: 2147 (large basis) SCF total energy: -2250.3590482 hartrees Reason for exit: Successful completion Quantum Calculation CPU Time: 2:10:19.61

Quantum Calculation Wall Time: 16:46.72

SPARTAN'20 Quantum Mechanics Driver: (Win/64b) Release 1.0.0 Job type: Single point. Method: RWB97XRV Basis set: 6-311+G(2DF,2P)<KR [6-311G(D)<KR] Number of basis functions: 1069 (small basis) Number of electrons: 372 Parallel Job: 8 threads SCF model: A restricted hybrid HF-DFT SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization Number of basis functions: 2147 (large basis) SCF total energy: -2249.6820587 hartrees Reason for exit: Successful completion Quantum Calculation CPU Time: 7:11:59.53 Quantum Calculation Wall Time: 2:56:04.51

Table S12. Molecular calculations of AN-

 Ag^+ -Cy ([1a· Ag^+ \supset NCCH₃]PF₆).

SPARTAN'20 Quantum Mechanics Driver: (Win/64b) Release 1.0.0 Job type: Single point. Method: RHF Basis set: 6-311+G(2DF,2P)<KR [6-311G(D)<KR] Number of basis functions: 475 (small basis) Number of electrons: 168 Parallel Job: 8 threads SCF model: A restricted Hartree-Fock SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization Number of basis functions: 965 (large basis) SCF total energy: -966.4483599 hartrees Reason for exit: Successful completion Quantum Calculation CPU Time : 9:28.13 Quantum Calculation Wall Time: :43.55

SPARTAN'20 Quantum Mechanics Driver: (Win/64b) Release 1.0.0 Job type: Single point. Method: RB3LYP Basis set: 6-311+G(2DF,2P)<KR [6-311G(D)<KR] Number of basis functions: 475 (small basis) Number of electrons: 168 Parallel Job: 8 threads SCF model: A restricted hybrid HF-DFT SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization Number of basis functions: 965 (large basis) SCF total energy: -972.8353385 hartrees Reason for exit: Successful completion Quantum Calculation CPU Time : 7:50.06

SPARTAN'20 Quantum Mechanics Driver: Release 1.0.0 (Win/64b) Job type: Single point. Method: RWB97XRV Basis set: 6-311+G(2DF,2P)<KR [6-311G(D)<KR] Number of basis functions: 475 (small basis) Number of electrons: 168 Parallel Job: 8 threads SCF model: A restricted hybrid HF-DFT SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization Number of basis functions: 965 (large basis) SCF total energy: -972.5311996 hartrees Reason for exit: Successful completion Quantum Calculation CPU Time: 7:04.36 Quantum Calculation Wall Time: 3:08.09

Table S13. Cartesian coordinates of AN 50 N N5 1.5635897 -1.2848992 -2.0807071 51 H H5 -2.1420037 -2.0034032 -2.1457558

).
).

Atom	х	Y	Z	
1 Ag	Ag2	0.3685391	-0.6517671	-0.3186349
2 N	N1	-0.3898854	-1.4732618	1.8458111
3 N	N2	-2.0952617	-0.6108557	-0.4851417
4 N	N3	-0.1868393	1.7292403	-1.0406034
5 N	N4	1.5132769	0.8239268	1.2979202
6 C	C1	-1.8417172	-1.7242727	1.7556782
7 H	H1A	-2.2267682	-1.7481886	2.6684752
8 H	H1B	-1.9932127	-2.6101981	1.3377858
9 C	C2	-2.5623728	-0.6506776	0.9340883
10 H	H2A	-3.5365731	-0.8277662	0.9498464
11 H	H2B	-2.4098253	0.2334862	1.349147
12 C	C3	-2.4708443	0.6440901	-1.1190658
13 H	H3A	-3.4208473	0.8291247	-0.913279
14 H	H3B	-2.3940445	0.5376696	-2.099707
15 C	C4	-1.6260465	1.8652692	-0.6895957
16 H	H4A	-1.9879524	2.6762111	-1.1270646
17 H	H4B	-1.7091586	1.9859522	0.2894693
18 C	C5	0.6695311	2.6281434	-0.2412121
19 H	H5A	0.2686993	3.5338092	-0.2312894
20 H	H5B	1.5595672	2.6949602	-0.6671552
21 C	C6	0.8410156	2.1286314	1.2241603
22 H	H6A	1.3691458	2.7939905	1.7346188
23 H	H6B	-0.0500725	2.0598821	1.6515135
24 C	C7	1.3049706	0.1624051	2.6275206
25 H	H7A	1.4627784	0.8253622	3.3443707
26 H	H7B	1.9740757	-0.5607658	2.7340893
27 C	C8	-0.0963628	-0.4317278	2.7995432
28 H	H8A	-0.1794749	-0.7986405	3.7151288
29 H	H8B	-0.7654679	0.2914432	2.704087
30 C	C9	0.2644911	-2.7517163	2.277471
31 H	H9A	-0.261535	-3.1454021	3.0164498
32 H	H9B	1.1671518	-2.5435046	2.6291521
33 C	C16	-2.6896712	-1.7359537	-1.2348511
34 H	H16A	-3.6196852	-1.4994263	-1.4791012
35 H	H16B	-2.727545	-2.527682	-0.6401166
36 C	C25	0.0572368	1.9245438	-2.5053748
37 H	H25A	-0.44354	1.2337042	-3.0038923
38 H	H25B	1.0209165	1.7867948	-2.6876109
39 C	C32	2.9882539	0.9567673	1.0884067
40 H	H32A	3.1597384	1.6762448	0.4321914
41 H	H32B	3.4153871	1.2168205	1.9428769
42 C	C11	2.2170998	-1.3444334	-3.0219091
43 H	H10	-0.2349392	2.9118151	-2.8810671
44 H	H18	0.3606218	-3.4953046	1.478064
45 H	H33	3.4436287	0.0261859	0.7308202
46 C	C10	3.1084582	-1.4247776	-4.2640791
47 H	H2	4.1612883	-1.4051187	-3.9601405
48 H	H3	2.9010923	-0.5703508	-4.9184265
49 H	H4	2.9010923	-2.3563793	-4.8029053

Table S14. Molecular calculations of 1a

AN ([$1a \cdot Ag^+ \supset NCCH_3$]PF₆).

SPARTAN'20 Quantum Mechanics Driver: (Win/64b) Release 1.0.0 Job type: Single point. Method: RHF Basis set: 6-311+G(2DF,2P)<KR [6-311G(D)<KR] Number of basis functions: 475 (small basis) Number of electrons: 168 Parallel Job: 8 threads SCF model: A restricted Hartree-Fock SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization Number of basis functions: 965 (large basis) SCF total energy: -966.4483599 hartrees Reason for exit: Successful completion Quantum Calculation CPU Time : 9:28.13 Quantum Calculation Wall Time: :43.55

SPARTAN'20 Quantum Mechanics Driver: (Win/64b) Release 1.0.0 Job type: Single point. Method: RB3LYP Basis set: 6-311+G(2DF,2P)<KR [6-311G(D)<KR] Number of basis functions: 475 (small basis) Number of electrons: 168 Parallel Job: 8 threads SCF model: A restricted hybrid HF-DFT SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization Number of basis functions: 965 (large basis) SCF total energy: -972.8353385 hartrees Reason for exit: Successful completion Quantum Calculation CPU Time : 7:50.06

SPARTAN'20 Quantum Mechanics Driver: (Win/64b) Release 1.0.0 Job type: Single point. Method: RWB97XRV Basis set: 6-311+G(2DF,2P)<KR [6-311G(D)<KR] Number of basis functions: 475 (small basis) Number of electrons: 168 Parallel Job: 8 threads SCF model: A restricted hybrid HF-DFT SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization Number of basis functions: 965 (large basis) SCF total energy: -972.5311996 hartrees Reason for exit: Successful completion Quantum Calculation CPU Time: 7:04.36 Quantum Calculation Wall Time: 3:08.09

Table S15. Molecular calculations of 1a-

 Ag^+ -AN ([**1**a· Ag^+ \supset NCCH₃]PF₆).

SPARTAN'20 Quantum Mechanics Driver: (Win/64b)Release 1.0.0 Job type: Single point. Method: RHF Basis set: 6-311+G(2DF,2P)<KR [6-311G(D)<KR] Number of basis functions: 1069 (small basis) Number of electrons: 372 Parallel Job: 8 threads SCF model: A restricted Hartree-Fock SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization Number of basis functions: 2147 (large basis) SCF total energy: -2236.1304680 hartrees Reason for exit: Successful completion Quantum Calculation CPU Time : 2:51:04.91 Quantum Calculation Wall Time: 1:12:24.63

SPARTAN'20 Quantum Mechanics Driver: (Win/64b) Release 1.0.0 Job type: Single point. Method: RB3LYP Basis set: 6-311+G(2DF,2P)<KR [6-311G(D)<KR] Number of basis functions: 1069 (small basis) Number of electrons: 372 Parallel Job: 8 threads SCF model: A restricted hybrid HF-DFT SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization Reason for exit: Aborted by user Quantum Calculation CPU Time : 7:11.63 Quantum Calculation Wall Time: :18.28

SPARTAN'20 Quantum Mechanics Driver: Release 1.0.0 (Win/64b) Job type: Single point. Method: RWB97XRV Basis set: 6-311+G(2DF,2P)<KR [6-311G(D)<KR] Number of basis functions: 1069 (small basis) Number of electrons: 372 Parallel Job: 8 threads SCF model: A restricted hybrid HF-DFT SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization Number of basis functions: 2147 (large basis) SCF total energy: -2249.6756310 hartrees Reason for exit: Successful completion Quantum Calculation CPU Time: 7:01:07.53 Quantum Calculation Wall Time: 3:04:48.31
		CH ₃ CN-H ₂ O and AN-NH ₃ (Lit.*)			AgOTf complex			AgPF ₆ complex		
		AN	AN-H ₂ O	AN-NH₃	AN-Ag ^{+ (2)}	1a-AN ⁽²⁾	<mark>1a-</mark> Ag+-AN ⁽²⁾	AN-Ag ^{+ (2)}	1a-AN ⁽²⁾	<mark>1a</mark> -Ag⁺-AN ⁽²⁾
		0.08	0.20	0.17						
B3LYP/		(-0.0756*)	(-0.1953*)	(-0.1609*)						
aug-cc-p-VTZ	CH₃C N	-0.34	-0.42	-0.41						
		(-0.3498*)	(-0.4278*)	(-0.4195*)						
HF/	CH₃ C N	0.26	0.29	0.31	0.29	0.02	-0.23	0.43	0.15	<mark>-0.03</mark>
6-311G+	CH₃C N	-0.36	-0.40	-0.40	-0.02	-0.10	<mark>0.38</mark>	-0.10	-0.18	<mark>0.12</mark>
[2p,2df](6-311G)										
DFTwB97XV/	CH3 C N	0.24	0.25	0.26	0.27	0.12	<mark>-0.13</mark>	0.32	0.23	<mark>-0.03</mark>
6-311G+	CH₃C N	-0.30	-0.33	-0.33	-0.27	-0.21	0.26	-0.20	-0.25	0.05
[2p,2df](6-311G)		-0.50	-0.55	-0.55	-0.37	-0.21	0.20	-0.20	-0.25	0.05
B3LYP/	CH₃ C N	0.27	0.29	0.31	0.27	0.10	<mark>-0.13</mark>	0.29	0.21	<mark>-0.03</mark>
6311G+	CH₃C N	-0.29	-0.33	-0.33	-0.33	-0.14	0.37	-0.32	-0 17	0.12
[2p,2df](6-311G)					-0.55	0.14	0.37	-0.52	0.17	0.12

Table S16. Selected Mulliken atomic charges of C(*sp*) and N(*sp*) atoms in acetonitrile (AN).

* Cao D.; Ren F.; Feng X.; Wang J.; Li Y.; Hu Z.; Chen S. THEOCHEM, J. Mol. Struct., 2008, 849, 76-83.

第4章. トリスおよびペンタキス(テトラアームドサイクレン)の合成 とそれらの Ag⁺に対する錯形成能

4-1. 緒言

サイクレンは重金属イオンと高い親和性を持つ環状 12 員テトラアミンである.サ イクレンまたはその錯体で連結された化合物はユニークな機能を示すことが知られ ている.例えば、2 つのサイクレンが尿素で架橋された化合物は DNA 切断を引き起 こすことが報告されている¹.2 つのサイクレンが連結した化合物の Zn²⁺複合体はリ ン酸化ヌクレオチドを選択的に認識することが報告されている².また、2 つのサイ クレンが連結した化合物はプロトンスポンジとして作用し³,*m*-キシリル基で連結し た化合物の Zn²⁺錯体はアポトーシス/ネクローシスのイメージングに利用できる⁴. *m*-キシリル基で連結された 2 つのサイクレンを持つ化合物の Cu²⁺および Zn²⁺錯体は リン酸およびポリリン酸の置換度の違いによって選択性が異なる⁵.

一方,多核 Ag⁺錯体は最近,生化学の分野で注目されている.多核 Ag⁺錯体は DNA とインターカレートし⁶,様々ながん細胞を効果的に殺傷することが報告され ている⁷.これらの錯体はその特殊な性質から様々な分野で注目されているが,多く の未解決問題が残されており,さらなる研究が期待されている.

最近我々は、4 つの芳香環側鎖を持つテトラアームドサイクレンを 2 つ含むビス (サイクレン) 化合物の合成と、その Ag⁺錯体の構造と動的挙動について報告した⁸. 本研究では、より多くの Ag⁺を分子内に包接できる錯体の特性を検討するため、3 つ または 5 つのサイクレンを連結させた化合物の合成法を報告する. さらに、これら の配位子が段階的に Ag⁺錯体を形成するかどうかを調べた.

4-2. 結果と考察

4'-(1,4-ジオキソラン-2-イル)ビフェニル-4-カルバルデヒド(4)を鍵化合物として, トリス(テトラアームドサイクレン)(1a)とペンタキス(テトラアームドサイクレン)(1b)を合成した(図1).4は4-ブロモベンズアルデヒドから4段階で合成した.まず,酸の存在下,ホルミル基をアセタールで保護してアセタール 2⁹を得た後, *n*-BuLiとB(Oi-Pr)³を用いてボロン酸エステルを合成し,ジエタノールアミンで保護 したボロン酸エステル3を得た.最後に,4-ブロモベンズアルデヒドの鈴木-宮浦カ ップリング反応により4を合成した.

トリス (テトラアームドサイクレン) (1a) は以下のように合成した:4-ベンジル -1,4,7,10-テトラアザシクロドデカン-2,6-ジオン (5) ¹⁰ と 4 による還元的アミノ化反応により 6 を得た. 次にアセタール保護を酸で除去して 7 を得た. 7 を 1,4,7,10-テト ラアザシクロドデカン-2,6-ジオン (8) ¹¹ と反応させて 9 を得た. 9 のアミドカルボ ニル基を DIBAL-H で還元して 10 を得た. 10 はカラムクロマトグラフィー中,ある いはクロロホルムに長時間溶解させると容易に分解するため,,極性の高い溶媒で軽 くカラムクロマトグラフィーで精製した後,¹H NMR および FAB-MS で同定し,そ れ以上精製することなく次の反応に用いた. 最後に, 10 と 3,5-ジフルオロベンズア ルデヒドを還元的アミノ化反応により連結し, 1a を得た.

ペンタキス(テトラアームドサイクレン)(1b)は次のようにして合成した: 1,4,7,10-テトラアザシクロドデカン(サイクレン)と4を還元的アミノ化反応により 結合させて 11 を得た.得られた固体はクロロホルムにのみ溶解し,¹H および ¹³C NMR と FAB-MS で構造を確認した後,精製することなく以下の反応に使用した.11 のアセタール保護基を酸で除去して 12 を得たのち,これを 5 と反応させて 13 を得た.13 を DIBAL-H で還元し,14 を得た.14 は容易に分解するので,通常の方法で処理した後に濃縮を行い,¹H NMR で構造を確認した後,精製せずに次の反応に使用した.最後に,14 に対して還元的アミノ化によって 3,5-ジフルオロベンズアルデ ヒドを反応させて 1b を得た.1a および 1b の構造は ¹H および ¹³C NMR, MS,元素 分析により確認した.

図1.4と1a,1bの合成.

ESI-MS 滴定実験により 1a と 1b の Ag⁺に対する錯形成挙動を確認した. 1a に 1, 2, 3 当量の Ag⁺を添加すると, 1:1 (=1a:Ag⁺) 錯体に対応するフラグメントイオンピ ークである[1a+Ag⁺]⁺と[1a+Ag⁺+H⁺]²⁺がそれぞれ m/z 1918 と 959 に現れた. 1:2 (=1a:Ag⁺) 錯体に対応するフラグメントイオンピークである[1a+2Ag⁺+OTf]⁺と [1a+2Ag⁺+H⁺]³⁺はそれぞれ m/z 2067 と 1012 に観測された. 1:3 (=1a:Ag⁺) 錯体では それぞれ[1a+3Ag⁺+2OTf⁻]⁺, [1a+3Ag⁺+OTf⁻+H⁺]³⁺, [1a+3Ag⁺]³⁺に対応する m/z 2431, 1141, 711 にフラグメントイオンのピークが生じた (図 2).

図 2. 1a に Ag⁺を添加したときの ESI-MS スペクトル変化.

同様に 1b に Ag⁺を添加すると 1:1, 1:2, 1:3, 1:4, 1:5 (=1b:Ag⁺) の錯体に由来す るフラグメントイオンピークが観測された (図 3): m/z 3051 ([1b+Ag⁺]⁺), m/z 1473 ([1b+Ag⁺+H⁺]⁺), m/z 1654 ([1b+2Ag⁺+OTf⁻]⁺), m/z 1579 ([1b+2Ag⁺]²⁺), m/z 1708 ([1b+3Ag+OTf⁻]²⁺, m/z 1089 ([1b+3Ag⁺]³⁺), m/z 1836 ([1b+4Ag⁺+2OTf⁻]²⁺), m/z1174 ([1b+4Ag⁺+OTf⁻]³⁺), m/z 1965 ([1b+5Ag⁺+3OTf⁻]²⁺), m/z 1260 ([1b+5Ag⁺+2OTf⁻]³⁺), m/z 908 ([1b+5Ag⁺+OTf⁻]⁴⁺).

ESI-MS の結果から、1a と 1b は Ag⁺と配位子の化学量論に従って段階的に Ag⁺と 錯体を形成することが示唆された. さらに、UV-vis スペクトルを用いて Ag⁺に対す る安定度定数を見積もったところ¹²、1a の log β_1 、 log β_2 、 log β_3 はそれぞれ 6.4、14、 21 であり、1b の log β_1 、 log β_2 、 log β_3 、 log β_4 、 log β_5 はそれぞれ 6.8、13、19、24、29 であった(図 4、S26、S27). この結合定数は配位子がその構造全体を通して Ag⁺に 対して均一な結合親和性を持つことを示している.

図 3. 1b に Ag⁺を添加したときの ESI-MS スペクトル変化.

図 4. 1a(上)および 1b(下)に Ag⁺を添加したときの UV-vis スペクトル変化.

1a に対して Ag⁺を添加して ¹H NMR スペクトル測定を行い, 錯体形成時に各サイクレンの芳香族側鎖が Ag⁺を包み込むかどうかを検討した(図 5). 芳香環側鎖の 2位と6位(H_b, H_c, H_f, H_h, H_i)のプロトンシグナルはAg⁺を添加していくと高磁場にシフトした. この結果は, すべての芳香環側鎖が Ag⁺の包接に関与していることを示している. これらの化学シフトの変化の大きさは隣接する芳香環側鎖の電子密度に依存しており, この結果は以前の報告⁸と一致している. 今回の ¹H NMR 滴定実験からは3つのサイクレンのうちどれが最初にAg⁺と錯体を形成したかを決定することはできなかった. 1b についても同様の実験を行ったが, 極めて複雑な化学シフト変化を示したため, 現在データを解析中である.

本研究ではそれぞれ3個と5個のサイクレンを含むトリス(テトラアームドサイクレン)とペンタキス(テトラアームドサイクレン)の合成に成功した. ESI-MSを用いてAg⁺に対する錯形成能を調べ,段階的にAg⁺を捕捉していることを明らかにした.これらの錯体の安定度定数をUV-vis滴定実験により見積もったところ,分子内のすべてのサイクレンユニットがほぼ同一の安定度定数を示していた.この結果は配位子がその構造全体を通してAg⁺に対して均一な結合親和性を持つことを示して

いる. 合成した配位子中のどのサイクレン部位が最初に Ag⁺と錯体を形成するかど うかを決定できなかったため,現在,芳香族側鎖に異なる置換基を有する新規化合 物の合成を進めている.

図 5. 1aに Ag⁺を添加したときの¹H NMR スペクトル変化(CD₂Cl₂/CD₃OD, 296 K).

4-3. 実験項

4-3-1. 試薬および実験装置

すべての試薬は標準的な分析グレードで精製することなく使用した.溶媒は市販品を使用した. 2^9 , 5^{10} , 8^{11} はすでに報告されている方法で合成した.融点はMel-Temp キャピラリー装置を用いて求め、補正はしていない.FAB-MS スペクトルは日本電子 600H 質量分析計を、ESI-MS スペクトルは日本電子 JMS-T100CS 質量分析計 を使用した.¹H および¹³C NMR スペクトルは JEOL ECP400 (400 MHz) または Bruker AVANCE II (400 MHz) で測定した.元素分析は Yanaco MT-6 CHN Micro Corder で行った.配位子と Ag⁺との結合定数は HypSpecTM ソフトウェアを用いて計 算した¹².

4-3-2. 2-(4-bromophenyl)-1,3-dioxane (2)の合成

1,3-プロパンジオール(7.14 g, 93.3 mmol), 4-ブロモベンズアルデヒド(10.0 g, 54.5 mmol), *p*-トルエンスルホン酸(0.136 g, 0.787 mmol) およびトルエン(100 mL) の混合物を Dean-Stark 装置を用いて 143 ℃ で 24 時間還流した. 混合物を室温まで冷却し, 飽和炭酸水素ナトリウム水溶液を加えて反応をクエンチした. 酢酸エチル(100 mL x 3) で抽出し, 有機層を飽和塩化ナトリウム水溶液で洗浄した後, 無水硫

酸ナトリウムで脱水乾燥した.吸引ろ過をして溶媒を減圧留去させた後,酢酸エチ ルから再結晶して 2 を白色針状物として得た (12.4 g, 98%). Mp 64.2–65.0 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 8.4 Hz, 2H), 5.46 (s, 1H), 4.24–4.28 (dd, 2H), 3.94–4.00 (t, J = 10.0 Hz, 2H), 2.15–2.27 (m, 2H), 1.43–1.47 (d, J = 14.4 Hz, 1H); FAB-MS (matrix DTT/TG = 1:1) *m*/*z* 243 ([M]⁺, 7%), 245 ([M+2]⁺, 6%).

4-3-3. [4-(1,3)-dioxolan-2-yl]phenyl][2,2'-(iminoKN)-diethanolate-KO (2-)]boron (3)の合成

脱水 THF 溶液 (10 mL) に2 (4.20 g, 18.5 mmol) を溶かして-78 °C で撹拌し, そこに n-ブチルリチウム (12 mL, 19 mmol) をゆっくりと滴下しながら加え, 1 時間 撹拌した. 次に, ホウ酸トリイソプロピル (6.0 mL, 26 mmol) をゆっくりと滴下し, -78 °C でさらに 1 時間撹拌した. 室温まで昇温してさらに 1 時間撹拌した. クロロホ ルム (50 mL x 3) で抽出し, 飽和塩化ナトリウム水溶液 (50 mL) で洗浄した. その 後, 有機層を無水硫酸ナトリウムで脱水乾燥した後, 吸引ろ過を行った. ここに 2-プロパノール(7 mL) に溶解したジエタノールアミン (2.14 g, 20.3 mmol) を撹拌しな がらゆっくりと滴下した. 析出した固体を吸引ろ過し, 3 を白色固体として得た (4.47 g, 87%). Mp 239.0–240.0 °C: ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, J = 7.9 Hz, 2H), 7.31 (d, J = 7.9 Hz, 2H), 5.48 (s, 1H), 4.21–4.24 (dd, J = 4.85 Hz, J = 4.85 Hz, 2H), 3.84–4.00 (m, 7H), 3.03–3.12 (m, 2H), 2.63 (br-s, 2H), 2.13–2.26 (m, 2H), 1.41–1.44 (m, 1H);); ¹³C NMR (CD₃OD 47.6 ppm) δ 137.7, 131.8, 124.7, 102.1, 67.0, 63.0, 25.6 The sp^{2-13} C signal attached to the boron atom was not observed under the measurement condition.; FAB-MS (matrix *m*-NBA) m/z 229 ([M+H]⁺, 70%); Anal. Calcd. for C₁₄H₂₀NBO₄ · 0.075CHCl₃: C, 59.09; H, 7.07; N, 4.90. Found: C, 59.28; H, 7.37; N, 4.94.

4-3-4. 4'-(1,4-dioxolan-2-yl)biphenyl-4-carbaldehyde (4)の合成

N,N'-ジメチルホルムアミド (20 mL) と炭酸カリウム水溶液 (2.92 M, 5 mL) を混 ぜて窒素バブリングを 30 分間行ったところに、3 (1.81 g, 6.52 mmol), 4-ブロモベン ズアルデヒド (1.06 g, 5.73 mmol), テトラキス (トリフェニルホスフィン) パラジ ウム (0) (0.346 g, 0.493 mmol), ヨウ化銅 (I) (0.107 g, 0.563 mmol) を加え, 90 °C で 24 時間撹拌した. 室温まで冷却し, 溶媒を減圧留去した. 得られた残渣をクロロ ホルム (50 mL x 3) で抽出し, 有機層を無水硫酸ナトリウムで脱水乾燥した. 吸引 ろ過を行った後に溶媒を減圧留去し, カラムクロマトグラフィー (酢酸エチル:ヘキ サン=1:3) で分離し, 4 を白色固体として得た (1.31 g, 85%). Mp 167.1–168.0°C; ¹H NMR (400 MHz, CDCl₃) δ 10.1 (s, 1H), 7.94 (d, J = 8.2 Hz, 2H), 7.74 (d, J = 8.2Hz, 2H), 7.64 (d, J = 8.2 Hz, 2H), 7.59 (d, J = 8.2 Hz, 2H), 5.57 (s, 1H), 4.30 (d, J = 5.5 Hz, 2H), 4.02 (t, J= 12.5 Hz, 2H), 2.25 (m, 1H), 1.48 (d, J = 13.5 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 192.0, 146.9, 140.2, 139.1, 135.3, 130.3, 127.8, 127.3, 126.8, 101.2, 67.5, 25.8; FAB-MS (matrix DTT/TG = 1:1) m/z 269 ([M+H]⁺, 100%); Anal. Calcd. for C₁₇H₁₆O: C, 76.10; H, 6.01. Found: C, 76.13; H, 5.96.

4-3-5. 4-Benzyl-10-{[4'-(1,4-dioxolan-2-yl)biphenyl-4-yl]methyl}-1,4,7,10-tetraazacyclo dodecane-2,6-dione (6)の合成

1,2-ジクロロエタン(30 mL)を30分間窒素バブリングしたところに、5(0.945 g, 3.25 mmol)と4(1.06 g, 3.95 mmol)を加え、室温、1 MPaで24時間撹拌した.常圧に戻した後、トリアセトキシ水素化ホウ素ナトリウム(1.00 g, 4.71 mmol)を加えてさらに24時間撹拌した.飽和炭酸水素ナトリウム水溶液を加えて反応を停止し、ク

ロロホルム (30 mL x 3) で抽出した. 有機層を無水硫酸ナトリウムで脱水乾燥した 後,吸引ろ過を行い,溶媒を減圧留去した. カラムクロマトグラフィー (クロロホ ルム:ヘキサン=1:50) で分離し, 6 を白色固体として得た (1.06 g, 60%). Mp 184.0– 185.1 °C; ¹H NMR (400 MHz, CDCl₃), δ 7.57–7.64 (m, 5H), 7.30–7.39 (m, 8H), 7.16 (s, 2H), 5.57 (s, 1H), 4.30 (d, J = 4.9, 2H), 4.03 (t, J = 12.4 Hz, 2H), 3.82 (s, 2H), 3.71 (s, 2H), 3.25 (s, 8H), 2.63 (t, J = 5.6 Hz, 4H), 2.25 (m, 1H), 1.48 (d, J = 13.9 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 141.0, 140.3, 138.1, 137.7, 137.6, 129.4, 129.3, 129.1, 128.3, 127.5, 127.0, 126.6, 101.4, 67.5, 63.2, 61.1, 58.8, 51.5, 36.5, 25.8; FAB-MS (matrix: DTT/TG = 1:1) m/z543 ([M+H]⁺ 15%) Anal. Calcd. for C₃₂H₃₈N₄O₄ • 0.2 CHCl₃: C, 68.26; H, 6.80; N, 9.89. Found: C, 68.51; H, 6.79; N, 9.85.

4-3-6. 4'-((7-benzyl-5,9-dioxo-1,4,7,10-tetraazacyclododecan-1-yl)methyl)-[1,1'-biphenyl]-4-carbaldehyde (7)の合成

テトラヒドロフラン (10 mL) と 10%塩酸 (61 mL) の混合溶媒を 30 分間窒素バブ リングした後, 6 (5.94 g, 11.0mmol) を加えて 22 時間撹拌した. 飽和炭酸ナトリウ ム水溶液を加えて反応を停止し,クロロホルム (50 mL x 3) で抽出した. 有機層を 無水硫酸ナトリウムで脱水乾燥した後,吸引ろ過を行い,溶媒を減圧留去した. ク ロロホルムとヘキサンの混合溶媒から再結晶して 7 を淡黄色結晶として得た (5.15 g, 97%). Mp 160.0–161.8 °C; ¹H NMR (400 MHz, CDCl₃) *δ*10.1 (s, 1H), 7.98 (d, *J* = 8.5 Hz, 2H), 7.78 (d, *J* = 8.6 Hz, 2H), 7.66 (d, *J* = 8.0 Hz, 2H), 7.45 (d, *J* = 8.0 Hz, 2H), 7.33–7.39 (m, 5H), 7.15(t, *J* = 5.2 Hz, 2H), 3.84 (s, 2H), 3.76 (s, 2H), 3.24–3.29 (m, 8H), 2.65 (t, *J* = 6.8 Hz, 4H); ¹³C NMR (100 MHz. CDCl₃) *δ*191.2, 170.1, 146.4, 138.9, 138.8, 137.6, 135.2, 130.3, 129.6, 129.1, 128.9, 128.1, 127.5, 127.4, 63.0, 60.9, 58.5, 51.2, 36.4; FAB-MS (matrix: DTT/TG = 1:1) *m/z* 486 ([M+H]⁺ 1%); Anal. Calcd. for C₂₉H₃₂N₄O₃ • 0.1 CHCl₃: C, 70.39; H, 6.52; N, 11.28. Found: C, 70.28; H, 6.54; N, 11.14.

4-3-7. 10,10'-((((3,11-dioxo-1,4,7,10-tetraazacyclododecane-1,7-diyl)bis(methylene)) bis([1,1'-biphenyl]-4',4-diyl))bis(methylene))bis(4-benzyl-1,4,7,10tetraazacyclododecane-2,6-dione) (9)の合成

1,2-ジクロロエタン (80 mL) を 40 分間窒素バブリングしたところに 8 (0.825 g, 4.12 mmol) および7 (5.94 g, 12.3 mmol) を加え,窒素雰囲気下,室温,1MPa で1日 間撹拌した.トリアセトキシ水素化ホウ素ナトリウム (10.5 g, 49.5 mmol) を加え, さらに 1 日撹拌した.飽和炭酸ナトリウム水溶液で反応を止め、クロロホルムで抽 出した.有機層を無水硫酸ナトリウムで脱水乾燥した後、吸引ろ過を行い、溶媒を 減圧留去した.シリカゲルカラムクロマトグラフィー (クロロホルム:メタノールア ンモニア=50:1:0.1) で分離し、9 を白色粉末として得た (1.77 g, 38%). Mp 145.3-149.8 °C (dec.) (lit. 129.0–129.5 °C ^[6]); ¹H NMR (400 MHz, CD₂Cl₂) δ 7.58–7.69 (m, 9H), 7.46–7.50 (m, 6H), 7.25–7.40 (m, 16H), 7.04 (m, 6H), 3.88 (s, 3H), 3.79 (d, J=3.5 Hz, 5H), 3.75 (s, 2H), 3.71 (s, 4H), 3.16–3.23 (m, 30H), 2.57–2.63 (m, 15H); ¹³C NMR (100 MHz, CDCl₃) δ 170.2 (d, J=1.4 Hz),170.2, 140.4, 139.9, 139.8, 139.6, 137.8, 137.7, 137.6, 136.6, 129.8, 129.7, 129.6, 129.2, 129.0, 128.1 (d, J=2.9 Hz), 127.5, 127.2 (d, J=1.9 Hz), 63.0 (d, J=2.1 Hz), 62.6, 61.0, 58.6 (d, J=2.1 Hz), 58.5, 51.5, 51.4, 36.5; FAB-MS (matrix: DTT/TG = 1:1) m/z 1138 ([M+2]⁺ 0.7%); Anal. Calcd. for C₆₆H₈₀N₁₂O₆ • 1.2 CHCl₃: C, 63.02; H, 6.39; N, 13.12. Found: C, 63.06; H, 6.69; N, 13.14.

4-3-8. 1,7-bis((4'-((7-benzyl-1,4,7,10-tetraazacyclododecan-1-yl)methyl)-[1,1'-biphenyl]-4yl)methyl)-1,4,7,10-tetraazacyclododecane (10)の合成

氷浴中で 9 (0.392 g, 0.345 mmol) に水素化ジイソブチルアルミニウムのテトラヒ ドロフラン溶液 (30 mL) を滴下し,室温で1日間撹拌した.ベンゼン (90 mL),水 (1.5 mL),フッ化ナトリウム (5.26 g, 12.5 mmol) を加えてさらに1日撹拌した.吸 引ろ過をして後,クロロホルム (50 mL x 3) で抽出し,有機層を飽和塩化ナトリウ ム水溶液で洗浄した.無水硫酸ナトリウムで脱水乾燥した後,吸引ろ過を行い,溶 媒を減圧留去した.シリカゲルカラムクロマトグラフィー (クロロホルム:メタノー ル:アンモニア水=5:1:0.1) で分離し,粗生成物の 10 を淡黄色油状として得た (0.195g,粗収率 54%).10 はシリカゲルカラムクロマトグラフィー中に容易に分解 するため,さらに精製することなく次の反応に使用した.¹H NMR (400 MHz, CD₂Cl₂) *δ*7.66 (d, *J* = 8.1 Hz, 4H), 7.63(d, *J* = 8.4 Hz, 5H), 7.46 (d, *J* = 8.4 Hz, 4H), 7.39 (d, *J* = 8.1 Hz, 5H), 7.36 (d, *J* = 4.7 Hz, 6H), 7.21–7.28 (m, 4H), 3.63 (s, 4H), 3.59 (s, 4H), 3.54 (s, 4H), 2.55–2.66 (m, 48H), 1.71 (br-s, 12H). FAB-MS (matrix: DTT/TG = 1:1) *m/z* 1094 ([M+Na]⁺, 15%).

4-3-9. 10,10'-((((4,10-bis(3,5-difluorobenzyl)-1,4,7,10-tetraazacyclo dodecane-1,7diyl)bis(methylene))bis([1,1'-biphenyl]-4',4-diyl))bis(methylene)) bis(4-benzyl-1,7bis(3,5-difluorobenzyl)-1,4,7,10-tetraazacyclododecane) (1a)の合成

1.2-ジクロロエタン(60 mL)を20分間窒素バブリングしたところに、10(1.12 g、 1.06 mmol) と 3,5-ジフルオロベンズアルデヒド(10.2 g, 72.0 mmol) を窒素雰囲気下, 室温で2日間撹拌した.トリアセトキシ水素化ホウ素ナトリウム(5.43 g, 25.6 mmol) を加え、さらに1日撹拌した. 飽和炭酸ナトリウム水溶液で反応を止め、クロロホ ルムで抽出した(50 mL x 3). 有機層を飽和塩化ナトリウム水溶液で洗浄し, 無水硫 酸ナトリウムで脱水乾燥した.吸引ろ過を行った後に溶媒を減圧留去し、シリカゲ ルカラムクロマトグラフィー (クロロホルム:メタノール:アンモニア水=20:1:0→ 10:1:0.05→5:1:0.2) で分離し, 酢酸エチルとヘキサンの混合溶媒から再結晶した. 得られた粗結晶をアミン処理シリカゲルカラムクロマトグラフィー(クロロホルム: メタノール=30:1) で分離し、1aを橙色油状として得た(0.40g, 23%).¹HNMR (400 MHz, CD_2Cl_2) δ 7.17–7.56 (m, 34H), 6.88–7.00 (m, 14H), 6.67 (t, J = 8.8 Hz, 7H), 3.39–3.54 (m, 26H), 2.71–2.74 (m, 48H); ¹³C NMR (100 MHz, CDCl₃) δ 163.0 (dd, ¹J_{CF} = 248 Hz, ³J_{CF} = 12.9 Hz), 162.97 (dd, ${}^{1}J_{CF}$ = 248 Hz, ${}^{3}J_{CF}$ = 12.9 Hz), 144.77 (t, ${}^{3}J_{CF}$ = 8.7 Hz), 144.74 (t, ${}^{3}J_{CF}$ $_{CF} = 8.7 \text{ Hz}$, 139.7, 139.5, 138.6, 129.4, 129.0, 128.2, 126.9, 126.7, 111.3 (d, $^{2}J_{CF} = 24.6 \text{ Hz}$), 102.0 (t, ${}^{2}J_{CF} = 26.0 \text{ Hz}$), 60.6, 60.3, 60.2, 59.4, 53.3, 53.2; ESI-MS (CH₃OH:CHCl₃=9:1) m/z1811([M+H]⁺, 20%); Anal. Calcd. for C₁₀₈H₁₁₆N₁₂F₁₂ • 0.6CHCl₃: C, 69.32; H, 6.25; N, 8.93. Found: C, 69.35; H, 6.32; N, 8.93.

4-3-10. 1,4,7,10-tetrakis((4'-(1,3-dioxan-2-yl)-[1,1'-biphenyl]-4-yl)methyl)-1,4,7,10tetraazacyclododecane (11)の合成

アセトニトリル (130 mL) を 1 時間窒素バブリングしたところに、サイクレン (0.644 g, 3.74 mmol) と 4 (7.93 g, 29.5 mmol) を加え、室温で1日間撹拌した. その 後、トリアセトキシ水素化ホウ素ナトリウム (6.89 g, 32.5 mmol) を加えてさらに 21 時間撹拌した. 飽和炭酸ナトリウム水溶液を加えて反応を停止し、クロロホルム (100 mL x 3) で抽出した. 有機層を1M水酸化ナトリウム水溶液 (200 mL) および

水 (200 mL) で洗浄し, 無水硫酸ナトリウムで脱水乾燥した. 吸引ろ過した後に溶 媒を減圧留去し, メタノールで洗浄して粗生成物の 11 を白色固体として得た (2.41 g, 粗収率 54%). この化合物はクロロホルム以外の有機溶媒への溶解度が低くこれ 以上の精製が困難であったため, そのまま次の反応に用いた. Mp 259.0–265.0 ℃ (dec.); ¹H NMR (400 MHz, CDCl₃) *δ*7.39–7.51 (m, 32H), 5.55 (s, 4H), 4.30 (dd, *J* = 3.7Hz, 4.6Hz, 8H), 4.03 (dt, *J* = 12.1 Hz, 12.1 Hz, 8H), 3.47 (s, 8H), 2.74 (s, 16H), 2.17–2.36 (m, 4H), 1.47 (d, *J* = 13.5 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) *δ*141.4, 139.4, 139.0, 137.4, 129.3, 126.8, 126.7, 126.4, 101.6, 67.4, 59.8, 53.4, 25.9; FAB-MS (matrix DTT/TG = 1:1) *m/z* 1182 ([M+H]⁺, 4%).

4-3-11. 4',4''',4'''''-((1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl) tetrakis (methylene))tetrakis(([1,1'-biphenyl]-4-carbaldehyde)) (12)の合成

テトラヒドロフラン (100 mL) と 10%塩酸 (23 mL) の混合溶媒を 30 分間窒素バ ブリングしたところに 11 (1.24 g, 1.05 mmol) を加えて 24 時間撹拌した. 飽和炭酸 水素ナトリウム水溶液で反応を止め,クロロホルム (50 mL x 3) で抽出した. 有機 層を無水硫酸ナトリウムで脱水乾燥した後,吸引ろ過を行って溶媒を減圧留去した. クロロホルム:ヘキサンから再結晶して 12 を淡黄色固体として得た (0.788 g, 79%). Mp 185.0–190.0 °C (dec.); ¹H NMR (400 MHz; CDCl₃) δ 10.03 (s, 4H),7.86 (d, *J* = 8.2 Hz, 8H),7.63 (d, *J* = 8.1 Hz, 9H), 7.45–7.51 (m, 17H), 3.52 (s, 9H), 2.78 (s, 18H); ¹³C NMR (100 MHz, CDCl₃) δ 191.8, 146.9, 140.8, 137.8, 135.1, 130.2, 129.5, 127.3, 127.0, 59.6, 53.5; FAB-MS (matrix DTT/TG = 1:1) *m/z* 972 ([M+Na]⁺, 1%); Anal. Calcd. for C₆₄H₆₀N₄O₄ • 0.4 CHCl₃: C, 77.58; H, 6.11; N, 5.62. Found: C, 77.77; H, 6.33; N, 5.55.

4-3-12. 10,10',10",10"'-(((((1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl) tetrakis ([1,1'-biphenyl]-4',4-diyl))tetrakis(methylene))tetrakis (4-benzyl-1,4,7,10-tetraazacyclododecane-2,6-dione) (13)の合成

ジクロロメタン (40 mL) を 20 分間窒素バブリングした後, 12 (0.302 g, 0.318 mmol) と 5 (0.807 g, 2.78 mmol) を加え, 窒素雰囲気下, 室温, 1 MPa で 1 日間撹拌 した. 常圧に戻した後,トリアセトキシ水素化ホウ素ナトリウム (0.820 g, 3.87 mmol) を加え,さらに 1 日撹拌した. 飽和炭酸ナトリウム水溶液で反応を止め,クロロホルム (20 mL x 3) で抽出し,有機層を無水硫酸ナトリウムで脱水乾燥した. 吸引ろ過をした後,溶媒を減圧留去し,シリカゲルクロマトグラフィー (クロロホルム:メタノールアンモニア水=20:1:0.05→10:1:0.05) で分離し,メタノールから再結 晶して 13 を白色粉末として得た (0.157 g, 24%).¹H NMR (400 MHz; CD₂Cl₂) δ 7.50-7.58 (dd, J = 7.9 Hz, J = 3.8 Hz, 26H), 7.24–7.37 (m, 29H), 7.06 (t, J = 5.2 Hz, 8H), 3.78 (s, 8H), 3.69 (s, 8H), 3.52 (s, 8H), 3.15–3.20 (m, 33H), 2.78 (s, 17H), 2.57 (t, J = 5.5 Hz, 16H); ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 140.6, 140.1, 139.1, 138.3, 138.0, 130.0, 129.9, 129.7, 129.3, 128.4, 127.4, 126.9, 63.5, 61.5, 60.1, 59.0, 51.5, 36.8; FAB-MS (matrix DTT/TG = 1:1) m/z 2046 ([M+H]⁺, 0.8%); Anal. Calcd. for C₁₂₄H₁₄₈N₂₀O₈ • 0.77 CHCl₃: C, 70.08; H, 9.01; N, 13.10. Found: C, 70.45; H, 7.05; N, 12.70.

4-3-13. 1,4,7,10-tetrakis((4'-((7-benzyl-1,4,7,10-tetraazacyclododecan-1-yl)methyl)-[1,1'biphenyl]-4-yl)methyl)-1,4,7,10-tetraazacyclododecane (14)の合成

水浴中で 13 (0.98 g, 0.48 mmol) に水素化ジイソブチルニトリル (53 mL) を滴下 し、室温で 4 日間撹拌した.水 (5.2 mL)、ベンゼン (130 mL)、フッ化ナトリウム (8.03 g, 191 mmol) を加え、氷浴中で2時間撹拌した.クロロホルム (100 mL x 3) で抽出後,有機層を飽和塩化ナトリウム水溶液で洗浄し,無水硫酸ナトリウムで脱 水乾燥した.吸引ろ過をした後に溶媒を減圧留去し,14 を淡黄色油状として得た (0.458 g,粗収率 49%).14 はシリカゲルカラム上で分解してしまうため、これ以上 精製することなく次の反応に使用した。¹H NMR (400 MHz; CD₂Cl₂) δ 7.22–7.58 (m, 52H), 3.40–3.61 (m, 24H), 2.55–2.80 (m, 88H).

4-3-14. 1,4,7,10-tetrakis((4'-((7-benzyl-4,10-bis(3,5-difluorobenzyl)-1,4,7, 10-tetraaza cyclododecan-1-yl)methyl)-[1,1'-biphenyl]-4-yl)methyl)-1,4,7,10-tetra azacyclododecane (**1b**)

ジクロロメタン(60 mL)を 10 分間窒素バブリングしたところに 14 (0.46 g, 0.24 mmol) と 3,5-ジフルオロベンズアルデヒド(4.40 g, 31.0 mmol) を加え, 窒素雰囲気 下,室温で8日間撹拌した.トリアセトキシ水素化ホウ素ナトリウム(2.45g, 11.6 mmol)を加えてさらに13日間撹拌した. 飽和炭酸ナトリウム水溶液で反応を止め, クロロホルム(50 mL x 3)で抽出した. 有機層を飽和塩化ナトリウム水溶液で洗浄 し、無水硫酸ナトリウムで脱水乾燥した.吸引ろ過した後に溶媒を減圧留去し、シ リカゲルカラムクロマトグラフィー (クロロホルム:メタノール:アンモニア水 =30:1:0→20:1:0.1→10:1:0.05) で分離し、酢酸エチルとヘキサンの混合溶媒から再結 晶した. 粗結晶をゲルカラムクロマトグラフィー(クロロホルム)で精製し, 1b を 橙色固体として得た(0.174 g, 25%).¹H NMR (400 MHz, CD₂Cl₂) δ7.07−7.36 (m, 59H), 6.77–6.87 (m, 17H), 6.52–6.57 (m, 8H), 3.25–3.42 (m, 40H), 2.43–2.68 (m, 81H); ¹³C NMR (100 MHz, CDCl₃) δ 162.9 (dd, ¹ J_{CF} = 248 Hz, ³ J_{CF} = 12.9 Hz), 144.6 (t, ³ J_{CF} = 8.4 Hz), 139.6, 139.4, 129.3, 128.9, 128.1, 126.8, 126.6, 111.3 (d, ${}^{2}J_{CF} = 24.6 \text{ Hz}$))101.2 (t, ${}^{2}J_{CF} = 25.7 \text{ Hz}$), 60.5, 60.1, 59.3, 53.2, 53.1; ESI-MS (CH₃OH:CHCl₃= 9:1) *m/z* 2944 ([M+H]⁺, 80%); Anal. Calcd. for C180H196N20F16 • 3CHCl3: C, 67.66; H, 6.17; N, 8.62. Found: C, 67.51; H, 6.11; N, 8.34.

4-3-15.¹H NMR を用いた滴定実験

化合物 1a (9 mg, 5 µmol)を重ジクロロメタンに溶解した.別に,AgOTf (13.0 mg, 50 µmol)を重メタノールに溶解し、0.5 M の溶液を調製した.この AgOTf 溶液を [Ag⁺]/[1a]=0.0, 0.25, 0.50, 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.25, 2.50, 2.75, 3.00, 3.50, 4.00, 4.50, 5.00, 5.50, 6.00 になるように加え,¹H NMR スペクトルを 測定した.

4-3-16. UV-vis を用いた滴定実験

化合物 1a または 1b (2.5 µmol) を分光用クロロホルム (25 mL) に溶かし,分光 用メタノールで 10 倍希釈して 1.0 x 10⁻⁵ mol/L の溶液とし, 3.0 mL を石英セルに移し た. AgBF₄ (15 mg, 75 µmol) を分光用メタノール (25 mL) に溶解して 3 mmol/L 溶 液を調製し, [Ag⁺]/[配位子]=0.0, 0.15, 0.30, 0.45, 0.60, 0.75, 0.90, 1. 05, 1.20, 1.35, 1.50, 1.65, 1.80, 1.95, 2.10, 2.25, 2.40, 2.55, 2.70, 2.85, 3.00, 3.15, 3.30, 3.45, 3.60, 3.75, 4. 00, 4.30, 4.60, 5.00, 5.30, 5.60, 6.00, 6.50, 7.00, 7.50, 8.00, 8.50, 9.00, 10.00, 11.00, 12.00, 13.0, 15.00 となるように加え, UV-Vis スペクトルを測定した.

- 4-4. 参考文献
- 1. Li. J.; Zhang, J.; Lu, Q.; Yue, Y.; Huang, Y.; Zhang, D.; Lin, H.; Chen, S.; Yu, X. *Eur. J. Med. Chem.*, **2009**, *44*, 5090–5093.
- 2. Aoki, S.; Kimura, E. J. Am. Chem. Soc. 2000, 122, 4542-4548.
- 3. Bernier, N.; Tripier, R.; Patinec, V.; Baccon, M. L.; Handel, H. C. R. Chimie 2007, 10, 832–838.
- 4. Clear, K. J.; Harmatys, K. M.; Rice, D. R.; Wolter, W. R.; Suckow, M. A.; Wang, Y.; Rusckowski, M.; Smith, B. D. *Bioconjugate Chem.* **2011**, *22*, 2611–2624.
- 5. Esteves, C. V.; Esteban-Gómez, D.; Platas-Iglesias, C.; Tripier, R.; Delado, R. *Inorg. Chem.* **2018**, *57*, 6466–6478.
- 6. Zhang, H.; Xu, Y.; Wu, H. *RSC Advances* **2016**, *6*, 83697–83708.
- Chen, C.; Zhou, L.; Xie, B.; Wang, Y; Ren, L.; Chen, X.; Cen, B.; Lv, H.; Wang, H. Dalton Trans. 2020, 49, 2505–2516.
- 8. Ju, H.; Horita, H.; Iwase, M.; Kaneko, N.; Yagi, K.; Ikeda, M.; Kuwahara, S.; Habata, Y. *Inorg. Chem.* **2021**, *60*, 15159–15168.
- 9. Tsukada, H.; Hosokawa, S. Org. Lett. 2013, 15, 678-681.
- 10. Ju, H.; Iwase, M.; Sako, H.; Horita, H.;Koike, S.; Lee, E.; Ikeda, M. Kuwahara, S.; Habata, Y. J. Org. Chem. **2021**, *86*, 9847–9853.
- 11. Habata, Y.; Taniguchi, A.; Ikeda, M.; Hiraoka, T.; Matsuyama, N.; Otsuka, S.; Kuwahara, S. *Inorg. Chem.* **2013**, *52*, 2542–2549.
- 12. Gans, P.; Sabatini, A.; Vacca, A. Talanta 1996, 43, 1739-1753.

4-5. Supporting Information

Figure S1. Synthesis of 4, 1a, and 1b.

Figure S2. ¹H NMR of 2 (CDCl₃).

Figure S3. ¹H NMR of 3 (CDCl₃).

Figure S4. ¹³C NMR of 3 (CD₃OD).

Figure S6. ¹³C NMR of 4 (CDCl₃).

 δ/ppm

Figure S7. ¹H NMR of 6 (CDCl₃).

Figure S8. ¹³C NMR of 6 (CDCl₃).

Figure S9. ¹H NMR of 7 (CDCl₃).

Figure S10. ¹³C NMR of 7 (CDCl₃).

Figure S11. ¹H NMR of 9 (CDCl₃).

Figure S12. ¹³C NMR of **9** (CDCl₃).

Figure S13. ¹H NMR of 10 (CDCl₃).

Figure S14. ¹H NMR of 1a (CDCl₃).

Figure S15. ¹³C NMR of 1a (CDCl₃).

Figure S16. COSY of 1a (CDCl₃).

Figure S17. ¹H NMR of 11 (CDCl₃).

Figure S18. ¹³C NMR of **11** (CDCl₃).

Figure S19. ¹H NMR of 12 (CDCl₃).

Figure S20. ¹³C NMR of **12** (CDCl₃).

Figure S21. ¹H NMR of 13 (CDCl₃).

Figure S22. ¹³C NMR of **13** (CDCl₃).

Figure S23. ¹H NMR of 14 (CDCl₃).

Figure S24. ¹H NMR of 1b (CDCl₃).

Figure S25. ¹³C NMR of 1b (CDCl₃).

Figure S26. Ag⁺-induced UV-vis spectral changes of 1a (298 K, AgOTf, CHCl₃/CH₃OH).

Figure S27. Ag⁺-induced UV-vis spectral changes of 1b (298 K, AgOTf, CHCl₃/CH₃OH).

Figure S28. Experimental VT-NMR spectra (top and left), line shape simulation of the H_g protons with calculated rate constants, and Arrhenius plot (right) for 1:3 (= $1a:Ag^+$) mixture of 1a and Ag^+ .

VT-NMR experiments of a mixture of **1a** and Ag^+ (= 1/3) were performed, and activation parameters were estimated using the Shanan-Atidi method.¹ Results indicated that the activation energy (D G^{\ddagger}) was approximately 13.4 kcal/mol, a value comparable to the inversion energy of bis(cyclen)s bridged by biphenyl previously reported (Reference 8 in the main text). However, we were unable to analyze the remaining proton signals due to their extreme complexity.

1) Shanan-Atidi, H.; Bar-Eli, K. H. J. Phys. Chem. 1970, 74, 961-963.

第5章. 電子密度を利用した Ag⁺に対する位置選択的な配位

5-1. 緒言

有機化学における位置選択性とは置換反応や付加反応など、ある反応が特定の部 位で起こることである^{1,2}.例えば、芳香族求電子置換反応では、芳香環が求電子試 薬を攻撃して特定の位置で置換が起こる.所望の特性を持つ特定の化合物を合成す るためには置換部位の位置選択性を制御することが重要である.位置選択性は医薬 品の合成や作用機序の解明など有機化学の多くの分野で重要な役割を果たしている ³⁻⁶.言い換えれば、有機化学における位置選択性とは、反応を制御して合成効率を 向上させるものであり、それは医薬品や有機エレクトロニクスなどの分野の発展に 繋がる.無機化学や配位化学においても位置選択的な配位とは、分子内に複数の 結合部位を持つ配位子を使用し、それぞれの部位で異なる種類の金属イオンに配位 することを指す.例えば、Lehn らは複素環配位子を持つ単純な分子系が位置選択性 を示すことを報告しており⁸、鍋島らはサイズや熱力学的要因によって Ni²⁺、Zn²⁺、 La³⁺に対して分子内の特定の部位で配位する配位子を開発した⁹.しかし、分子内に 同一の配位部位を複数もつ配位子が、同一の金属イオン複数個に対して位置選択的 に配位する例はない.

最近,我々は芳香環側鎖を有するいくつかのサイクレン含有配位子を報告した¹⁰⁻ ¹². 図 1a に示すように、ベンジル基を持つテトラアームドサイクレン(1_H)が Ag⁺ と錯体を形成すると Ag⁺はサイクレン環に取り込まれ, Ag⁺と芳香環側鎖の Ag⁺-π相 互作用と芳香環側鎖どうしの CH-π相互作用によって芳香環側鎖が Ag⁺を覆うように 構造変化する (図 1a および 1b の右側の矢印). 食虫植物の"Venus flytrap"にちなん で、これらを「銀食い分子」と名付けた.このような芳香環側鎖のコンフォメーシ ョン変化が起こると芳香環側鎖の2位と6位のプロトンは隣接する芳香環側鎖の遮 蔽領域に位置するため、¹H NMR におけるプロトンシグナルは高磁場にシフトする (図 1c).シフトの程度は隣接する芳香環側鎖の電子密度(すなわち,芳香環側鎖 に取り付けた官能基の種類)に依存する.一方,1Hに Ag+以外の金属イオンを加え た場合(図 1a および 1b の左側の矢印),このようなシフトは観測されない(図 1c). このことから、電子供与性もしくは電子求引性の置換基を取り付けた芳香環側鎖を 持つサイクレンを連結させた場合、¹HNMRの化学シフトからどのサイクレンが Ag⁺ に配位しているかを決定することが可能である. さらに, 同じサイクレンを含む配 位子であっても、芳香環側鎖の電子密度によって Ag⁺-π相互作用の程度が異なるこ とが予想される. 言い換えれば、電子密度の高い芳香環側鎖を持つサイクレンは電 子密度の低い芳香環側鎖を持つサイクレンよりも Ag⁺に対して高い安定性を示すと 考えられる.したがって、これらが同一分子内に共存するとき、Ag⁺に対する安定性 に差が生じることによって新しい位置選択的な配位システムの構築が可能である (**図 2**).

図1. (a) **1**_Hが Ag+(右矢印)もしくは他の重金属イオン(左矢印)と錯体を形成ときの側鎖のコンフォメーション変化,および(b)その時の模式図.(c)錯体を形成した時の¹H NMRにおける芳香環の2,6-位のプロトンシグナルの変化.

図 2. テトラアームドサイクレンにおける芳香環側鎖の電子密度の違いによる金属イオンに対する位置選択的な配位の模式図

本研究では 4 種類のビスおよびトリス (テトラアームドサイクレン) を合成した (図 3). 2MF は電子供与基である 4-メトキシベンジル基を 3 つ有するサイクレンと 電子求引基である 3,5-ジフルオロベンジル基を 3 つ有するサイクレンを 4,4'-ジメチル -1,1'-ビフェニルで架橋したビス (テトラアームドサイクレン) である. 3MFM は 3 つ のサイクレンを直線状に連結し, 4-メトキシベンジル基と 3,5-ジフルオロベンジル基 がそれぞれ両端と中央のサイクレンに取り付けられたトリス (テトラアームドサイ クレン) である. 4MFM は 3MFM の V 字型類似体として合成した. 3FMF は 3MFM の両端 と中央の芳香環側鎖を入れ替えたような構造のトリス (テトラアームドサイクレン) である. 今回, これら配位子による Ag⁺に対する位置選択的な配位について報告す る.

図 3. 電子求引基(青色)および電子供与基(赤色)をもつテトラアームドサイクレン,ビス(テトラアームドサイクレン),トリス(テトラアームドサイクレン),トリス(テトラアームドサイクレン). F と 4-F, M はそれぞれ芳香環に導入された 3,5-ジフルオロ基, 4-フルオロ基, 4-メトキシ基を表している.

5-2. 結果と考察

テトラアームドサイクレン 1_H, 1_M, 1_Fおよび 1_{4-F}はすでに報告されている方法で 合成した¹⁴. 図4にDFT計算(*ω*B97X-D/6-31G*)¹¹で求めたアニソールと1,3-ジフ ルオロベンゼンの静電ポテンシャルマップを示した.これより,アニソールの芳香 環における電子密度が高いことは明らかであった.ビス(テトラアームドサイクレ ン)(2_{MF})およびトリス(テトラアームドサイクレン)(3_{MFM}, 3_{FMF}, 4_{MFM})はス キームS1に従って合成し,¹H NMR,¹³C NMR,¹⁹F NMR,¹H-¹H COSY, ESI-MS, 元素分析によって構造を確認した(図S26–S37).

金属イオンに対する親和性に及ぼす電子密度の影響を調べるため、 $1_M \ge 1_F$ の等モル混合物に Ag^+ を添加して 1H NMR スペクトルを測定した(図 5a). Ag^+ を添加する

と 1Mの 4-メトキシベンジル側鎖の 2 位と 6 位のプロトンシグナル(7.25 ppm, 図 5 の赤丸)は徐々に減少し、高磁場(約 6.3 ppm)に新たなシグナルとして現れた. Ag⁺を 1.5 当量添加すると 7.25 ppm のシグナルは完全に消失し, 6.3 ppm のシグナル のみとなった.一方、Ag⁺を1当量以上添加すると1Fの3.5-ジフルオロベンジル側鎖 の2-位と6-位のプロトンシグナル(6.9 ppm, 図5の青丸)が消え始め,約6.4 ppmに 新しいシグナルが現れた.2当量の Ag⁺を添加すると 6.9 ppm の元のシグナルはなく なり, 6.4 ppm の新しいシグナルに完全に置き換わった. 同様のスペクトル変化は ¹⁹F{¹H} NMR でも観測された.1当量までの Ag⁺の添加では,-110.4 ppm のシグナル は変化しなかったが、さらに Ag⁺を添加すると約-106ppm に新しいシグナルが生じ た(図 S38).また, ESI-MSの滴定実験でも同様の挙動が見られた.Ag⁺の添加によ り[1_M+Ag⁺]⁺由来の *m/z* 760 付近のフラグメントピークイオンが観測され(図 S39), Ag⁺を1当量以上添加すると[1F+Ag⁺]⁺由来の m/z 785 付近のフラグメントピークイオ ンの強度が著しく増加した.1Hと1Fまたは1Fと14Fの等モル混合物でも同様の滴定 実験を行ったが、いずれの場合でも1当量のAg⁺を添加すると、まず電子密度が高い 芳香環側鎖を有する配位子が Ag⁺と錯体を形成し、Ag⁺をさらに添加すると電子密度 が低い芳香環側鎖を有する配位子が錯体を形成する挙動が確認された(図 5b, S40, **S41**).

凶 4. DF1 計算(*a*B9/A-D/6-31G*)で求めたアニノー ル (a) と 1,3-ジフルオロベンゼン (b) の静電ポテンシ ャルマップ.

図 5. (a) 1_Mと 1_Fの等モル混合物に Ag⁺を添加したときの¹H NMR スペクトル変化 (298 K, AgOTf, CDCl₃/CD₃OD). (b) 1_Mと 1_Fの等モル混合物の Ag⁺錯体形成挙動の模式図.

UV-vis 滴定実験により 1_M,1_H,1₄F,1_Fの Ag⁺に対する結合定数を算出した. 各配位子 の Ag⁺に対する結合定数 (logβ) はそれぞれ 7.2, 7.0, 6.9, 6.8 であった (図 S42– S44) ¹⁵. これらの結果から,結合定数の差はそれほど大きくないものの,芳香環側 鎖の電子密度が高いサイクレンほど Ag⁺に対する結合定数が高いことが示唆された. NMR と ESI-MS 滴定実験の結果と結合定数から,芳香環側鎖の電子密度が高いテト ラアームドサイクレンは,電子密度が低い芳香環側鎖を持つサイクレンよりも Ag⁺ との錯体形成において,速度論的にも熱力学的にも有利であることが推測された. これらの知見から,電子密度の高い芳香環側鎖を持つテトラアームドサイクレンと 電子密度の低い芳香環側鎖を持つテトラアームドサイクレンが結合した場合,電子 密度の高い側鎖を持つサイクレン部位で最初に Ag⁺と結合し,次に電子密度の低い 側鎖を持つサイクレン部位で結合することが予想される. この実験により位置選択 的な配位を示す新しい超分子系の構築が期待された.

前述したように、2MFは各サイクレンに3つの4-メトキシベンジル基と3,5-ジフル オロベンジル基を側鎖として持つビス(テトラアームドサイクレン)である.2MFに Ag⁺を少量ずつ添加して¹H NMR スペクトルを測定した(図 6a). Ag⁺の添加により 4-メトキシベンジル基の2位と6位のプロトンシグナル(7.25 ppm、図 6a の赤丸) が消失し始め、約6.3 ppmに新しいシグナルが現れた.1.0当量のAg⁺を添加すると、 元のシグナルは新しいシグナルに置き換わった.1.0当量の Ag⁺添加後、3,5-ジフル オロベンジル基の2位と6位のプロトンシグナル(図 6a の青丸)は高磁場(約 6.4 ppm)に現れ始め、2.0当量の Ag⁺を添加したときに元のシグナルは完全に消失した. これらの挙動は単純なテトラアームドサイクレンと同様であり、おそらく NMR のタ イムスケールよりも遅い交換速度によるものであると考えられる.同様の位置選択 的な配位の挙動は¹⁹F{¹H} NMR 滴定実験でも観測された.フッ素シグナルは1.0当量
の Ag^+ を添加するまで変化しなかったが、それ以上の Ag^+ を添加すると元のシグナル が消失し始め、低磁場に新しいシグナルが出現した(図 6b). これらの化学シフト の変化は Ag^+ を覆うように芳香環側鎖の構造が変化し、隣接する芳香環の非遮蔽領 域にフッ素原子が位置したためと考えられる¹². 2.0 当量の Ag^+ を添加すると、フッ 素シグナル(-110.4 ppm) はシャープなシグナルとブロードしたシグナルに分裂し 積分比は 2:4 となった(それぞれ–106.0 ppm と–106.6 ppm). 次に、溶液中の 2MF と Ag^+ の化学量論を ESI-MS 滴定実験で調べたところ、1.5 当量の Ag^+ を添加すると 1:1 および 1:2 の錯体が生成していることが確認できた(図 6c). これに対し、2 当量の Ag^+ を添加すると完全な 2:2 錯体が生成した. これらの結果から、2MF は電子密度の 違いによって Ag^+ に対して位置選択的な配位をすることが示唆された(図 6d). 2MF の Ag^+ に対する結合定数 $\log\beta_1$, $\log\beta_2$ はそれぞれ 6.8 と 12 であった¹⁵.

図 6. 2_{MF}に Ag⁺を添加した時の(a) ¹H NMR と(b) ¹⁹F{¹H} NMR のスペクトル変化(298 K, AgOTf, CDCl₃/CD₃OD, 外部標準:フルオロベンゼン[-113.5 ppm], ¹⁹F{¹H} NMR 上の 数字は積分比を表している).(c) 2_{MF}に Ag⁺を添加した時の ESI-MS スペクトル変化(298 K, AgOTf, CHCl₃/CH₃OH).(d) 2_{MF}の Ag⁺に対する位置選択的な配位の模式図.赤と青の 六角形はそれぞれ電子豊富と電子不足の環を意味している.

トリス(テトラアームドサイクレン)を用いて同様の実験を行ったところ、ビス (テトラアームドサイクレン) で得られた結果と同様に, 芳香環側鎖の電子密度が 高いサイクレンが先に Ag⁺に配位し, 続いて芳香環側鎖の電子密度が低いサイクレ ンが Ag⁺と配位することがわかった.図7aは4-メトキシベンジル基と3.5-ジフルオ ロベンジル基を側鎖に持つ 3MFMの Ag+添加による¹H NMR スペクトルの変化を示し ている. Ag⁺を添加していくと、4-メトキシベンジル基の 2-位と 6-位(7.2 ppm)の プロトンシグナル(H_aと H_b, 図 7a の赤丸)の強度が小さくなっていき,約 6.4 ppm に新しいシグナルが現れた.2当量のAg⁺を添加すると元のシグナルは完全に消失し, 高磁場の新しいシグナルに完全に置き換わった. 3,5-ジフルオロベンジル基の2位と 6位のプロトンシグナル(H_c(6.95 ppm, 図 7a の青丸))は Ag⁺を 2 当量添加するま で変化しなかった.その後,新しいシグナルが約 6.4ppm に新たなシグナルが出現し, 3 当量の Ag⁺を添加するとスペクトルの変化は止まった.しかし、¹⁹F{¹H} NMR スペ クトルでは Ag⁺の添加量とは一致しないスペクトル変化を示した. 図 7b にあるよう に、1 当量の Ag⁺を添加した後、低磁場に新しいシグナルが現れていた.2 当量の Ag⁺を添加すると元のシグナルと新しいシグナルの積分比は 1:2 になった(それぞれ -110.4 ppm と-107.1 ppm). 3MFM の中心のサイクレンに取り付けた 3,5-ジフルオロベ ンジル基に由来する¹⁹F NMR スペクトルが錯形成をしていなくても変化する現象を 理解するため, 1:2 (= 3_{MFM} : Ag⁺, [3_{MFM} · (Ag⁺)₂]²⁺と略記) 錯体を用いて DFT (ωB97X-D/6-31G*) 計算を行った(図 8a)¹⁶. その結果, [3_{MFM}·(Ag⁺)₂]²⁺の最適化 構造では中心のサイクレンの芳香環側鎖がビフェニル基と平行に並び、フッ素原子 がビフェニル基の非遮蔽領域に位置していることがわかった. そのため、中央のサ イクレンが Ag+と錯体を形成していなくても 3.5-ジフルオロベンジル基のフッ素のシ グナルは低磁場側にシフトしていたと考えられる.これらの結果より, 3MFM では両 端のサイクレンが先に Ag⁺に配位した後、中心のサイクレンが Ag⁺に配位することを 示唆している(図 9).

図 7. **3**_{MFM}に Ag⁺を添加した時の(a) ¹H NMR(333 K, AgOTf, CD₂Cl₂/CD₃OD) と (b) ¹⁹F{¹H} NMR (298 K, AgOTf, CDCl₃/CD₃OD, 外部標準:フルオロベンゼン[-113.5 ppm], ¹⁹F{¹H} NMR 上の数字は積分比を表している.)のスペクトル変化.

図8. DFT計算(ωB97X-D/6-31G*)によって算出した(a) $[3_{MFM} \cdot (Ag^+)_2]^{2+}$ および(b) $[4_{MFM} \cdot (Ag^+)_2]^{2+}$ の最適化構造¹⁶. Ag^+ とテトラアームドサイクレン部位は X 線構造を用い、それらの原子座標を固定して計算した.赤:酸素、青:窒素、緑:フッ素.

図 9. 3_{MFM} が Ag⁺に配位するときの錯形成メカニズムの模式図.赤と青の六角形はそれ ぞれ電子豊富と電子不足の環を表している.

V字型の類似体である 4MFM における Ag⁺を添加したときの¹H NMR スペクトル変 化は 3MFM と同様であった(図 S47 (298K) および S48a (333K)). この配位子にお ける¹⁹F{¹H} NMR のスペクトル変化は 2MF のときと同様に Ag⁺の量に応じて低磁場 シフトした. 具体的には、¹⁹F{¹H} NMR 滴定実験(図 S48b) より、中心のサイクレ ンの芳香環側鎖にあるフッ素のシグナルは2当量の Ag⁺を添加するまで変化せず、そ の後、低磁場に新たなシグナルが現れた. DFT 計算より、1:2 (= 4MFM: Ag⁺, [4MFM・ (Ag⁺)2]²⁺と略記) 錯体では 3,5-ジフルオロベンジル側鎖が離れているために他の芳香 環の磁気異方性効果を受けにくいことが示唆された(図 8b).

3FMF でも同様の実験を行った. **3**FMF は **3**MFM とは逆の配置, すなわち, 3,5-ジフル オロベンジル基と 4-メトキシベンジル基がそれぞれ両端と中央のシクレンに導入さ れているものである. その結果, **図 S51a** と **S51b** に示すように, まず電子豊富な 4-メトキシベンジル側鎖を持つ中心のサイクレンが Ag⁺に配位し, 次に 3,5-ジフルオロ ベンジル側鎖を持つ2つの両端のサイクレンが Ag⁺と錯体を形成したことが示唆され た. トリス (テトラアームドサイクレン)の Ag⁺に対する結合定数 $\log \beta_1$, $\log \beta_2$, $\log \beta_3$ はそれぞれ 7, 15, 20 であった (**図 S58–S61**)¹⁷.

4-メトキシベンジル基には1つのメトキシ基が結合しているが、3,5-ジフルオロベ ンジル基は2つのフッ素原子で置換されている.そのため、より多く置換された芳 香族環側鎖による空間的な立体障害がサイクレンと Ag⁺との錯形成に影響を及ぼす 可能性がある.しかしながら、以前に報告されたように配位子単体における X 線結 晶構造は側鎖に関係なく金属イオンへの配位には不利ないす型のコンフォメーショ ンをとっている^{11,13,18-21}.このいす型配座はこれまでに報告されているすべてのテ トラアームサイクレンと同じである.これら配位子が有する芳香環側鎖どうしの CH-π相互作用が影響し、X 線結晶構造で確認されたものと同様のコンフォメーショ ンを溶液中でもとっていると考えられる.したがって、テトラアームドサイクレン が Ag^+ に配位するとき、サイクレン環はいす型配座から Ag^+ を捕捉できる配座(4 つ の N 原子が同じ方向を向いた状態)に変化し、次いで芳香環側鎖が Ag^+ を覆うよう に構造変化すると予想される.さらに清水らの報告²²によれば Ag^+ -π相互作用のエ ネルギーは約–1.4–2.2、-1.4–2.7 kcal/mol 程度であり、 Ag^+ -π相互作用は強い親和 性を示さないことが示唆されている.これらのことから芳香環側鎖の置換基が Ag^+ との錯形成に影響を及ぼすことは考えにくい.

2MF および 3MFM, 3FMF, 4MFM の Ag⁺錯体の合成を行った. 対称性が高い 3MFM, 3FMF, 4MFMのAg+錯体の単結晶は得られたが、非対称の2MFのAg+錯体の単結晶は得 られなかった. 1:3 錯体 (=3_{MFM}, 3_{FMF}, 4_{MFM}: 3_{MFM} ([3_{MFM}·(Ag⁺)₃](OTf⁻)₃), 3_{FMF} $([\mathbf{3}_{FMF} \cdot (Ag^{+})_{3}](OTf^{-})_{2}(Cl^{-}), \mathbf{3}_{FMF} \cdot (Ag^{+})_{3}](BF_{4}^{-})_{3}), \mathbf{4}_{MFM} ([\mathbf{4}_{MFM} \cdot (Ag^{+})_{3}](OTf^{-})_{3}) \mathcal{O}$ 単結晶を用いて X 線結晶構造解析を行った(図 10, S62-S65). 各 Ag+はサイクレ ン環の4つのN原子と結合しており、4つの芳香環側鎖に覆われていた.これは以前 に報告されたテトラアームドサイクレン/Ag⁺錯体と類似している¹².各サイクレン 部位の側鎖(ΔまたはA)とサイクレン環(δδδδまたはλλλλ)のコンフォメーション は、 Λ ($\delta\delta\delta\delta\delta$) Λ ($\delta\delta\delta\delta\delta$) Λ ($\delta\delta\delta\delta\delta$) 形または Λ ($\lambda\lambda\lambda\lambda$) Λ ($\lambda\lambda\lambda\lambda$) Λ ($\lambda\lambda\lambda\lambda$) 形であ り、ラセミ混合物として存在していた、コンフォメーションは我々が以前に報告し た 4.4'-ジメチル-1.1'-ビフェニル基で架橋されたビス(テトラアームドサイクレン) のコンフォメーションと同じであった¹².興味深いことに,**3**_{FMF}とAgOTfの錯体を クロロホルムとメタノールの混合溶媒中で合成したところ,2つのOTfと1つのCl をカウンターアニオンとして含む錯体 3_{FMF} ($[3_{FMF} \cdot (Ag^+)_3](OTf^-)_2(Cl^-)$ が得られた. しかしながら、[3FMF・(Ag⁺)₃]³⁺部分の構造は異なるカウンターアニオンでも変わら なかった.

図10. [**3**_{MFM}·(Ag⁺)₃](OTf⁻)₃のX線結晶構造. アニオンと水素は省略.

5-3. 結論

本研究ではビス(テトラアームドサイクレン)とトリス(テトラアームドサイクレン)における各サイクレンの芳香族側鎖の置換基を変えた新規配位子を合成した. ¹H および¹⁹F{¹H} NMR, ESI-MS を用いた滴定実験により, Ag⁺は芳香族側鎖の電子 密度が高いサイクレンから優先的に捕捉されることが明らかとなり,芳香族側鎖の 電子密度の違いによる位置選択的な配位が可能であることを示した(図8, S53a お よび S53b).位置選択的な配位はトリス(テトラアームドサイクレン)上の電子豊 富な芳香環側鎖/電子不足な芳香環側鎖の位置や,分子骨格構造(直線型または V 字型)には依存せず,芳香族側鎖の電子密度のみによって制御されることが明らか となった.本研究は,単一の金属イオンに対して複数の同一配位部位を持つ配位子 における電子密度を変化させることによって,金属イオンに対する位置選択的な配 位を制御する新しいアプローチを提供するものであり,様々な分野への応用が期待 される.

5-4. 実験項

5-4-1. 試薬および実験装置

本研究で用いた試薬はすべて標準的なグレードのものであり、再精製はしていない. 配位子 1_H, 1_M, 1_F, 1_{4F}¹³ と中間化合物の 2²³, 3²³, 5²⁴, 15²⁵ はすでに報告されている方法で合成を行った. 融点は Mel-Temp キャピラリー装置を用いて測定し、補正はしていない. 質量分析は FAB-MS スペクトルを JEOL 600H で、ESI-MS スペクトルを JEOL JMS-T100CS で行った. ¹H, ¹³C {¹H}, ¹⁹F {¹H} NMR スペクトルは JEOL ECP400 (400 MHz) および Bruker AVANCE II (400 MHz) を用いて測定した. 元素分析は Yanako MT-10 CHN Micro Corder で行った. DFT 計算には Spartan '20 を、配位子と Ag⁺の安定度定数の算出には HypSpec を使用した¹⁷.

5-4-2. 4,4,5,5-Tetramethyl-2-(*p*-tolyl)-1,3,2-dioxaborolane (2)の合成

4-ブロモトルエン (17.1 g, 100 mmol) を脱水テトラヒドロフラン (200 mL) に溶 解して-78 °C まで下げた後, *n*-ブチルリチウム (1.56 mmol/L のテトラヒドロフラン 溶液, 64.0 mL, 100 mmol) をゆっくり滴下して窒素雰囲気下で 2 時間攪拌した. そ こにホウ酸トリイソプロピル (24.0 mL, 100 mmol) をゆっくり滴下してさらに 2 時 間攪拌した. 0–10 °C になるまで昇温し, 水 (5 mL) を加えて分液ロートに移した. そこに飽和塩化アンモニウム水溶液を加えてジエチルエーテルで抽出した. 有機層 に硫酸ナトリウムを入れて脱水乾燥し, 自然ろ過をして減圧留去した. 得られた白 色固体をジエチルエーテル (100 mL) に懸濁させ, ピナコール (13.0 g, 110 mmol) を添加して固体が完全に溶解するまで攪拌した. そこに硫酸マグネシウム (20 g) を加えて一晩攪拌し, 固体を吸引ろ過で除去した後に減圧留去した. 油状の粗生成 物を *n*-ヘキサンを用いてスラリー状のシリカゲルに通し, さらに 5 回 *n*-ヘキサンを 流して洗浄した. 得られた溶液減圧留去して白色固体の 2 を 89%の収率で得た. Mp 49–50 °C (lit.²⁰ not reported); ¹H NMR (400MHz, CDCl₃) δ 7.70 (d, *J* = 7.9 Hz, 2H), 7.18 (d, *J* = 7.9 Hz, 2H), 2.36 (s, 3H), 1.34 (s, 12H).

5-4-3. 2-(4-(Bromomethyl)phenyl)-4,4,5,5-tetramethyl-1,3, 2-dioxaborolane (3)の合成

アセトニトリル (200 mL) に 2 (10.8 g, 49.5 mmol) と N-ブロモスクシンイミド (10.1 g, 56.5 mmol) を入れ, 固体が溶解するまで攪拌した. その後, アゾイソブチ ロニトリル (0.171 g, 1.04 mmol) を加え, 窒素雰囲気下で4時間還流した. 室温まで 冷却して溶媒を減圧留去し, 酢酸エチルを加えて残ったアセトニトリルを共沸して 除去した. 析出した固体を吸引ろ過で取り除き, ろ液を減圧留去した後に得られた 粗結晶を *n*-ヘキサンで再結晶を行って淡黄色固体の 3 を 72%の収率で得た. M.p. 82–83 °C (lit.²⁰ not reported); ¹H NMR (400 MHz, CDCl₃) δ7.78 (d, *J* = 8.0 Hz, 4H), 7.39 (d, *J* = 8.0 Hz, 4H), 4.49 (s, 2 H), 1.34 (s, 12H).

5-4-4. Decahydro-2a,4a,6a,8a-tetraazacyclopenta[fg]acenaphthylene (5)の合成

サイクレン (8.60 g, 50.0 mmol) をメタノール (120 mL) に溶解させ氷浴中で攪拌 した. そこにメタノール (120 mL) と混和させた 40%グリオキサール水溶液 (7.29 g, 50.3 mmol) を滴下し,窒素雰囲気下,室温で 3 時間攪拌した.反応溶液を減圧留去 して得られた残渣にトルエンを加えて分離することで油状物質を取り除き,溶液を 減圧留去して白色固体の 5 を 91%の収率で得た. M.p. 85–86 °C (lit.²¹ 95 °C); ¹H NMR (400 MHz, CDCl₃) δ 3.14 (s, 2H), 3.02 (d, *J* = 5.0 Hz, 4H), 2.99–2.94 (m, 4H), 2.70 (s, 4H), 2.60–2.54 (m, 4H); FAB-MS (matrix: thioglycerol) *m/z* 195 ([M+H]⁺, 60%).

5-4-5. 6a-(4-Bromobenzyl)decahydro-5H-2a,4a,6a,8atetraazacyclopenta[fg]acenaphthylen-6a-ium bromide (6)の合成

トルエン (50 mL) に**5** (2.92 g, 15.0 mmol) を溶解させ、そこに 4-ブロモベンジル ブロマイド (3.75 g, 15.0 mmol) を加えた後、窒素雰囲気下、室温で 1 日攪拌した. 生成した固体を吸引ろ過で回収し、トルエンで洗浄することで白色固体の **6** を 88% の収率で得た. M.p. 160 °C (dec.); ¹H NMR (400 MHz, CDCl₃) δ 7.69 (d, J = 8.4 Hz, 2H), 7.51 (d, J = 8.4 Hz, 2H), 5.62 (d, J = 12.9 Hz, 1H), 5.38 (d, J = 12.9 Hz, 1H), 4.84–4.78 (m, 1H), 4.39 (d, J = 2.5 Hz, 1H), 3.93 (s, 1H), 3.73–3.65 (m, 2H), 3.43–3.28 (m, 5H), 3.19 (d, J = 13.2 Hz, 1H), 3.13–3.07 (m, 1H), 3.02 (dt, J_I = 11.4 Hz, J_2 = 2.5 Hz, 1H), 2.90–2.81 (m, 2H), 2.75 (dt, J_I = 10.6 Hz, J_2 = 2.3 Hz, 1H), 2.70–2.60 (m, 2H); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 134.7, 132.5, 126.6, 125.4, 82.6, 71.6, 60.7, 59.0, 58.0, 52.1, 49.0, 48.5, 48.1, 47.8, 43.6; FAB-MS (matrix thioglycerol) m/z 363 ([M-Br⁻]⁺, 25%); Anal. Calcd for C₁₇H₂₄Br₂N₄+0.2H₂O: C, 45.60; H, 5.49; N, 12.51. Found: C, 45.44; H, 5.27; N, 12.43.

5-4-6. 1-(4-Bromobenzyl)-1,4,7,10-tetraazacyclododecane(7)の合成

6 (4.45 g, 10.0 mmol) をヒドラジン一水和物 (30 mL) に懸濁させ,窒素雰囲気下, 100 °C で 1 日攪拌した. 室温まで冷却して生成した固体を吸引ろ過し,水で洗浄す ることで白色固体の 7 を 95%の収率で得た. M.p. 96–97 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, J = 8.3 Hz, 2H), 7.19 (d, J = 8.4 Hz, 2H), 3.56 (s, 2H), 2.83–2.81 (m, 4H), 2.69–2.67 (m, 4H), 2.60–2.57 (m, 8H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 138.0, 131.4, 130.6, 120.8, 58.5, 51.2, 47.0, 46.2, 44.9; FAB-MS (matrix thioglycerol) m/z 341 ([M+H]⁺, 100%); Anal. Calcd for C₁₅H₂₂N₄O₂+0.5H₂O: C, 51.43; H, 7.48; N, 15.99. Found: C, 51.36; H, 7.29; N, 16.02.

5-4-7. 1-(4-Bromobenzyl)-4,7,10-tris(4-methoxybenzyl)-1,4,7,10-tetraazacyclododecane (8)の合成

1,2-ジクロロエタン (80 mL) に 7 (2.73 g, 8.00 mmol), p-アニスアルデヒド (6.55 g, 48.1 mmol), トリアセトキシ水素化ホウ素ナトリウム (10.2 g, 48.0 mmol) を入れ, 窒素雰囲気下, 室温で 3 日攪拌した. 飽和炭酸ナトリウム水溶液を加えて塩基性に した後に分液ロートに移し, クロロホルムで抽出した. 有機層に硫酸ナトリウムを 入れて脱水乾燥し, 自然ろ過をして減圧留去した. 析出した固体を吸引ろ過で回収 し, アセトニトリルで洗浄することで白色固体の 8 を 74%の収率で得た. M.p. 153–154 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, J = 8.4 Hz, 2H), 7.24–7.19 (m, 8H), 6.80–6.77 (m, 6H), 3.78 (s, 9H), 3.35–3.33 (m, 8H), 2.64–2.62 (m, 16H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 158.5, 139.4, 132.2, 132.1, 131.2, 130.8, 130.1₈, 130.1₇ 120.3, 113.5, 59.6, 59.5, 59.4, 55.4, 53.2, 53.0, 52.9; FAB-MS (matrix thioglycerol) m/z 702 ([M+H]⁺, 5%); Anal. Calcd for C₃₉H₄₉BrN₄O₃: C, 66.75; H, 7.04; N, 7.98. Found: C, 66.45; H, 6.89; N, 7.91.

5-4-8. 1-(4-Bromobenzyl)-4,7,10-tris(3,5-difluorobenzyl)-1,4,7,10-tetraazacyclododecane (10)の合成

1,2-ジクロロエタン (50 mL) に 7 (1.72 g, 5.04 mmol), 3,5-ジフルオロベンズアル デヒド (4.33 g, 30.5 mmol), トリアセトキシ水素化ホウ素ナトリウム (6.36 g, 30.0 mmol) を入れ,窒素雰囲気下,室温で 1 日攪拌した. 飽和炭酸ナトリウム水溶液を 加えて塩基性にした後に分液ロートに移し,クロロホルムで抽出した. 有機層に硫 酸ナトリウムを入れて脱水乾燥し,自然ろ過をして減圧留去した. シリカゲルカラ ムクロマトグラフィー (ジクロロメタン→酢酸エチル) で精製し,黄色い油状物質 の 10 を 88%の収率で得た.¹H NMR (400 MHz, CDCl₃) δ 7.37 (d, J = 8.2 Hz, 2H), 7.19 (d, J = 8.2 Hz, 2H), 6.89 (d, J = 8.0 Hz, 4H), 6.87 (d, J = 8.1 Hz, 2H), 6.69–6.63 (m, 3H), 3.39 (s, 2H), 3.37 (s, 6H), 2.65 (s, 16H).¹³C {¹H} NMR (100 MHz, CDCl₃) δ 163.1 (dd, ¹ J_{CF} = 247.9 Hz, ³ J_{CF} = 12.9 Hz), 144.3 (t, ³ J_{CF} = 8.7 Hz), 144.2 (t, ³ J_{CF} = 8.7 Hz), 138.8, 131.4, 130.7, 120.7, 111.4 (dd, ² J_{CF} = 18.6 Hz, ⁴ J_{CF} = 6.5 Hz), 102.34 (t, ² J_{CF} = 25.9 Hz), 102.30 (t, ² J_{CF} = 25.7 Hz), 59.9, 59.7, 59.6, 53.42, 53.39, 53.3, 53.2; FAB-MS (matrix DTT:TG=1:1) m/z 719 ([M+H]⁺,15%); Anal. Calcd for C₃₆H₃₇BrF₆N₄+0.1CHCl₃: C, 59.27; H, 5.11; N, 7.66. Found: C, 59.41; H, 5.13; N, 7.68.

5-4-9. 2a-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-6a-(4-(3,3,4,4-tetramethyl-113,2,5-bromadioxolan-1-yl)benzyl)dodecahydro-2a,4a,6a,8a-tetraazacyclopenta[fg]acenaphthylene-2a,6a-diium bromide (11)の合成

アセトニトリル (50 mL) に 5 (1.59 g, 8.28 mmol) と 3 (7.38 g, 24.8 mmol) を入 れ,窒素雰囲気下,室温で 1 日攪拌した.析出した固体を吸引ろ過で回収し,アセ トニトリルで洗浄することで白色固体の 11 を 79%の収率で得た.これ以上の精製は 行わずに次の反応にそのまま使用した.¹H NMR (400 MHz, CDCl₃) *δ*7.85 (d, *J* = 7.9 Hz, 4H), 7.62 (d, *J* = 8.0 Hz, 4H), 6.45 (s, 2H), 5.45 (d, *J* = 13.0 Hz, 2H), 5.21 (d, *J* = 13.2 Hz, 2H), 4.71-4.65 (m, 2H), 4.05–3.98 (m, 2H), 3.92–3.86 (m, 2H), 3.73–3.67 (m, 2H), 3.53–3.48 (m, 2H), 3.40–3.33 (m, 2H), 3.30–3.21 (m, 6H), 1.35 (s, 24H).

5-4-10. 1-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl)-7-(4-(3,3,4,4tetramethyl-113,2,5-bromadioxolan-1-yl)benzyl)-1,4,7,10-tetraazacyclododecane (12)の合成

11 (4.64 g, 5.89 mmol) をヒドラジン一水和物 (22 mL) に懸濁させ, 窒素雰囲気下, 100 °C で 1 日攪拌した. 室温まで冷却して生成した固体を吸引ろ過し, 水で洗 浄することで白色固体の 12 を 79%の収率で得た. M.p. 168 °C (dec.); ¹H NMR (400 MHz, CDCl₃) *δ*7.83 (d, *J* = 7.9 Hz, 4H), 7.36 (d, *J* = 7.9 Hz, 4H), 3.63 (s, 4H), 2.64–2.58 (m, 16H), 1.34 (s, 24H); ¹³C {¹H} NMR (100 MHz, CDCl₃): *δ*142.2, 135.1, 128.7, 83.8, 59.9, 51.8, 45.3, 25.0; FAB-MS (matrix thioglycerol) *m*/*z* 605 ([M+H]⁺, 50%); Anal. Calcd for C₁₅H₂₂N₄O₂+0.4H₂O: C, 65.86; H, 8.77; N, 9.60. Found: C, 66.02; H, 8.62; N, 9.30.

5-4-11. 1,7-Bis(3,5-difluorobenzyl)-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)benzyl)-10-(4-(3,3,4,4-tetramethyl-113,2,5-bromadioxolan-1-yl)benzyl)-1,4,7,10tetraazacyclododecane (13)の合成

1,2-ジクロロエタン (20 mL) に 12 (1.21 g, 2.00 mmol), 3,5-ジフルオロベンズア ルデヒド (1.33 g, 9.36 mmol), トリアセトキシ水素化ホウ素ナトリウム (1.72 g, 8.12 mmol) を入れ,窒素雰囲気下,室温で1日攪拌した.飽和炭酸ナトリウム水溶液を 加えて塩基性にした後に分液ロートに移し,クロロホルムで抽出した. 有機層に硫 酸ナトリウムを入れて脱水乾燥し、自然ろ過をして減圧留去した. 析出した固体を 吸引ろ過で回収し、アセトニトリルで洗浄することで無色結晶の **13** を 74%の収率で 得た. M.p. 119–120 °C; ¹H NMR (400 MHz, CDCl₃) *δ*7.70 (d, *J* = 7.9 Hz, 4H), 7.30 (d, *J* = 7.7 Hz, 4H), 6.89 (d, *J* = 8.0 Hz, 4H), 6.65 (tt, *J*_{*I*} = 9.0 Hz, *J*₂ = 2.2 Hz, 2H) 3.44 (s, 4H), 3.34 (s, 4H), 2.64 (s, 16H), 1.34 (s, 24H); ¹³C{¹H} NMR (100 MHz, CDCl₃) *δ* 163.1 (dd, ¹*J*_{CF} = 247.7 Hz, ³*J*_{CF} = 12.7 Hz), 144.7 (t, ³*J*_{CF} = 8.7 Hz), 143.0, 134.8, 128.6, 111.4 (dd, ²*J*_{CF} = 18.4 Hz, ⁴*J*_{CF} = 6.5 Hz), 102.1 (t, ²*J*_{CF} = 25.7 Hz), 83.8, 60.6, 59.4, 53.2, 25.0; FAB-MS (matrix thioglycerol) *m*/*z* 858 ([M+H]⁺, 50%); Anal. Calcd for C₄₈H₆₂B₂ F₄N₄O₄: C, 67.30; H, 7.30; N, 6.54. Found: C, 67.14; H, 7.05; N, 6.57.

5-4-12. 1,7-Bis(4-methoxybenzyl)-4-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2yl)benzyl)-10-(4-(3,3,4,4-tetramethyl-113,2,5-bromadioxolan-1-yl)benzyl)-1,4,7,10tetraazacyclododecane (14)の合成

1,2-ジクロロエタン(15 mL)に 12(0.873 g, 1.44 mmol), p-アニスアルデヒド (0.806 g, 5.92 mmol), トリアセトキシ水素化ホウ素ナトリウム(1.23 g, 5.80 mmol) を入れ、窒素雰囲気下、室温で 1 日攪拌した. 飽和炭酸ナトリウム水溶液を加えて 塩基性にした後に分液ロートに移し、クロロホルムで抽出した. 有機層に硫酸ナト リウムを入れて脱水乾燥し、自然ろ過をして減圧留去した. 析出した固体を吸引ろ 過で回収し、アセトニトリルで洗浄することで無色結晶の 14 を 57%の収率で得た. M.p. 119–120 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (d, J = 7.9 Hz, 4H), 7.30 (d, J = 7.7 Hz, 4H), 6.89 (d, J = 8.0 Hz, 4H), 6.65 (tt, J_1 = 9.0 Hz, J_2 = 2.2 Hz, 2H) 3.44 (s, 4H), 3.34 (s, 4H), 2.64 (s, 16H), 1.34 (s, 24H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.1 (dd, ¹ J_{CF} = 247.7 Hz, ³ J_{CF} = 12.7 Hz), 144.7 (t, ³ J_{CF} = 8.7 Hz), 143.0, 134.8, 128.6, 111.4 (dd, ² J_{CF} = 18.4 Hz, ⁴ J_{CF} = 6.5 Hz), 102.1 (t, ² J_{CF} = 25.7 Hz), 83.8, 60.6, 59.4, 53.2, 25.0; FAB-MS (matrix thioglycerol) m/z 858 ([M+H]⁺, 50%); Anal. Calcd for C₄₈H₆₂B₂ F₄N₄O₄: C, 67.30; H, 7.30; N, 6.54. Found: C, 67.14; H, 7.05; N, 6.57.

5-4-13. 1,4,7,10-Tetraazabicyclo[8.2.2]tetradecane-11,12-dione (15)の合成²²

メタノール (250 mL) にサイクレン (8.61 g, 50.0 mmol) を溶解させ、そこにシュ ウ酸ジエチル (7.31 g, 50.0 mmol) をゆっくり滴下して入れ、窒素雰囲気下、室温で 1 日攪拌した. 減圧留去してカラムクロマトグラフィー (クロロホルム:メタノー ル:アンモニア水=5:1:0.2) で精製し、淡黄色油状の15を79%の収率で得た.¹H NMR (400 MHz, CDCl₃) δ 4.47–4.44 (m, 2H), 3.63–3.50 (m, 4H), 3.04 (dt, J_1 = 12.9 Hz, J_2 = 3.9 Hz, 2H), 2.93 (dt, J_1 = 13.9 Hz, J_2 = 3.8 Hz, 2H), 2.74–2.65 (m, 4H), 2.62–2.60 (m, 2H); FAB-MS (matrix: DTT:TG = 1:1) m/z 227 ([M+H]⁺, 35%).

5-4-14. 4,7-Bis(3,5-difluorobenzyl)-1,4,7,10-tetraazabicyclo[8.2.2]tetradecane-11,12-dione (16)の合成

ジクロロメタン (500 mL) に **15** (8.94 g, 39.5 mmol), 3,5-ジフルオロベンズアルデ ヒド (22.4 g, 158 mmol), トリアセトキシ水素化ホウ素ナトリウム (31.6 g, 149 mmol) を入れ,窒素雰囲気下,室温で 1 日攪拌した.飽和炭酸ナトリウム水溶液を加えて 塩基性にした後に分液ロートに移し,クロロホルムで抽出した. 有機層に硫酸ナト リウムを入れて脱水乾燥し,自然ろ過をして減圧留去した. 析出した固体を吸引ろ 過で回収し,アセトニトリルで洗浄することで無色結晶の **16** を 87%の収率で得た. M.p. 242–243 °C; ¹H NMR (400 MHz, CDCl₃) *δ*6.73–6.69 (m, 6H), 4.29 (dt, *J*₁ = 13.9 Hz, *J*₂ = 4.0 Hz, 2H), 4.08 (s, 2H), 3.61 (q, *J* = 5.6 Hz, 2H), 3.47–3.38 (m, 4H), 2.91–2.84 (m, 2H), 2.69–2.63 (m, 2H), 2.53–2.36 (m, 6H); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 162.8 (dd, ¹*J*_{CF} = 249.4 Hz, ³*J*_{CF} = 12.9 Hz), 159.7, 142.1 (t, ³*J*_{CF} = 8.4 Hz), 112.0 (dd, ²*J*_{CF} = 24.8, ⁴*J*_{CF} = 6.6 Hz), 102.8 (t, ²*J*_{CF} = 25.4 Hz), 57.5, 54.8, 52.3, 48.8, 46.5; FAB-MS (matrix: DTT:TG = 1:1) *m*/*z* 480 ([M+H]⁺, 25%); Anal. Calcd. for C₂₄H₂₆F₄N₄O₂+0.4H₂O: C, 59.35; H, 5.56; N, 11.54. Found: C, 59.46; H, 5.34; N, 11.53.

5-4-15. 1,4-Bis(3,5-difluorobenzyl)-1,4,7,10-tetraazacyclododecane (17)の合成

16 (7.86 g, 16.4 mmol) を水酸化ナトリウム水溶液(10 M, 100 mL) と水(100 mL)の混合物に懸濁させ、窒素雰囲気下、100 °C で 1 日攪拌した. 室温まで冷却してジクロロエタンで抽出した後、有機層に硫酸ナトリウムを入れて脱水乾燥した. 自然ろ過をした後に減圧留去し、カラムクロマトグラフィー(クロロホルム:メタノール:アンモニア水=5:1:0.2) で精製することで淡黄色油状の**17**を86%の収率で得た. ¹H NMR (400 MHz, CDCl₃) δ 6.83 (d, J = 7.8 Hz, 4H), 6.63 (tt, J_I = 9.0 Hz, J_2 = 2.3 Hz, 2H), 3.43 (s, 4H), 2.81 (s, 4H), 2.77–2.74 (m, 4H), 2.55–2.52 (m, 8H); ¹³C {¹H} NMR (100 MHz, CDCl₃) δ 163.1 (dd, ¹ J_{CF} = 248.5 Hz, ³ J_{CF} = 12.9 Hz), 143.3 (t, ³ J_{CF} = 8.7 Hz), 111.6 (dd, ² J_{CF} = 18.3 Hz, ⁴ J_{CF} = 6.7 Hz), 102.5 (t, ² J_{CF} = 25.7 Hz), 58.1, 52.6, 50.9, 47.1, 45.2; FAB-MS (matrix: DTT:TG = 1:1) m/z 425 ([M+H]⁺, 25%); Anal. Calcd. for C₂₂H₂₈F₄N₄+0.8H₂O: C, 61.21; H, 6.72; N, 12.98. Found: C, 61.39; H, 6.57; N, 12.68.

5-4-16. 1,4-Bis(3,5-difluorobenzyl)-7,10-bis(4-(4,4,5,5-tetra methyl-1,3,2-dioxaborolan-2-yl)benzyl)-1,4,7,10-tetra azacyclododecane (18)の合成

アセトニトリル (20 mL) に 17 (0.822 g, 1.94 mmol), *N,N-ジ*イソプロピルエチル アミン (1.26 g, 9.75 mmol) を入れて攪拌した後,アセトニトリル (20 mL) に溶解 させた **3** (1.20 g, 4.04 mmol) を反応溶液に加えた.窒素雰囲気下, 60 °C で 1 日攪拌 した後,溶媒を減圧留去した.メタノールと水の混合溶媒から結晶化を行い, 無色 結晶の 18 を 64%の収率で得た. M.p. 116–117 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.0 Hz, 4H), 7.32 (d, *J* = 8.0 Hz, 4H), 6.87 (d, *J* = 8.0 Hz, 4H), 6.64 (tt, *J*_{*I*} = 8.9 Hz, *J*₂ = 2.3 Hz, 4H), 3.44 (s, 4H), 3.35 (s, 4H), 2.68–2.61(m, 16H), 1.34 (s, 24H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.0 (dd, ¹*J*_{CF} = 247.7 Hz, ³*J*_{CF} = 12.7 Hz), 144.4 (t, ³*J*_{CF} = 8.7 Hz), 143.0, 134.6, 128.6, 111.3 (dd, ²*J*_{CF} = 18.4 Hz, ⁴*J*_{CF} = 6.3 Hz), 102.2 (t, ²*J*_{CF} = 25.7 Hz), 83.8, 60.6, 59.5, 53.5, 53.4, 53.0, 52.9, 25.0; FAB-MS (matrix: DTT:TG = 1:1) *m*/*z* 857 ([M+H]⁺, 25%); Anal. Calcd. for C₄₈H₆₂B₂F₄N₄O₄: C, 67.30; H, 7.30; N, 6.54. Found: C, 67.06; H, 7.25; N, 6.57.

5-4-17. 1,4,7-Tris(3,5-difluorobenzyl)-10-((4'-((4,7,10-tris(4-methoxybenzyl)-1,4,7,10-tetraazacyclododecan-1-yl)methyl)-[1,1'-biphenyl]-4-yl)methyl)-1,4,7,10-tetraazacyclododecane (**2**MF)の合成

1,4-ジオキサン(10 mL)に8(0.774 g, 1.10 mmol),ビス(ピナコラト)ジボロン (0.309 g, 1.22 mmol),ビス(ジフェニルホスフィノフェロセン)ジクロロパラジウ ム(II)(ジクロロメタン付加物,58 mg,71 mmol),酢酸カリウム(0.360 g, 3.67 mmol)を入れ,窒素雰囲気下,100℃で1日攪拌した.室温まで冷却して反応溶液 を減圧留去した.この残渣(粗生成物9)に1,4-ジオキサンと水の混合溶媒(v/v4:1, 10 mL),10(0.719 g, 1.00 mmol),炭酸ナトリウム(0.360 g, 3.40 mmol),ビス(ジフ ェニルホスフィノフェロセン)ジクロロパラジウム(II)(ジクロロメタン付加物, 41 mg,50 mmol)を加え,窒素雰囲気下,100℃で1日攪拌した.室温まで冷却して 吸引ろ過で固体を取り除き,溶媒を減圧留去した.ジクロロメタンで抽出し,有機 層に硫酸ナトリウムを入れて脱水乾燥した.自然ろ過をした後に減圧留去し、カラ ムクロマトグラフィー (トルエン:エタノール=2:1→クロロホルム:n-ヘキサ ン:トリエチルアミン=1:1:0.1) で精製することで茶褐色油状の 2MF を 33%の収 率で得た.¹H NMR (400 MHz, CD₂Cl₂) *δ*7.49 (d, *J* = 8.2 Hz, 4H), 7.48 (d, *J* = 8.2 Hz, 4H), 7.39_5 (d, J = 8.2 Hz, 4H), 7.39_0 (d, J = 8.2 Hz, 4H), 7.23_9 (d, J = 8.5 Hz, 2H), 7.23_2 (d, J = 8.5Hz, 4H), 6.96 (dd, $J_1 = 8.2$ Hz, $J_2 = 2.1$ Hz, 4H), 6.91 (dd, $J_1 = 8.2$ Hz, $J_2 = 2.1$ Hz, 2H), 6.79 (d, J = 8.4 Hz, 2H), 6.77 (d, J = 8.5 Hz, 4H), 6.66 (tt, $J_1 = 9.0$ Hz, $J_2 = 2.1$ Hz, 3H), 3.75 (s, 3H), 3.72 (s, 6H), 3.49 (s, 2H), 3.45 (s, 2H), 3.40 (s, 6H), 3.37 (s, 6H), 2.69–2.66 (m, 32H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 162.8 (dd, ¹*J*_{CF} = 248.0 Hz, ³*J*_{CF} = 13.2 Hz), 158.4, 144.3 $(t, {}^{3}J_{CF} = 8.4 \text{ Hz}), 144.1 (t, {}^{3}J_{CF} = 8.8 \text{ Hz}), 139.5, 139.2, 138.4, 131.8, 130.2, 129.4, 129.3,$ 126.6, 126.5, 113.4, 111.2 (dd, ${}^{2}J_{CF} = 18.3$ Hz, ${}^{4}J_{CF} = 6.6$ Hz), 111.1 (dd, ${}^{2}J_{CF} = 18.3$ Hz, ${}^{4}J_{CF} =$ 6.6 Hz), 102.2 (t, ${}^{2}J_{CF} = 25.3$ Hz), 102.1 (t, ${}^{2}J_{CF} = 25.7$ Hz), 60.0, 59.6, 59.4, 59.2, 55.1₄, 55.1₁, 53.3, 53.2₀, 53.1₆, 53.1₂, 52.6; ¹⁹F NMR (377 MHz, CDCl₃. Fluorobenzene (-113.5 ppm) was used as an external standard) δ -110.38, -110.39; ESI-MS *m*/*z*: 1261.58 ([M+H]⁺, 100%); calcd. for C₇₅H₈₆F₆N₈O₃:1261.68; Anal. Calcd for C₇₅H₈₆F₆N₈O₃+0.5toluene: C, 72.11; H, 6.94; N, 8.57. Found: C, 72.31; H, 6.77; N, 8.85.

5-4-18. 10,10'-((((4,10-Bis(3,5-difluorobenzyl)-1,4,7,10-tetraazacyclododecane-1,7diyl)bis(methylene))bis([1,1'-biphenyl]-4',4-diyl))bis(methylene))bis(1,4,7-tris(4methoxybenzyl)-1,4,7,10-tetraazacyclododecane) (**3**_{MFM})の合成

窒素バブリングした 1.4-ジオキサンと水の混合溶媒(v/v1:1,100 mL)に8(1.40 g, 2.00 mmol), 13 (0.858 g, 1.00 mmol), 炭酸カリウム (1.40 g, 10.1 mmol), テトラキ ス(トリフェニルホスフィン)パラジウム(0)(0.114 g, 0.0986 mmol)を入れ, 窒 素雰囲気下,100℃で2日攪拌した.室温まで冷却して吸引ろ過で固体を取り除き, 溶媒を減圧留去した、クロロホルムで抽出し、有機層に硫酸ナトリウムを入れて脱 水乾燥した. 自然ろ過をした後に減圧留去し、カラムクロマトグラフィー(クロロ ホルム:アセトン:トリエチルアミン=5:1:0.2) で分離し、アセトニトリルから 結晶化することで白色粉末の 3MFM を 34%の収率で得た. M.p. 138 ℃ (dec.);¹H NMR (400 MHz, CD_2Cl_2): δ 7.47 (d, J = 8.2 Hz, 8H), 7.38 (d, J = 8.2 Hz, 8H), 7.24 (d, J = 3.9 Hz, 12H), 7.24 (dd, $J_1 = 8.0$ Hz, $J_2 = 1.7$ Hz, 4H), 6.79 (d, J = 8.7 Hz, 4H), 6.77 (d, J = 8.6 Hz, 8H), 6.67 (tt, $J_1 = 9.0$ Hz, $J_2 = 2.1$ Hz, 2H), 3.75 (s, 6H), 3.72 (s, 12H), 3.49–3.36 (m, 24H), 2.71– 2.65 (m, 48H); ${}^{13}C{}^{1}H$ NMR (100 MHz, CDCl₃) δ 163.1 (dd, ${}^{1}J_{CF} = 247.7$ Hz, ${}^{3}J_{CF} = 12.7$ Hz), 158.5, 144.8 (t, ${}^{3}J_{CF}$ = 8.7 Hz), 139.7, 139.3, 138.6, 132.2, 130.4, 130.2, 129.5 126.8, 126.7, 113.5, 111.4 (dd, ${}^{2}J_{CF} = 18.1$ Hz, ${}^{4}J_{CF} = 6.7$ Hz), 102.1 (t, ${}^{2}J_{CF} = 25.5$ Hz), 60.3, 59.8, 59.54, 59.47, 55.32, 55.30, 53.4, 53.3, 53.2, 53.1, 53.0; ¹⁹F NMR (377 MHz, CDCl₃. Fluorobenzene (δ -113.5 ppm) was used as an external standard) δ -111.2; ESI-MS *m*/*z*: 1846.71 ([M+H]⁺, 75%); calcd. for $C_{114}H_{136}F_4N_{12}O_6$: 1847.08; Anal. Calcd for $C_{114}H_{136}F_4N_{12}O_6$ +0.5CHCl₃: C, 72.15; H, 7.22; N, 8.82. Found: C, 72.36; H, 7.10; N, 8.87.

5-4-19. 10,10'-((((4,10-Bis(3,5-difluorobenzyl)-1,4,7,10-tetraazacyclododecane-1,7diyl)bis(methylene))bis([1,1'-biphenyl]-4',4-diyl))bis(methylene))bis(1,4,7-tris(4methoxybenzyl)-1,4,7,10-tetraazacyclododecane) (**3**_{FMF})の合成

窒素バブリングした 1,4-ジオキサンと水の混合溶媒(v/v 1:1, 10 mL) に 14 (0.337 g, 0.399 mmol), 10 (0.561 g, 0.780 mmol), 炭酸カリウム (0.280 g, 2.03 mmol), テト ラキス (トリフェニルホスフィン) パラジウム (0) (23 mg, 20 mmol) を入れ, 窒素 雰囲気下, 100 ℃ で 2 日攪拌した. 室温まで冷却して吸引ろ過で固体を取り除き, 溶媒を減圧留去した. クロロホルムで抽出し, 有機層に硫酸ナトリウムを入れて脱

水乾燥した. 自然ろ過をした後に減圧留去し, カラムクロマトグラフィー (クロロ ホルム:n-ヘキサン:トリエチルアミン=5:5:0.2→5:2:0.2) で分離し, アセト ニトリルから結晶化することで白色粉末の **3**_{FMF} を 42%の収率で得た. M.p. 136–137 °C;¹H NMR (400 MHz, CD₂Cl₂): δ 7.48₃ (d, J = 8.2 Hz, 4H), 7.48₁ (d, J = 8.2 Hz, 4H), 7.41 (d, J = 8.2 Hz, 4H), 7.39 (d, J = 8.2 Hz, 4H), 7.25 (d, J = 8.4 Hz, 2H), 6.96 (dd, J_I = 8.2 Hz, J_2 = 2.0 Hz, 8H), 6.91 (dd, J_I = 8.2 Hz, J_2 = 2.2 Hz, 4H), 6.75 (d, J = 8.6 Hz, 2H), 6.66 (tt, J_I = 9.0 Hz, J_2 = 2.2 Hz, 6H), 3.69 (s, 6H), 3.48–3.47 (m, 8H), 3.404–3.39₈ (m, 16H), 2.70–2.68 (m, 48H); ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 163.0 (dd, ¹ J_{CF} = 248.0 Hz, ³ J_{CF} = 12.5 Hz), 158.3, 144.3 (t, ³ J_{CF} = 8.8 Hz), 144.1 (t, ³ J_{CF} = 8.8 Hz), 139.6, 139.0₈, 139.0₆, 138.3, 132.0, 130.0, 129.3₄, 129.2₈, 126.6, 126.5, 113.4, 111.2 (dd, ² J_{CF} = 18.3 Hz, ⁴ J_{CF} = 6.6 Hz), 111.1 (dd, ² J_{CF} = 18.3 Hz, ⁴ J_{CF} = 6.6 Hz), 102.2 (t, ² J_{CF} = 25.7 Hz), 102.1 (t, ² J_{CF} = 25.7 Hz), 60.1, 59.7, 59.6, 59.4, 55.1, 53.3, 53.2₀, 53.1₆, 53.1₂, 52.9, 52.8; ¹⁹F NMR (377 MHz, CDCl₃: Fluorobenzene (δ -113.5 ppm) was used as an external standard) δ -110.3₈, -110.3₉; CSI-MS m/z: 1870.96 ([M+H]⁺, 100%); calcd. for C₁₁₀H₁₂₀F₁₂N₁₂O₂:1870.81; Anal. Calcd for C₁₁₀H₁₂₀F₁₂N₁₂O₂: C, 70.64; H, 6.47; N, 8.99. Found: C, 70.67; H, 6.52; N, 8.96.

5-4-20. 10,10'-((((7,10-Bis(3,5-difluorobenzyl)-1,4,7,10-tetraazacyclododecane-1,4diyl)bis(methylene)) bis([1,1'-biphenyl]-4',4-diyl))bis(methylene))bis(1,4,7-tris(4methoxybenzyl)-1,4,7,10-tetraazacyclododecane) (4MFM)

窒素バブリングした 1,4-ジオキサンと水の混合溶媒(v/v 1:1,100 mL)に8(1.40 g, 2.00 mmol), 18 (0.857 g, 1.00 mmol), 炭酸カリウム (1.39 g, 10.1 mmol), テトラキ ス(トリフェニルホスフィン)パラジウム(0)(0.115 g, 0.0995 mmol)を入れ, 窒 素雰囲気下,100℃で2日攪拌した.室温まで冷却して吸引ろ過で固体を取り除き, 溶媒を減圧留去した、クロロホルムで抽出し、有機層に硫酸ナトリウムを入れて脱 水乾燥した.自然ろ過をした後に減圧留去し、カラムクロマトグラフィー(クロロ ホルム:メタノール:アンモニア水=5:1:0.08) で精製することで淡黄色油状の **4**MFM を 38%の収率で得た.¹H NMR (400 MHz, CD₂Cl₂) δ7.49 (d, J = 8.3 Hz, 4H), 7.46 (d, J = 8.2 Hz, 4H), 7.42 (d, J = 8.3 Hz, 4H), 7.38 (d, J = 8.2 Hz, 4H), 7.25-7.22 (m, 12H),6.97 (dd, $J_1 = 8.2$ Hz, $J_2 = 2.2$ Hz, 4H), 6.79–6.75 (m, 12H), 6.66 (tt, $J_1 = 9.1$ Hz, $J_2 = 2.4$ Hz, 2H), 3.74 (s, 6H), 3.71 (s, 12H), 3.49–3.33 (m, 24H), 2.73–2.65 (m, 48H); ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 163.1 (dd, ¹*J*_{CF} = 247.7 Hz, ³*J*_{CF} = 12.7 Hz), 158.4, 144.6 (t, ³*J*_{CF} = 8.7 Hz), 139.6, 139.3, 139.1, 138.7, 132.1, 130.2, 129.4, 126.7, 126.6, 113.5, 111.4 (dd, ${}^{2}J_{CF} = 18.3$ Hz, ${}^{4}J_{CF} = 6.5$ Hz), 102.2 (t, ${}^{2}J_{CF} = 25.6$ Hz), 60.1, 59.8, 59.6, 59.5, 55.3, 55.2, 53.4, 53.2, 53.1₂, 53.0₆, 52.9; ¹⁹F NMR (377 MHz, CDCl₃. Fluorobenzene (d –113.5 ppm) was used as an external standard) d = -110.5; CSI-MS m/z: 1846.85 ([M+H]⁺, 100%); calcd. for C₇₂H₇₆N₈F₈:1847.08; Anal. Calcd for C₁₁₄H₁₃₆ F₄N₁₂O₆+0.8CHCl₃: C, 71.01; H, 7.10; N, 8.66. Found: C, 71.15; H, 6.96; N, 8.65.

5-4-21. [**3**MFM·(Ag)₃](OTf)₃の合成

サンプル瓶(小) にクロロホルム (2 mL) と **3**MFM (23 mg, 12 µmol) を入れて固体 を完全に溶解させた.そこに AgOTf のメタノール溶液 (0.119 mol/L, 315 µL, 37.5 µmol) を加え,軽く振り混ぜた.サンプル瓶(小)に小さい穴を 1 つあけたフタを 被せてサンプル瓶(大)の中に入れた.サンプル瓶(小)の周りをジイソプロピル エーテルで満たし,蒸気拡散法を行うことで[**3**MFM·(Ag)₃](OTf)₃ を定量的に得た. Calcd. for C₁₁₄H₁₃₆F₄N₁₂O₆ + 3AgOTf + 0.2 CHCl₃, C,53.30; H, 5.20; N, 6.36. Found, C, 53.07; H, 5.20; N, 6.31.

5-4-22. [4MFM·(Ag)₃](OTf)₃の合成

サンプル瓶(小) にクロロホルム (2 mL) と 4MFM (18 mg, 9.7 µmol) を入れて固体を完全に溶解させた. そこに AgOTf のメタノール溶液 (0.119 mol/L, 246 µL, 29.3 µmol) を加え, 軽く振り混ぜた. サンプル瓶(小) に小さい穴を 1 つあけたフタを被せてサンプル瓶(大) の中に入れた. サンプル瓶(小) の周りをジイソプロピルエーテルで満たし, 蒸気拡散法を行うことで[4MFM·(Ag)₃](OTf)₃ を定量的に得た. Calcd. for C₁₁₄H₁₃₆F₄N₁₂O₆ + 3AgOTf + 0.1 CHCl₃, C, 2.73; H, 5.14; N, 6.30. Found, C, 53.03; H, 5.25; N, 6.34.

5-4-23. [3FMF·(Ag)3](OTf)2Clの合成

サンプル瓶(小) にクロロホルム (2 mL) と 3_{FMF} (18 mg, 9.7 µmol) を入れて固体 を完全に溶解させた.そこに AgOTf のメタノール溶液 (0.119 mol/L, 243 µL, 28.9 µmol) を加え,軽く振り混ぜた.サンプル瓶(小) に小さい穴を 1 つあけたフタを 被せてサンプル瓶(大) の中に入れた.サンプル瓶(小) の周りをジイソプロピル エーテルで満たし,蒸気拡散法を行うことで[3_{FMF} ·(Ag)₃](OTf)₂Cl を定量的に得た. Calcd. for C₁₁₀H₁₂₀F₁₂N₁₂O₂ + 3Ag⁺ + 2OTf + Cl⁻ + 2.0 CHCl₃, C,48.90; H, 4.53; N, 6.00. Found, C, 48.90; H, 4.17; N, 5.97.

5-4-24. [**3**_{FMF}·(Ag)₃](BF₄)₃

サンプル瓶(小) にジクロロメタン (2 mL) と **3**_{FMF} (10 mg, 5.4 µmol) を入れて固体を完全に溶解させた. そこに AgOTf のメタノール溶液 (89.3 mol/L, 181 µL, 16.2 µmol) を加え, 軽く振り混ぜた. サンプル瓶(小) に小さい穴を 1 つあけたフタを被せてサンプル瓶(大) の中に入れた. サンプル瓶(小) の周りをジイソプロピルエーテルで満たし, 蒸気拡散法を行うことで[**3**_{FMF}·(Ag)₃](BF₄)₃ を定量的に得た. Calcd. for C₁₁₀H₁₂₀F₁₂N₁₂O₂ + 3AgBF₄ + 0.5 CH₂Cl₂, C,53.16; H, 4.88; N, 6.73. Found, C, 53.29; H, 4.92; N, 6.70.

- 5-5. 参考文献
- 1. McMurry, J., Organic Chemistry 9th edition (Utah, Brooks/Cole Pub Co., 2015), p.479, 604.
- 2. Clayden, J., Greeves, N., Warren, S., Organic Chemistry 2nd edition (Oxford, Oxford Univ Pr, 2012), p.125, 471.
- 3. Satoh, T.; Nishinaka, Y.; Miura, M.; Nomura, M. Iridium-catalyzed regioselective reaction of 1-naphthols with alkynes at the peri-position. Chem. Lett. 1999, 28, 615–616, DOI: 10.1246/cl.1999.615.
- Hashiba, R.; Hashimoto, R.; Nishiguchi, M.; Kobayashi, T.; Hanaya, K.; Higashibayashi, S.; Sugai, T. Comprehensive semisyntheses of catathelasmols C, D, and E from Dglutamic acid, utilizing lipase-catalyzed site-selective reactions on intermediates. Biosci. Biotechnol. Biochem. 2020, 84, 1339–1344, DOI: 10.1080/09168451.2020.1754159.
- 5. Pathak, T. P.; Miller, S. J. Chemical tailoring of teicoplanin with site-selective reactions. J. Am. Chem. Soc. 2013, 135, 8415–8422, DOI: 10.1021/ja4038998.
- Adebomi, V.; Wang, Y.; Sriram, M.; Raj, M. Selective Conversion of Unactivated C-N Amide Bond to C-C bond via Steric and Electronic Resonance Destabilization. Org. Lett. 2022, 24, 6525–6530, DOI: 10.1021/acs.orglett.2c02420.
- Hoggard, B. R.; Larsen, C. B.; Lucas, N. T. Site selectivity of [RuCp*]+ complexation in cyclopenta[def]triphenylenes. Organometallics 2014, 33, 6200–6209, DOI: 10.1021/om5008852.
- 8. Petitjean, A.; Kyritsakas, N.; Lehn, J. M. Ion-triggered multistate molecular switching device based on regioselective coordination-controlled ion binding. Chem. Eur. J. 2005, 11, 6818–6828, DOI: 10.1002/chem.200500625.
- 9. Akine, S.; Matsumoto, T.; Nabeshima, T. Overcoming statistical complexity: Selective coordination of three different metal ions to a ligand with three different coordination sites. Angew. Chem. Int. Ed. 2016, 55, 960–964, DOI: 10.1002/anie.201508065.
- Lee, E.; Okazaki, C.; Tenma, H.; Hosoi, Y.; Ju, H.; Ikeda, M.; Kuwahara, S.; Habata, Y. Argentivorous Molecules Exhibiting Highly Selective Silver(I) Chiral Enhancement. Inorg. Chem. 2020, 59, 13435–13441, DOI: 10.1021/acs.inorgchem.0c01819.
- Ju, H.; Taniguchi, A.; Kikukawa, K.; Horita, H.; Ikeda, M.; Kuwahara, S.; Habata, Y. Argentivorous Molecules with Chromophores in Side Arms: Silver Ion-Induced Turn on and Turn off of Fluorescence. Inorg. Chem. 2021, 60, 9141–9147, DOI: 10.1021/acs.inorgchem.1c01161.
- Ju, H.; Horita, H.; Iwase, M.; Kaneko, N.; Yagi, K. I.; Ikeda, M.; Kuwahara, S.; Habata, Y. Bis-Argentivorous Molecules Bridged by Phenyl and 4,4'-Biphenyl Groups: Structural and Dynamic Behavior of Silver Complexes. Inorg. Chem. 2021, 60, 15159– 15168, DOI: 10.1021/acs.inorgchem.1c01500.
- Habata, Y.; Ikeda, M.; Yamada, S.; Takahashi, H.; Ueno, S.; Suzuki, T.; Kuwahara, S. Argentivorous molecules: Structural evidence for Ag+-π interactions in solution. Org. Lett. 2012, 14, 4576–4579, DOI: 10.1021/ol3019538.
- "Argentivorous" is different from "argentophilic". "Argentophilic" is used in the sense of Ag+-Ag+ interactions. For example: Schmidbaur, H.; Schier, A. Angew. Chem. Int. Ed. 2015, 54, 746–784, DOI: 10.1002/anie.201405936.

- 15. Gans, P.; Sabatini, A.; Vacca, A. Investigation of equilibria in solution. Determination of equilibrium constants with HYPERQUAD suite of programs. Talanta 1996, 43, 1739–1753, DOI: 10.1016/0039-9140(96)01958-3.
- 16. Spartan 20, ver. 1.0.0. Wavefunction Inc.: Irvine, CA., 2020.
- Zhao, W.; Li, Y.; Yang, S.; Chen, Y.; Zheng, J.; Liu, C.; Qing, Z.; Li, J.; Yang, R. Target-Activated Modulation of Dual-Color and Two-Photon Fluorescence of Graphene Quantum Dots for in Vivo Imaging of Hydrogen Peroxide. Anal. Chem., 2016, 88, 4833–4840, DOI: 10.1021/acs.analchem.6b00521.
- Le Baccon, M.; Chuburu, F.; Toupet, L.; Handel, H.; Soibinet, M.; Déchamps-Olivier, I.; Barbier, J.-P.; Aplincourt, M. Bis-aminals: efficient tools for bis-macrocycle synthesis. New J. Chem. 2001, 25, 1168-1174, DOI: 10.1039/B103995B. DOI: 10.1039/B103995B.
- Bellouard, F.; Chuburu, F.; Kervarec, N.; Toupet, L.; Triki, S.; Le Mest, Y.; Handel, H. cis-Diprotected cyclams and cyclens: a new route to symmetrically or asymmetrically 1,4-disubstituted tetraazamacrocycles and to asymmetrically tetrasubstituted derivatives. J. Chem. Soc., Perkin Trans. 1 1999, 23, 3499-3505, DOI: 10.1039/A905701C. DOI: 10.1039/A905701C.
- 20. APEX2 Version 2009.1-0 Data collection and Processing Software; Bruker AXS. Inc.: Madison, Wisconsin, USA, 2008.
- 21. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr., Sect. C: Struct. Chem. 2015, C71, 3–8, DOI: 10.1107/S2053229614024218.

5-6. Supporting Information

Scheme S1 Synthesis of 2MF, 3MFM, 3FMF, and 4MFM

Figure S1. ¹H NMR spectrum of 2 (400 MHz, CDCl₃, 298 K).

Figure S2. ¹H NMR spectrum of **3** (400 MHz, CDCl₃, 298 K).

Figure S3. ¹H NMR spectrum of 5 (400 MHz, CDCl₃, 298 K).

Figure S4. ¹H NMR spectrum of 6 (400 MHz, CDCl₃, 298 K).

Figure S5. ¹³C NMR spectrum of 6 (100 MHz, CDCl₃, 298 K).

Figure S6. ¹H NMR spectrum of 7 (400 MHz, CDCl₃, 298 K).

Figure S7. ¹³C NMR spectrum of 7 (100 MHz, CDCl₃, 298 K).

Figure S8. ¹H NMR spectrum of **8** (400 MHz, CDCl₃, 298 K).

Figure S9. ¹³C NMR spectrum of **8** (100 MHz, CDCl₃, 298 K).

Figure S10. ¹H NMR spectrum of **10** (400 MHz, CDCl₃, 298 K).

Figure S11. ¹³C NMR spectrum of **10** (100 MHz, CDCl₃, 298 K).

Figure S12. ¹H NMR spectrum of **11** (400 MHz, CDCl₃, 298 K).

Figure S13. ¹H NMR spectrum of 12 (400 MHz, CDCl₃, 298 K).

Figure S14. ¹³C NMR spectrum of 12 (100 MHz, CDCl₃, 298 K).

Figure S15. ¹H NMR spectrum of 13 (400 MHz, CDCl₃, 298 K).

Figure S16. ¹³C NMR spectrum of 13 (100 MHz, CDCl₃, 298 K).

Figure S17. ¹H NMR spectrum of **14** (400 MHz, CDCl₃, 298 K).

Figure S18. ¹³C NMR spectrum of **14** (100 MHz, CDCl₃, 298 K).

Figure S19. ¹H NMR spectrum of 15 (400 MHz, CDCl₃, 298 K).

Figure S20. ¹H NMR spectrum of **16** (400 MHz, CDCl₃, 298 K).

Figure S21. ¹³C NMR spectrum of 16 (100 MHz, CDCl₃, 298 K).

Figure S22. ¹H NMR spectrum of 17 (400 MHz, CDCl₃, 298 K).

Figure S23. ¹³C NMR spectrum of 17 (100 MHz, CDCl₃, 298 K).

Figure S24. ¹H NMR **spectrum** of **18** (400 MHz, CDCl₃, 298 K).

Figure S25. ¹³C NMR spectrum of 18 (100 MHz, CDCl₃, 298 K).

Figure S26. ¹H NMR spectrum of **2**_{MF} (400 MHz, CD₂Cl₂, 298 K).

Figure S27. ¹³C NMR spectrum of **2**_{MF} (100 MHz, CDCl₃, 298 K).

Figure S28. ¹⁹F NMR spectrum of **2**_{MF} (377 MHz, CDCl₃, 298 K. Fluorobenzene (-113.5 ppm) was used as an external standard.).

Figure S29. ¹H NMR spectrum of **3**_{MFM} (400 MHz, CD₂Cl₂, 298 K).

Figure S30. ¹³C NMR spectrum of 3_{MFM} (100 MHz, CDCl₃, 298 K).

Figure S31. ¹⁹F NMR spectrum of 3_{MFM} (377 MHz, CDCl₃, 298 K. Fluorobenzene (-113.5 ppm) was used as an external standard).

Figure S32. ¹H NMR spectrum of **3**_{FMF} (400 MHz, CD₂Cl₂, 298 K).

Figure S33. ¹³C NMR spectrum of 3_{FMF} (100 MHz, CD₂Cl₂, 298 K).

Figure S34. ¹⁹F NMR spectrum of 3_{FMF} (377 MHz, CDCl₃, 298 K. Fluorobenzene (-113.5 ppm) was used as an external standard).

Figure S35. ¹H NMR spectrum of 4_{MFM} (400 MHz, CDCl₃, 298 K).

Figure S36. ¹³C NMR spectrum of 4_{MFM} (100 MHz, CDCl₃, 298 K).

Figure S37. ¹⁹F NMR spectrum of **4**_{MFM} (377 MHz, CDCl₃, 298 K. Fluorobenzene (-113.5 ppm) was used as an external standard).

Figure S38. Ag⁺-induced ¹⁹F NMR spectral changes of a mixture of 1_M and 1_F (298 K, AgOTf, CDCl₃/CD₃OD. Fluorobenzene (-113.5 ppm) was used as an external standard).

Figure S39. Ag⁺-induced ESI-mass spectra of a mixture of 1_M and 1_F (298 K, AgOTf, CHCl₃/CH₃OH).

Figure S40. Ag⁺-induced ¹H NMR spectra of a mixture of 1_H and 1_F (298 K, AgOTf, CDCl₃/CD₃OD).

Figure S41. Ag⁺-induced ¹H NMR spectra of a mixture of 1_{4-F} and 1_F (298 K, AgOTf, CDCl₃/CD₃OD).

Figure S42. Ag⁺-induced UV-vis spectral changes of 1_H (298 K, AgOTf, CHCl₃/CH₃OH).

Figure S43. Ag⁺-induced UV-vis spectral changes of 1_M (298 K, AgOTf, CHCl₃/CH₃OH).

Figure S44. Ag⁺-induced UV-vis spectral changes of 1_{4-F} (298 K, AgOTf, CHCl₃/CH₃OH).

Figure S45. Ag⁺-induced ¹H NMR spectral changes of 3_{MFM} (298 K, AgOTf, CD₂Cl₂/CD₃OD).

Figure S46. VT ¹H NMR spectra of a mixture of 3_{MFM} and AgOTf (= 1 : 3, in CD₂Cl₂/CD₃OD).

Figure S47. Ag⁺-induced ¹H NMR spectral changes of 4_{MFM} (298 K, AgOTf, CD₂Cl₂/CD₃OD).

Figure S48. (a) Ag⁺-induced ¹H NMR spectral changes of **4**_{MFM} (333 K, AgOTf, CD₂Cl₂/CD₃OD). (b) Ag⁺-induced ¹⁹F NMR spectral changes of **4**_{MFM} (298 K, AgOTf, CDCl₃/CD₃OD. Fluorobenzene (-113.5 ppm) was used as an external standard, the number means integral ratio in ¹⁹F NMR spectra).

Figure S49. Ag⁺-induced ESI-mass spectral changes of 4_{MFM} (298 K, AgOTf, CHCl₃/CH₃OH).

Figure S50. Ag⁺-induced ESI-mass spectral changes of 3_{MFM} (298 K, AgOTf, CHCl₃/CH₃OH).

Figure S51. (a) Ag⁺-induced ¹H NMR spectral changes of 3_{FMF} (333 K, AgOTf, CD₂Cl₂/CD₃OD), and (b) Ag⁺-induced ¹⁹F NMR spectral changes of 3_{FMF} (298 K, AgOTf, CDCl₃/CD₃OD. Fluorobenzene (-113.5 ppm) was used as an external standard, the number means integral ratio in ¹⁹F NMR spectra).

Figure S52. Ag⁺-induced ESI-mass spectral changes of 3_{FMF} (298 K, AgOTf, CHCl₃/CH₃OH).

Figure S53. Schematical drawings of complexation process of 3_{FMF} with Ag^+ ions (a) and 4_{MFM} with Ag^+ ions (b). Red hexagon and blue hexagon are electron-rich and electron-deficient aromatic rings, respectively.

Figure S54. ¹H-¹H COSY NMR spectra of (a) **2**_{MF}, (b) **2**_{MF} + 1.0 equiv. Ag⁺, (c) **2**_{MF} + 2.0 equiv. Ag⁺ (298 K, AgOTf, CD₂Cl₂/CD₃OD).

Figure S55. ¹H-¹H COSY NMR spectra of (a) **3**_{MFM}, (b) **3**_{MFM} + 1.0 equiv. Ag⁺, (c) **3**_{MFM} + 2.0 equiv. Ag⁺, (d) **3**_{MFM} + 3.0 equiv. Ag⁺ (333 K, AgOTf, CD₂Cl₂/CD₃OD).

Figure S56. ¹H-¹H COSY NMR spectra of (a) **3**_{FMF}, (b) **3**_{FMF} + 1.0 equiv. Ag⁺, (c) **3**_{FMF} + 2.0 equiv. Ag⁺, (d) **3**_{FMF} + 3.0 equiv. Ag⁺ (333 K, AgOTf, CD₂Cl₂/CD₃OD).

Figure S57. ¹H-¹H COSY NMR spectra of (a) **4**_{MFM}, (b) **4**_{MFM} + 1.0 equiv. Ag⁺, (c) **4**_{MFM} + 2.0 equiv. Ag⁺, (d) **4**_{MFM} + 3.0 equiv. Ag⁺ (333 K, AgOTf, CD₂Cl₂/CD₃OD).

Figure S58. Ag⁺-induced UV-vis spectral changes of 2_{MF} (298 K, AgOTf, CHCl₃/CH₃OH).

Figure S59. Ag⁺-induced UV-vis spectral changes of 3_{MFM} (298 K, AgOTf, CHCl₃/CH₃OH).

Figure S60. Ag⁺-induced UV-vis spectral changes of 3_{FMF} (298 K, AgOTf, CHCl₃/CH₃OH).

Figure S61. Ag⁺-induced UV-vis spectral changes of 4_{MFM} (298 K, AgOTf, CHCl₃/CH₃OH).

Figure S62. ORTEP diagrams of $[3_{MFM} \cdot (Ag)_3](OTf)_3$ from (a) side view and (b) top view (anions, solvents and hydrogen atoms were omitted for clarity).

Figure S63. ORTEP diagrams of $[4_{MFM} \cdot (Ag)_3](OTf)_3$ from (a) side view and (b) top view (anions, solvents and hydrogen atoms were omitted for clarity).

Figure S64. ORTEP diagrams of $[3_{FMF} \cdot (Ag)_3](OTf)_3$ from (a) side view and (b) top view (anions, solvents and hydrogen atoms were omitted for clarity).

Figure S65. ORTEP diagrams of $[3_{FMF} \cdot (Ag)_3](BF_4)_3$ from (a) side view and (b) top view (anions, solvents and hydrogen atoms were omitted for clarity).

Identification code	$[3_{\mathbf{MFM}} \cdot (\mathbf{Ag})_3](\mathbf{OTf})_3$			
Empirical formula	C123 H142 Ag3 Cl18 H	F13 N12 O15 S3		
Formula weight	3333.37			
Temperature	120(2) K	120(2) K		
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P2/c			
Unit cell dimensions	a = 22.46(4) Å	$\alpha = 90^{\circ}$.		
	b = 15.23(2) Å	$\beta = 91.38(2)^{\circ}$.		
	c = 20.53(3) Å	$\gamma = 90^{\circ}$.		
Volume	7023(20) Å ³			
Ζ	2			
Density (calculated)	1.576 Mg/m ³			
Absorption coefficient	0.882 mm ⁻¹			
F(000)	3392	3392		
Crystal size	0.809 x 0.105 x 0.077 r	nm ³		
Theta range for data collection	0.907 to 26.000°.			
Index ranges	-18<=h<=27, -17<=k<=	=18, -25<=l<=25		
Reflections collected	38810			
Independent reflections	13800 [R(int) = 0.0654]		
Completeness to theta = 25.242°	99.8 %			
Max. and min. transmission	0.7456 and 0.6133			
Refinement method	Full-matrix least-square	es on F ²		
Data / restraints / parameters	13800 / 59 / 866			
Goodness-of-fit on F ²	1.010			
Final R indices [I>2sigma(I)]	R1 = 0.0931, wR2 = 0.2	R1 = 0.0931, $wR2 = 0.2399$		
R indices (all data)	R1 = 0.1507, wR2 = 0.2	R1 = 0.1507, wR2 = 0.2963		
Extinction coefficient	n/a	n/a		
Largest diff. peak and hole	3.588 and -1.935 e.Å ⁻³			

Table S1. Crystal data and structure refinement for [**3**_{MFM}•(Ag)₃](OTf)₃.

	Х	у	Z	U(eq)
Ag(1)	8033(1)	7381(1)	8677(1)	31(1)
Ag(2)	5000	2454(1)	7500	28(1)
N(1)	8786(4)	8488(5)	8388(4)	37(2)
N(2)	8599(3)	7625(5)	9710(4)	32(2)
N(3)	7250(3)	7677(5)	9474(4)	32(2)
N(4)	7439(4)	8529(5)	8146(4)	39(2)
N(5)	4331(3)	1702(5)	6763(4)	32(2)
N(6)	5694(3)	1672(5)	6760(4)	34(2)
F(1)	4494(3)	5242(4)	6986(4)	58(2)
F(2)	4392(3)	4386(5)	4808(3)	70(2)
O(1)	8743(4)	5373(5)	6312(4)	59(2)
O(2)	9423(4)	4013(5)	8367(4)	59(2)
O(2)	7312(4)	3483(4)	9202(4)	50(2)
C(1)	8975(4)	8875(7)	9015(5)	30(2) 39(2)
C(1)	9110(4)	8168(7)	9540(5)	$\frac{39(2)}{45(3)}$
C(2)	9110(4) 9170(E)	0100(7) 0116(7)	9340(3) 10114(5)	43(3)
C(3)	8179(3) 7555(5)	0110(7) 7702(7)	10114(3) 10124(5)	42(2)
C(4)	7000(4)	7702(7)	10124(3) 0287(4)	41(2)
C(5)	7038(4)	8556(6)	9287(6)	44(3)
C(6)	6909(5)	8635(6)	8563(6)	44(3)
C(7)	7827(5)	9315(6)	8190(6)	44(3)
C(8)	8464(5)	9139(6)	7980(5)	43(2)
C(9)	9327(5)	8193(7)	8037(5)	43(2)
C(10)	9182(5)	7469(7)	7549(5)	43(3)
C(11)	9138(5)	6599(7)	7766(6)	44(3)
C(12)	8995(5)	5930(8)	7335(6)	49(3)
C(13)	8913(5)	6091(7)	6690(6)	50(3)
C(14)	8962(5)	6926(8)	6456(5)	53(3)
C(15)	9107(5)	7626(8)	6892(6)	52(3)
C(16)	8529(7)	5558(11)	5697(8)	86(5)
C(17)	8802(5)	6815(7)	10049(5)	44(2)
C(18)	8994(5)	6100(7)	9597(5)	44(3)
C(19)	8568(5)	5608(7)	9250(6)	50(3)
C(20)	8719(5)	4919(7)	8848(6)	47(3)
C(21)	9308(5)	4707(7)	8771(6)	49(3)
C(22)	9744(5)	5167(7)	9098(5)	47(3)
C(23)	9589(5)	5878(8)	9508(6)	52(3)
C(24)	10023(6)	3708(9)	8340(7)	69(4)
C(25)	6721(4)	7072(6)	9510(5)	38(2)
C(26)	6889(4)	6114(6)	9453(5)	36(2)
C(20)	6988(4)	5749(6)	8841(5)	33(2)
C(21)	7130(5)	4882(6)	8776(5)	39(2)
C(20)	7130(3)	4349(6)	0323(5)	$\frac{3}{2}$
C(2)	7082(5)	4701(7)	9928(5)	$\frac{42}{2}$
C(30)	6042(5)	5570(7)	0001(5)	$\frac{12}{2}$
C(31)	7274(6)	3379(7) 2011(8)	9991(3) 0751(6)	42(2)
C(32)	7374(0)	2311(0) 2322(7)	9751(0) 7457(5)	47(2)
C(33)	7244(3)	7447(c)	7437(3)	47(3)
C(34)	7032(4)	(705(7)	7322(3)	37(2)
C(35)	7478(4)	6795(7) 5049(7)	7248(3)	38(2)
C(30)	(312(4)	5942(6)	7072(3)	37(2)
C(37)	6/17(4)	5698(6)	6987(4)	3Z(Z)
C(38)	6289(5)	6368(7)	7090(5)	45(3)
C(39)	6457(5)	7216(6)	7251(6)	45(3)
C(40)	6530(4)	4796(6)	6800(4)	33(2)
C(41)	6928(4)	4085(6)	6877(4)	31(2)
C(42)	6762(4)	3240(6)	6694(4)	32(2)
C(43)	6198(4)	3070(6)	6435(4)	32(2)
C(44)	5809(4)	3768(6)	6360(5)	35(2)
C(45)	5973(4)	4610(6)	6535(4)	33(2)
C(46)	5997(4)	2156(7)	6228(4)	37(2)
C(47)	5298(4)	987(6)	6470(5)	37(2)

Table S2. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x 10^3$) for hh1a. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor of [**3**_{MFM}·(Ag)₃](OTf)₃.

C(48)	4709(4)	1344(7)	6231(5)	38(2)
C(49)	4072(4)	979(6)	7156(5)	39(2)
C(50)	3838(4)	1277(6)	7806(5)	41(2)
C(51)	3853(4)	2265(6)	6470(5)	37(2)
C(52)	4070(4)	3156(6)	6269(5)	36(2)
C(53)	4190(4)	3804(6)	6726(5)	36(2)
C(54)	4378(5)	4609(7)	6534(6)	43(2)
C(55)	4449(5)	4837(7)	5894(6)	47(3)
C(56)	4329(5)	4200(8)	5457(5)	49(3)
C(57)	4147(5)	3356(8)	5607(5)	51(3)
C(58)	7254(8)	9401(9)	5692(6)	73(4)
F(3)	7565(6)	10101(8)	5622(7)	139(4)
F(4)	7082(8)	9639(10)	6323(7)	169(5)
F(5)	7556(4)	8679(6)	5800(4)	85(2)
S(1)	6594(2)	9339(2)	5194(3)	91(2)
O(4)	6280(5)	10121(6)	5310(5)	86(3)
O(5)	6342(5)	8530(7)	5274(7)	95(4)
O(6)	6897(5)	9343(6)	4539(5)	77(3)
C(59)	9570(5)	10696(9)	6640(5)	66(7)
F(6)	9304(7)	11436(10)	6322(8)	85(5)
F(7)	9823(8)	10231(12)	6111(8)	100(6)
F(8)	9064(9)	10162(13)	6763(10)	119(8)
S(2)	9979(4)	11008(3)	7335(2)	42(2)
O(7)	10000	10085(4)	7500	164(9)
O(8)	9589(6)	11497(10)	7762(7)	138(5)
C(60)	8345(5)	2327(9)	7430(6)	56(3)
Cl(1)	7893(1)	2764(2)	8057(1)	56(1)
Cl(2)	8490(1)	3161(2)	6871(2)	63(1)
Cl(3)	7967(2)	1436(2)	7039(2)	69(1)
C(61)	5092(6)	8304(9)	5977(7)	70(4)
Cl(4)	4997(2)	7229(3)	5805(4)	127(2)
Cl(5)	4934(3)	8566(4)	6772(3)	129(2)
Cl(6)	4649(2)	8959(2)	5462(2)	71(1)
C(62)	10912(8)	11436(12)	5565(9)	97(5)
Cl(7)	10658(3)	10927(4)	4838(3)	133(2)
Cl(8)	10860(3)	12574(3)	5465(3)	119(2)
Cl(9)	11638(2)	11114(3)	5730(3)	109(2)

Table S3. Bond lengths [Å] and angles $[\circ]$ of $[\mathbf{3}_{MFM} \cdot (Ag)_3](OTf)_3$.

C(12)-C(13)

C(12)-H(12)

C(13)-C(14)

C(14)-C(15)

		C(14)-H(14)
$\overline{A_{\sigma}(1)}$ -N(4)	2 441(8)	C(15)-H(15)
Ag(1) - N(3)	2.470(8)	C(16)-H(16A)
$A_{g}(1) - N(1)$	2 471(8)	C(16)-H(16B)
Ag(1) - N(2)	2 474(8)	C(16)-H(16C)
Ag(2) - N(5) # 1	2.398(8)	C(17)-C(18)
Ag(2) - N(5)	2.398(8)	C(17)-H(17A)
Ag(2)-N(6)#1	2.504(7)	C(17) - H(17B)
Ag(2)-N(6)	2.504(7)	C(18)-C(23)
N(1)-C(1)	1.470(13)	C(18) - C(19)
N(1)-C(8)	1.475(13)	C(19) - C(20)
N(1)-C(9)	1.497(12)	C(19) - H(19)
N(2)-C(2)	1.464(12)	C(20) - C(21)
N(2)-C(3)	1.474(12)	$C(20)$ - $\Pi(20)$
N(2)-C(17)	1.483(13)	C(21)- $C(22)C(22)$ $C(22)$
N(3)-C(5)	1.470(13)	C(22) - C(23) C(22) - U(23)
N(3)-C(4)	1.486(14)	C(22)-H(22) C(23)-H(23)
N(3)-C(25)	1.508(12)	C(24) - H(24A)
N(4)-C(7)	1.482(12)	C(24)-H(24R) C(24)-H(24R)
N(4)-C(33)	1.487(14)	C(24) - H(24C)
N(4)-C(6)	1.492(13)	C(25)-C(26)
N(5)-C(51)	1.489(13)	C(25) - H(25A)
N(5)-C(49)	1.493(12)	C(25) - H(25B)
N(5)-C(48)	1.502(11)	C(26) - C(31)
N(6)-C(47)	1.487(12)	C(26) - C(27)
N(6)-C(50)#1	1.490(13)	C(27)-C(28)
N(6)-C(46)	1.494(12)	C(27)-H(27)
F(1)-C(54)	1.360(12)	C(28)-C(29)
F(2)-C(56)	1.374(12)	C(28)-H(28)
O(1) - C(16)	1.370(16)	C(29)-C(30)
O(1) - C(13)	1.390(13)	C(30)-C(31)
O(2) - C(21)	1.371(13) 1.420(15)	C(30)-H(30)
O(2) - C(24)	1.429(13) 1.275(12)	C(31)-H(31)
O(3) - C(29)	1.373(12) 1.420(12)	C(32)-H(32A)
C(3) - C(32)	1.429(13) 1.540(15)	C(32)-H(32B)
C(1)-C(2) C(1)-H(1A)	0.9900	C(32)-H(32C)
C(1)-H(1R)	0.9900	C(33)-C(34)
C(2)-H(2A)	0.9900	C(33)-H(33A)
C(2) - H(2B)	0.9900	C(33)-H(33B)
C(3)-C(4)	1 537(14)	C(34)-C(39)
C(3) - H(3A)	0.9900	C(34)-C(35)
C(3)-H(3B)	0.9900	C(35)-C(36)
C(4)-H(4A)	0.9900	C(35)-H(35)
C(4)-H(4B)	0.9900	C(36)-C(37)
C(5)-C(6)	1.512(16)	C(36)-H(36)
C(5)-H(5A)	0.9900	C(37) - C(38) C(27) - C(40)
C(5)-H(5B)	0.9900	C(37) - C(40)
C(6)-H(6A)	0.9900	C(38) - C(39)
C(6)-H(6B)	0.9900	$C(30) - \Pi(30)$
C(7)-C(8)	1.528(15)	$C(39) - \Pi(39)$ C(40) C(45)
C(7)-H(7A)	0.9900	C(40)- $C(41)$
C(7)-H(7B)	0.9900	C(40)- $C(41)$
C(8)-H(8A)	0.9900	C(41) - H(41)
C(8)-H(8B)	0.9900	C(42)-C(43)
C(9)-C(10)	1.521(15)	C(42) - H(42)
C(9)-H(9A)	0.9900	C(43)- $C(44)$
C(9)-H(9B)	0.9900	C(43)- $C(46)$
C(10)-C(15)	1.377(16)	C(44) - C(45)
C(10)- $C(11)$	1.403(15)	C(44)-H(44)
C(11) - C(12)	1.383(15)	C(45)-H(45)
C(11)-H(11)	0.9500	C(46)-H(46A)

1.354(17)0.9500 1.366(17)1.423(17)0.9500 0.9500 0.9800 0.9800 0.9800 1.499(15)0.9900 0.9900 1.395(15)1.398(16) 1.383(15) 0.9500 1.374(15)0.9500 1.367(16)1.419(16) 0.9500 0.9500 0.9800 0.9800 0.9800 1.513(13)0.9900 0.9900 1.375(14)1.398(13)1.366(13)0.9500 1.388(14)0.9500 1.376(15)1.381(15)0.9500 0.9500 0.9800 0.9800 0.9800 1.514(14)0.9900 0.9900 1.387(15)1.389(14)1.397(14)0.9500 1.394(13)0.9500 1.422(14)1.483(13) 1.383(15) 0.9500 0.9500 1.382(13)1.410(13)1.389(13) 0.9500 1.386(13)0.9500 1.383(13) 1.523(13)1.380(13)0.9500 0.9500

0.9900

C(46)-H(46B)	0.9900	C(1)-N(1)-C(9)	108.6(8)
C(47)-C(48)	1.501(15)	C(8)-N(1)-C(9)	108.7(8)
C(47)-H(47A)	0.9900	C(1)-N(1)-Ag(1)	104.4(5)
C(47)-H(47B)	0.9900	C(8)-N(1)-Ag(1)	105.5(6)
C(48)-H(48A)	0.9900	C(9) - N(1) - Ag(1)	118.6(6)
C(48) - H(48B)	0.9900	C(2) - N(2) - C(3)	111.4(8) 110.2(8)
C(49) - C(50)	1.515(14)	C(2) - N(2) - C(17)	110.3(8) 110.7(8)
$C(49) - \Pi(49R)$	0.9900	C(3) - N(2) - C(17) $C(2) - N(2) - A_{2}(1)$	110.7(8) 105.7(6)
$C(49) - \Pi(49B)$ C(50) N(6) # 1	1.400(12)	C(2)-N(2)-Ag(1) C(2) N(2) Ag(1)	103.7(0) 102.6(6)
C(50)-H(50A)	0.0000	C(3) - N(2) - Ag(1) C(17) - N(2) - Ag(1)	103.0(0) 114.9(6)
C(50)-H(50B)	0.9900	C(17) - N(2) - Ag(1) C(5) - N(3) - C(4)	114.9(0) 110.5(8)
C(51)- $C(52)$	1.504(13)	C(5) - N(3) - C(25)	108.5(0)
C(51) - H(51A)	0.9900	C(4) - N(3) - C(25)	108.5(1) 108.5(8)
C(51)-H(51B)	0.9900	C(5) - N(3) - Ag(1)	103.1(6)
C(52)-C(53)	1.384(14)	C(4)-N(3)-Ag(1)	106.3(5)
C(52)-C(57)	1.407(15)	C(25)-N(3)-Ag(1)	119.7(5)
C(53)-C(54)	1.359(14)	C(7)-N(4)-C(33)	109.7(8)
C(53)-H(53)	0.9500	C(7)-N(4)-C(6)	110.6(8)
C(54)-C(55)	1.371(15)	C(33)-N(4)-C(6)	110.0(8)
C(55)-C(56)	1.344(17)	C(7)-N(4)-Ag(1)	103.8(6)
C(55)-H(55)	0.9500	C(33)-N(4)-Ag(1)	117.6(6)
C(56)-C(57)	1.386(16)	C(6)-N(4)-Ag(1)	104.8(6)
C(57)-H(57)	0.9500	C(51)-N(5)-C(49)	110.9(7)
C(58)-F(3)	1.284(17)	C(51)-N(5)-C(48)	109.2(8)
C(58)-F(5)	1.308(17)	C(49) - N(5) - C(48)	111.0(7)
C(58)-F(4)	1.409(18)	C(51)-N(5)-Ag(2)	114.5(5)
C(58)-S(1)	1.784(17) 1.269(10)	C(49) - N(5) - Ag(2)	105.0(6)
S(1) - O(5) S(1) - O(4)	1.368(10) 1.407(10)	C(48)-N(5)-Ag(2) C(47) N(6) $C(50)$ #1	106.1(5) 111.2(8)
S(1) - O(4) S(1) - O(6)	1.407(10) 1.522(10)	C(47) - N(6) - C(50) # 1 C(47) - N(6) - C(46)	111.2(0) 100 $4(7)$
C(59)- $F(8)$	1.323(10) 1.425(4)	C(47)- $N(0)$ - $C(46)$	109.4(7) 108.0(7)
C(59)-F(6)	1.425(4) 1 426(4)	C(47) - N(6) - Ag(2)	100.0(7) 101.7(5)
C(59) - F(7)	1.426(4)	C(50)#1-N(6)-Ag(2)	105.6(5)
C(59)-S(2)	1.745(4)	C(46)-N(6)-Ag(2)	120.7(6)
S(2)-S(2)#2	0.682(10)	C(16)-O(1)-C(13)	116.0(11)
S(2)-O(8)#2	1.244(14)	C(21)-O(2)-C(24)	117.7(10)
S(2)-O(7)	1.446(4)	C(29)-O(3)-C(32)	117.3(9)
S(2)-O(8)	1.460(5)	N(1)-C(1)-C(2)	112.3(8)
O(7)-S(2)#2	1.446(4)	N(1)-C(1)-H(1A)	109.1
O(8)-S(2)#2	1.244(14)	C(2)-C(1)-H(1A)	109.1
C(60)-Cl(2)	1.748(13)	N(1)-C(1)-H(1B)	109.1
C(60)-Cl(3)	1.781(14)	C(2)-C(1)-H(1B)	109.1
C(60)-Cl(1)	1.787(12)	H(1A)-C(1)-H(1B)	107.9
C(60)-H(60)	1.0000	N(2)-C(2)-C(1)	114.7(8)
C(61)- $Cl(4)$	1.688(14)	N(2)-C(2)-H(2A)	108.6
C(61) - CI(5)	1.728(15) 1.747(16)	U(1) - U(2) - H(2A) N(2) - C(2) - H(2B)	108.6
C(61)-C(6) C(61)-H(61)	1.747(10)	$N(2)-C(2)-\Pi(2B)$ C(1)-C(2)-H(2B)	108.6
C(62)-C(9)	1.0000 1.727(18)	$H(2A)_{-}C(2)_{-}H(2B)$	103.0
C(62)- $C(8)$	1 749(19)	N(2)-C(3)-C(4)	113 3(8)
C(62) - C(7)	1.77(2)	N(2) - C(3) - H(3A)	108.9
C(62) - H(62)	1.0000	C(4)-C(3)-H(3A)	108.9
	1.000	N(2)-C(3)-H(3B)	108.9
N(4)-Ag(1)-N(3)	77.0(3)	C(4)-C(3)-H(3B)	108.9
N(4)-Ag(1)-N(1)	76.8(3)	H(3A)-C(3)-H(3B)	107.7
N(3)-Ag(1)-N(1)	122.4(3)	N(3)-C(4)-C(3)	113.5(8)
N(4)-Ag(1)-N(2)	122.6(3)	N(3)-C(4)-H(4A)	108.9
N(3)-Ag(1)-N(2)	76.4(3)	C(3)-C(4)-H(4A)	108.9
N(1)-Ag(1)-N(2)	76.3(3)	N(3)-C(4)-H(4B)	108.9
N(5)#1-Ag(2)-N(5)	122.9(4)	C(3)-C(4)-H(4B)	108.9
N(5)#1-Ag(2)-N(6)#1	77.2(3)	H(4A)-C(4)-H(4B)	107.7
N(5)-Ag(2)-N(6)#1	76.5(3)	N(3)-C(5)-C(6)	112.5(8)
N(5)#1-Ag(2)-N(6)	76.5(3)	N(3)-C(5)-H(5A)	109.1
N(5)-Ag(2)-N(6)	77.2(3)	C(6)-C(5)-H(5A)	109.1
N(6)#1-Ag(2)-N(6)	123.2(4)	N(3)-C(5)-H(5B)	109.1
$U(1)$ - $N(1)$ - $U(\delta)$	110.9(8)	U(0)-U(5)-H(5B)	109.1

H(5A)-C(5)-H(5B)	107.8	C(21)-C(22)-C(23)	120.0(10)
N(4)-C(6)-C(5)	114.8(8)	C(21)-C(22)-H(22)	120.0
N(4)-C(6)-H(6A)	108.6	C(23)-C(22)-H(22)	120.0
C(5)-C(6)-H(6A)	108.6	C(18)-C(23)-C(22)	120.8(11)
N(4)-C(6)-H(6B)	108.6	C(18)-C(23)-H(23)	119.6
C(5)-C(6)-H(6B)	108.6	C(22)-C(23)-H(23)	119.6
H(6A)-C(6)-H(6B)	107 5	O(2)-C(24)-H(24A)	109.5
N(4) C(7) C(8)	107.5 112.2(9)	O(2) - O(24) - H(24R) O(2) - O(24) - H(24R)	109.5
N(4) - C(7) - C(8) N(4) - C(7) - H(7A)	100.0	$U(2) - U(24) - \Pi(24D)$ $U(24A) - U(24A) - \Pi(24D)$	109.5
$N(4) - C(7) - \Pi(7A)$	100.9	$\Pi(24A) - C(24) - \Pi(24B)$	109.5
C(8)-C(7)-H(7A)	108.9	U(2)-U(24)-H(24U)	109.5
N(4)-C(7)-H(7B)	108.9	H(24A)-C(24)-H(24C)	109.5
C(8)-C(7)-H(7B)	108.9	H(24B)-C(24)-H(24C)	109.5
H(7A)-C(7)-H(7B)	107.8	N(3)-C(25)-C(26)	112.8(8)
N(1)-C(8)-C(7)	114.0(8)	N(3)-C(25)-H(25A)	109.0
N(1)-C(8)-H(8A)	108.8	C(26)-C(25)-H(25A)	109.0
C(7)-C(8)-H(8A)	108.8	N(3)-C(25)-H(25B)	109.0
N(1)-C(8)-H(8B)	108.8	C(26)-C(25)-H(25B)	109.0
C(7)-C(8)-H(8B)	108.8	H(25A)-C(25)-H(25B)	107.8
H(8A)-C(8)-H(8B)	107.7	C(31)-C(26)-C(27)	118.3(9)
N(1)-C(9)-C(10)	111 8(8)	C(31)-C(26)-C(25)	121.8(9)
N(1) - C(9) - H(9A)	109.3	C(27) - C(26) - C(25)	1199(9)
C(10)-C(9)-H(9A)	109.3	C(28) - C(27) - C(26)	120.9(9)
N(1) C(0) H(0R)	109.5	C(28) - C(27) - C(20) C(28) - C(27) - H(27)	120.9(9)
N(1)-C(9)-H(9B)	109.2	$C(2\delta) - C(27) - \Pi(27)$	119.5
U(10) - U(9) - H(9B)	109.2	C(26)-C(27)-H(27)	119.5
H(9A)-C(9)-H(9B)	107.9	C(27)-C(28)-C(29)	120.2(10)
C(15)-C(10)-C(11)	117.8(10)	C(27)-C(28)-H(28)	119.9
C(15)-C(10)-C(9)	122.7(10)	C(29)-C(28)-H(28)	119.9
C(11)-C(10)-C(9)	119.4(10)	O(3)-C(29)-C(30)	125.3(10)
C(12)-C(11)-C(10)	120.7(11)	O(3)-C(29)-C(28)	115.3(9)
C(12)-C(11)-H(11)	119.7	C(30)-C(29)-C(28)	119.3(9)
C(10)-C(11)-H(11)	119.7	C(29)-C(30)-C(31)	120.3(10)
C(13)-C(12)-C(11)	121.1(11)	C(29)-C(30)-H(30)	119.8
C(13)-C(12)-H(12)	119.5	C(31)-C(30)-H(30)	119.8
C(11)-C(12)-H(12)	119.5	C(26)-C(31)-C(30)	121.0(9)
C(12) - C(12) - C(14)	120.2(11)	C(26) - C(31) - H(31)	119.5
C(12) - C(13) - C(14)	120.2(11) 115 6(11)	C(20) - C(31) - H(31)	119.5
C(12) - C(13) - O(1)	124 1(12)	O(2) C(22) H(224)	100.5
C(14) - C(13) - O(1)	124.1(12) 110 7(11)	$O(3) - C(32) - \Pi(32A)$ $O(3) - C(32) - \Pi(32A)$	109.5
C(13) - C(14) - C(15)	119.7(11)	$U(3) - U(32) - \Pi(32D)$	109.5
C(13)-C(14)-H(14)	120.2	H(32A)-C(32)-H(32B)	109.5
C(15)-C(14)-H(14)	120.2	O(3)-C(32)-H(32C)	109.5
C(10) - C(15) - C(14)	120.5(11)	H(32A)-C(32)-H(32C)	109.5
C(10)-C(15)-H(15)	119.8	H(32B)-C(32)-H(32C)	109.5
C(14)-C(15)-H(15)	119.8	N(4)-C(33)-C(34)	113.0(8)
O(1)-C(16)-H(16A)	109.5	N(4)-C(33)-H(33A)	109.0
O(1)-C(16)-H(16B)	109.5	C(34)-C(33)-H(33A)	109.0
H(16A)-C(16)-H(16B)	109.5	N(4)-C(33)-H(33B)	109.0
O(1)-C(16)-H(16C)	109.5	C(34)-C(33)-H(33B)	109.0
H(16A)-C(16)-H(16C)	109.5	H(33A)-C(33)-H(33B)	107.8
H(16B)-C(16)-H(16C)	109.5	C(39)-C(34)-C(35)	118.1(9)
N(2)-C(17)-C(18)	113 9(8)	C(39)-C(34)-C(33)	121 8(9)
N(2) - C(17) - H(17A)	108.8	C(35) - C(34) - C(33)	120.0(9)
C(18)-C(17)-H(17A)	108.8	C(34) - C(35) - C(36)	120.0(9) 120.9(9)
N(2) C(17) H(17R)	100.0	C(34) - C(35) - C(30) C(24) - C(25) - H(25)	120.9(9)
$N(2) - C(17) - \Pi(17D)$ $C(19) - C(17) - \Pi(17D)$	100.0	$C(34) - C(35) - \Pi(35)$	119.0
$U(17) - U(17) - \Pi(17B)$	108.8	$C(36)-C(35)-\Pi(35)$	119.0
H(1/A)-C(1/)-H(1/B)	107.7	C(37) - C(36) - C(35)	122.0(9)
C(23)-C(18)-C(19)	116.7(11)	C(37)-C(36)-H(36)	119.0
C(23)-C(18)-C(17)	123.2(11)	C(35)-C(36)-H(36)	119.0
C(19)-C(18)-C(17)	120.1(10)	C(36)-C(37)-C(38)	116.0(9)
C(20)-C(19)-C(18)	122.4(11)	C(36)-C(37)-C(40)	122.9(9)
C(20)-C(19)-H(19)	118.8	C(38)-C(37)-C(40)	121.0(8)
C(18)-C(19)-H(19)	118.8	C(39)-C(38)-C(37)	121.7(10)
C(21)-C(20)-C(19)	119.9(11)	C(39)-C(38)-H(38)	119.2
C(21)-C(20)-H(20)	120.0	C(37)-C(38)-H(38)	119.2
C(19)-C(20)-H(20)	120.0	C(38)-C(39)-C(34)	121.2(10)
C(22)-C(21)-O(2)	123.4(10)	C(38)-C(39)-H(39)	119.4
C(22)-C(21)-C(20)	120 1(11)	C(34)- $C(39)$ -H(39)	119.4
O(2)-C(21)-C(20)	116 5(11)	C(45) - C(40) - C(41)	116.8(9)
	110.0(11)		110.0())

C(45)-C(40)-C(37)	122.6(9)	C(56)-C(55)-C(54)	115.5(10)
C(41)-C(40)-C(37)	120.5(8)	C(56)-C(55)-H(55)	122.2
C(42)-C(41)-C(40)	121.1(8)	C(54)-C(55)-H(55)	122.2
C(42)-C(41)-H(41)	119.4	C(55)-C(56)-F(2)	118.4(10)
C(40)-C(41)-H(41)	119.4	C(55)-C(56)-C(57)	125.2(10)
C(43)-C(42)-C(41)	120.9(9)	F(2)-C(56)-C(57)	116.4(11)
C(43)-C(42)-H(42)	119.6	C(56)-C(57)-C(52)	117.2(10)
C(41)-C(42)-H(42)	119.6	C(56)-C(57)-H(57)	121.4
C(44)-C(43)-C(42)	118.0(9)	C(52)-C(57)-H(57)	121.4
C(44)-C(43)-C(46)	119.3(9)	F(3)-C(58)-F(5)	115.8(16)
C(42)- $C(43)$ - $C(46)$	122 7(9)	F(3)-C(58)-F(4)	93 0(13)
C(45)- $C(44)$ - $C(43)$	121 4(9)	F(5)-C(58)-F(4)	102.3(11)
C(45) - C(44) - H(44)	119 3	F(3)-C(58)-S(1)	115.3(11)
C(43) - C(44) - H(44)	119.3	F(5) - C(58) - S(1)	113.3(11) 118.2(10)
C(44) - C(45) - C(40)	121 8(9)	F(4)-C(58)-S(1)	107.4(13)
C(44) - C(45) - C(40) C(44) - C(45) - H(45)	110 1	O(5)-S(1)-O(4)	107.4(13) 122.2(7)
C(44) - C(45) - H(45)	119.1	O(5) - S(1) - O(4) O(5) - S(1) - O(6)	122.2(7) 107.7(7)
N(6) C(46) C(42)	112.1 112.6(7)	O(3)-S(1)-O(6)	107.7(7) 112 5(6)
N(6) - C(46) - C(43) N(6) - C(46) - H(46A)	112.0(7)	O(4) - S(1) - O(0) O(5) S(1) - O(6)	112.3(0) 109.7(7)
$N(0) - C(40) - \Pi(40A)$ $C(42) - C(40) - \Pi(40A)$	109.1	O(3)-S(1)-C(30) O(4) S(1) C(50)	100.7(7) 105.7(8)
$U(43) - U(40) - \Pi(40A)$	109.1	O(4) - S(1) - C(58)	105.7(8)
N(6)-C(46)-H(46B)	109.1	O(6)-S(1)-C(58)	97.1(7)
C(43)-C(46)-H(46B)	109.1	F(8) - C(59) - F(6)	101.9(14)
H(46A)-C(46)-H(46B)	107.8	F(8) - C(59) - F(7)	100.7(14)
N(6) - C(47) - C(48)	113.0(8)	F(6) - C(59) - F(7)	102.4(13)
N(6)-C(47)-H(47A)	109.0	F(8)-C(59)-S(2)	114.6(11)
C(48)-C(47)-H(47A)	109.0	F(6)-C(59)-S(2)	111.4(10)
N(6)-C(47)-H(47B)	109.0	F(7)-C(59)-S(2)	123.1(12)
C(48)-C(47)-H(47B)	109.0	S(2)#2-S(2)-O(8)#2	94.0(12)
H(47A)-C(47)-H(47B)	107.8	S(2)#2-S(2)-O(7)	76.4(2)
C(47)-C(48)-N(5)	113.7(8)	O(8)#2-S(2)-O(7)	126.8(9)
C(47)-C(48)-H(48A)	108.8	S(2)#2-S(2)-O(8)	58.2(11)
N(5)-C(48)-H(48A)	108.8	O(8)#2-S(2)-O(8)	105.8(14)
C(47)-C(48)-H(48B)	108.8	O(7)-S(2)-O(8)	111.8(8)
N(5)-C(48)-H(48B)	108.8	S(2)#2-S(2)-C(59)	150.5(14)
H(48A)-C(48)-H(48B)	107.7	O(8)#2-S(2)-C(59)	115.4(9)
N(5)-C(49)-C(50)	113.7(7)	O(7)-S(2)-C(59)	86.6(5)
N(5)-C(49)-H(49A)	108.8	O(8)-S(2)-C(59)	108.6(9)
C(50)-C(49)-H(49A)	108.8	S(2)-O(7)-S(2)#2	27.3(4)
N(5)-C(49)-H(49B)	108.8	S(2)#2-O(8)-S(2)	27.8(5)
C(50)-C(49)-H(49B)	108.8	Cl(2)-C(60)-Cl(3)	110.6(7)
H(49A)-C(49)-H(49B)	107.7	Cl(2)-C(60)-Cl(1)	108.7(7)
N(6)#1-C(50)-C(49)	113.3(8)	Cl(3)-C(60)-Cl(1)	109.6(7)
N(6)#1-C(50)-H(50A)	108.9	Cl(2)-C(60)-H(60)	109.3
C(49)-C(50)-H(50A)	108.9	Cl(3)-C(60)-H(60)	109.3
N(6)#1-C(50)-H(50B)	108.9	Cl(1)-C(60)-H(60)	109.3
C(49)-C(50)-H(50B)	108.9	Cl(4)-C(61)-Cl(5)	113.2(9)
H(50A)-C(50)-H(50B)	107.7	Cl(4)-C(61)-Cl(6)	111.2(9)
N(5)-C(51)-C(52)	113.3(8)	Cl(5)-C(61)-Cl(6)	108.3(8)
N(5)-C(51)-H(51A)	108.9	Cl(4) - C(61) - H(61)	108.0
C(52)-C(51)-H(51A)	108.9	Cl(5)-C(61)-H(61)	108.0
N(5)-C(51)-H(51B)	108.9	C1(6) - C(61) - H(61)	108.0
C(52)-C(51)-H(51B)	108.9	C1(9) - C(62) - C1(8)	1114(10)
H(51A)-C(51)-H(51B)	107.7	C1(9) - C(62) - C1(7)	109.0(11)
C(53) - C(52) - C(57)	118 4(9)	C1(8) - C(62) - C1(7)	108 5(9)
C(53) - C(52) - C(51)	121 1(9)	C[(9)-C(62)-H(62)]	109.3
C(57) = C(52) = C(51)	120.6(9)	$C_1(2) = C_1(02) = H_1(02)$ $C_1(8) = C_1(62) = H_1(62)$	109.3
C(54) = C(52) = C(51)	120.0(9) 120.2(10)	C1(0) - C(02) - 11(02) C1(7) - C(62) - U(62)	109.3
C(54)-C(53)-U(52) C(54)-C(52)-U(52)	120.2(10)	$CI(1) - C(02) - \Pi(02)$	107.3
C(52) = C(52) = H(53)	110.0		
$C(52) - C(53) - \Pi(53)$ $C(52) - C(54) - \Pi(53)$	119.9	Symmetry transformations used	to generate equivalent atoms:
C(53) - C(54) - F(1) C(52) - C(54) - C(55)	119.9(10) 192 $4(11)$		
E(33) - C(34) - C(33) E(1) - C(54) - C(55)	123.4(11) 116.7(0)	#1 -x+1,y,-z+3/2 #2 -x+2,y,-z+	+3/2
r(1)-U(54)-U(55)	110.7(9)		

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U^{12}
$\overline{Ag(1)}$	32(1)	25(1)	36(1)	0(1)	10(1)	-1(1)
Ag(2)	30(1)	24(1)	31(1)	0	12(1)	0
N(1)	36(4)	34(4)	41(5)	1(4)	7(4)	-4(3)
N(2)	33(4)	34(4)	28(4)	4(3)	5(3)	-4(3)
N(3)	29(4)	31(4)	38(4)	-8(3)	14(3)	-4(3)
N(4)	37(5)	29(4)	52(5)	3(4)	3(4)	-2(3)
N(5)	33(4)	25(4)	39(4)	-9(3)	15(3)	-7(3)
N(6)	32(4)	36(4)	36(4)	-9(3)	21(4)	-3(3)
F(1)	56(4)	33(3)	85(5)	-8(3)	13(4)	-6(3)
F(2)	62(5)	98(6)	51(4)	27(4)	10(3)	-3(4)
O(1)	55(5)	59(5)	64(5)	-15(4)	9(4)	1(4)
O(2)	55(5)	60(5)	64(5)	-19(4)	22(4)	3(4)
O(3)	63(5)	29(4)	58(5)	-1(3)	12(4)	6(3)
C(1)	36(5)	40(5)	41(6)	-5(4)	13(4)	-11(4)
C(2)	28(5)	58(7)	48(6)	-10(5)	6(5)	-12(5)
C(3)	44(6)	42(6)	42(6)	-7(5)	11(5)	0(5)
C(4)	42(6)	40(5)	42(6)	-10(4)	19(5)	-3(4)
C(5)	32(5)	31(5)	68(7)	-13(5)	17(5)	0(4)
C(6)	37(6)	24(5)	72(8)	1(5)	-1(5)	0(4)
C(7)	53(7)	26(5)	54(7)	4(4) 1(4)	5(5) 10(5)	-4(4)
C(0)	30(6)	20(3)	31(6)	1(4) 2(5)	10(3) 21(5)	-13(4)
C(9)	43(0) 26(5)	59(3)	47(6)	5(3)	21(3) 21(5)	-3(3)
C(10) C(11)	40(6)	38(5)	55(7)	-0(5)	$\frac{21(5)}{12(5)}$	-0(3)
C(11)	40(0) 41(6)	47(6)	59(7)	-7(5)	12(5) 17(5)	2(4) 3(5)
C(12) C(13)	32(6)	49(6)	69(8)	-16(6)	14(5)	-4(5)
C(13)	55(7)	71(8)	32(6)	-4(5)	14(5)	-4(6)
C(15)	43(6)	63(7)	52(7)	4(6)	24(5)	-16(5)
C(16)	82(11)	84(11)	89(12)	2(9)	-21(9)	13(9)
C(17)	50(6)	44(6)	38(6)	7(5)	0(5)	-4(5)
C(18)	39(6)	48(6)	46(6)	16(5)	9(5)	9(5)
C(19)	42(6)	39(6)	68(8)	2(5)	17(6)	-4(5)
C(20)	38(6)	44(6)	61(7)	-2(5)	8(5)	-1(5)
C(21)	40(6)	39(6)	69(8)	5(5)	18(6)	1(5)
C(22)	36(6)	55(7)	49(6)	6(5)	9(5)	14(5)
C(23)	41(6)	60(7)	56(7)	10(6)	-2(5)	3(5)
C(24)	57(8)	65(8)	85(10)	1(7)	14(7)	6(6)
C(25)	31(5)	38(5)	47(6)	-7(4)	14(4)	1(4)
C(26)	35(5)	26(4)	46(6)	-2(4)	12(4)	-1(4)
C(27)	36(5)	33(5)	32(5)	-1(4)	8(4)	-5(4)
C(28)	45(6)	29(5)	43(6)	-3(4)	7(5)	-2(4)
C(29)	38(6)	31(5)	57(7)	0(5)	11(5) 15(5)	Z(4)
C(30)	40(6)	42(6)	43(6) 20(5)	$\delta(3)$	13(5) 12(5)	-6(4)
C(31)	40(0)	40(0) 28(6)	50(3) 71(0)	-3(4)	13(3) 8(7)	-6(3)
C(32)	58(7)	30(6)	11(9) 13(6)	10(0) 12(5)	-10(5)	-3(5)
C(34)	38(5)	39(0) 36(5)	43(0) 37(5)	12(3) 16(4)	-10(3)	-3(3)
C(34)	33(5)	44(6)	36(5)	8(4)	4(4)	-10(4)
C(36)	29(5)	37(5)	45(6)	-1(4)	6(4)	0(4)
C(37)	29(3) 28(5)	36(5)	31(5)	5(4)	2(4)	-5(4)
C(38)	36(6)	41(6)	58(7)	-2(5)	-15(5)	2(4)
C(39)	44(6)	31(5)	60(7)	3(5)	-12(5)	8(4)
C(40)	32(5)	37(5)	30(5)	5(4)	3(4)	-5(4)
C(41)	22(4)	36(5)	35(5)	-2(4)	1(4)	-1(4)
C(42)	23(5)	37(5)	37(5)	0(4)	7(4)	-2(4)
C(43)	30(5)	39(5)	29(5)	-1(4)	14(4)	-2(4)
C(44)	26(5)	46(5)	32(5)	-2(4)	4(4)	-1(4)
C(45)	32(5)	36(5)	29(5)	3(4)	3(4)	-1(4)
C(46)	40(6)	46(6)	26(5)	-8(4)	18(4)	-5(4)
C(47)	37(5)	32(5)	44(6)	-14(4)	24(4)	-10(4)

Table S4. Anisotropic displacement parameters $(\text{\AA}^2 x \ 10^3)$ for $[3_{MFM} \cdot (Ag)_3](OTf)_3$. The anisotropic displacement factor exponent takes the form: $-2p^2[\text{ h}^2 a^{*2}U^{11} + ... + 2 \text{ h k } a^* \text{ b}^* U^{12}]$.

C(48)	38(6)	42(5)	35(5)	-12(4)	15(4)	-12(4)
C(49)	36(5)	30(5)	52(6)	-3(4)	12(5)	-8(4)
C(50)	39(6)	31(5)	54(6)	3(4)	26(5)	-8(4)
C(51)	31(5)	43(5)	39(5)	-9(4)	8(4)	-7(4)
C(52)	34(5)	37(5)	38(5)	5(4)	4(4)	-1(4)
C(53)	28(5)	33(5)	46(6)	-1(4)	5(4)	0(4)
C(54)	37(6)	36(5)	57(7)	3(5)	9(5)	2(4)
C(55)	37(6)	36(5)	67(8)	15(5)	11(5)	3(4)
C(56)	44(6)	62(7)	42(6)	24(6)	12(5)	4(5)
C(57)	45(6)	67(8)	42(6)	-7(5)	6(5)	-1(5)
C(58)	130(14)	50(7)	40(7)	5(6)	-4(8)	-21(8)
F(3)	137(7)	112(7)	167(8)	1(6)	-41(7)	-30(6)
F(4)	222(10)	161(9)	124(8)	5(7)	-4(7)	46(8)
F(5)	101(7)	73(5)	79(6)	4(4)	-11(5)	29(5)
S(1)	62(2)	42(2)	171(5)	10(2)	5(3)	2(2)
O(4)	87(7)	69(6)	104(8)	35(6)	53(6)	37(5)
O(5)	71(7)	63(6)	153(11)	-8(6)	35(7)	-15(5)
O(6)	97(8)	74(6)	60(6)	-10(5)	22(5)	3(5)
C(59)	65(16)	52(14)	83(19)	1(13)	38(14)	-8(12)
F(6)	73(11)	94(13)	89(12)	-6(10)	-2(9)	3(9)
F(7)	75(11)	107(14)	121(15)	-28(11)	54(11)	25(10)
F(8)	148(19)	101(14)	109(15)	-16(12)	-4(14)	-74(14)
S(2)	40(2)	28(2)	59(4)	-4(2)	5(4)	-4(2)
O(7)	166(10)	160(10)	167(10)	0	13(5)	0
O(8)	129(6)	137(6)	147(7)	-17(5)	-7(5)	21(5)
C(60)	41(6)	74(8)	54(7)	4(6)	5(5)	8(6)
Cl(1)	50(2)	72(2)	47(2)	4(1)	9(1)	4(1)
Cl(2)	49(2)	80(2)	63(2)	3(2)	20(1)	-7(2)
Cl(3)	80(2)	54(2)	73(2)	2(2)	6(2)	4(2)
C(61)	60(8)	69(9)	81(10)	-12(7)	24(7)	-5(7)
Cl(4)	109(4)	54(2)	217(6)	-10(3)	-11(4)	4(2)
Cl(5)	182(5)	112(4)	94(3)	7(3)	28(3)	33(4)
Cl(6)	68(2)	64(2)	82(2)	-9(2)	12(2)	-7(2)
C(62)	89(12)	102(13)	101(13)	31(10)	-12(10)	-4(10)
Cl(7)	115(4)	116(4)	166(5)	-25(4)	-51(4)	3(3)
Cl(8)	158(5)	75(3)	123(4)	-4(3)	15(4)	41(3)
Cl(9)	115(3)	73(2)	138(3)	20(2)	-43(2)	-12(2)

Table S5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) of [**3**_{MFM}·(Ag)₃](OTf)₃.

	Х	у	Z	U(eq)
H(1A)	8658	9268	9170	47
H(1B)	9337	9234	8952	47
H(2A)	9429	7779	9382	54
H(2B)	9264	8463	9939	54
H(3A)	8144	8723	9946	51
H(3B)	8342	8148	10565	51
H(4A)	7589	7096	10294	49
H(4B)	7306	8040	10427	49
H(5A)	7342	8996	9418	52
H(5B)	6670	8689	9525	52
H(6A)	6610	8187	8435	53
H(6B)	6731	9219	8475	53
H(7A)	7837	9530	8645	53
H(7B)	7652	9784	7912	53
H(8A)	8453	8930	7523	52
H(8B)	8689	9698	7992	52
H(9A)	9628	7976	8359	52

U(0D)	0501	8600	7907	E 2
H(3B) H(11)	9301	6469	7007 9214	52
$\frac{11(11)}{11(12)}$	9200	0400	0214	55
$\Pi(12)$	8954	5347	7493	59
H(14)	8901	7040	6005	63
H(15)	9151	8204	6728	63
H(16A)	8422	5010	5473	128
H(16B)	8175	5932	5725	128
H(16C)	8836	5865	5454	128
H(17A)	8474	6591	10316	53
H(17B)	9140	6964	10347	53
H(19)	8159	5753	9291	59
H(20)	8416	4594	8625	57
H(22)	10150	5012	9051	56
H(23)	9894	6205	9724	63
H(24A)	10043	3214	8036	103
H(24B)	10279	4185	8191	103
H(24C)	10159	3517	8774	103
H(254)	6432	7999	0155	105
H(25R)	6522	7222	9133	40
$\Pi(23D)$	0522	(10)	9950	40
$\Pi(27)$	6936 7105	6109	8404	40
H(28)	7195	4644	8357	47
H(30)	7111	4339	10304	51
H(31)	6881	5817	10412	50
H(32A)	7467	2317	9601	95
H(32B)	7696	3123	10040	95
H(32C)	7000	2901	9988	95
H(33A)	7576	8535	7169	56
H(33B)	6907	8782	7350	56
H(35)	7887	6931	7318	45
H(36)	7614	5516	7009	44
H(38)	5877	6230	7048	54
H(39)	6159	7648	7314	54
H(41)	7315	4186	7058	37
H(42)	7039	2773	6747	39
H(44)	5419	3666	6185	42
H(45)	5696	5075	6472	39
H(46A)	5720	2206	5847	44
H(46R)	6348	1814	6092	44
H(40D) H(47A)	5227	528	6801	45
H(47D)	5501	520 707	6101	45
H(47D)	4496	707 870	6002	45
$\Pi(40\Lambda)$	4400	070	600Z	40
H(48B)	4781	1816	5911	46
H(49A)	4380	525	7234	47
H(49B)	3/41	705	6901	47
H(50A)	3518	1714	7728	49
H(50B)	3662	767	8029	49
H(51A)	3534	2338	6790	45
H(51B)	3679	1963	6084	45
H(53)	4140	3685	7176	43
H(55)	4574	5406	5769	56
H(57)	4077	2929	5276	61
H(60)	8729	2112	7627	67
H(61)	5518	8456	5903	84
H(62)	10655	11251	5931	117

Table So. Crystal data and structure refiner.	$\frac{1}{4} \operatorname{MFM}^{\bullet}(\operatorname{Ag})_{3}(\operatorname{O})$.)3.	
Identification code	$[4_{\mathbf{MFM}} \cdot (\mathbf{Ag})_3](\mathbf{OTf})_3$		
Empirical formula	C117 H136 Ag3 F13 N12 O15 S3		
Formula weight	2617.16		
Temperature	120(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	P21/n		
Unit cell dimensions	a = 19.7365(11) Å	α= 90°.	
	b = 31.8892(17) Å	β= 97.6690(10)°.	
	c = 20.1756(11) Å	$\gamma = 90^{\circ}$.	
Volume	12584.6(12) Å ³		
Z	4		
Density (calculated)	1.381 Mg/m ³		
Absorption coefficient	0.594 mm ⁻¹		
F(000)	5392		
Crystal size	$0.691 \text{ x } 0.147 \text{ x } 0.067 \text{ mm}^3$		
Theta range for data collection	1.202 to 25.999°.		
Index ranges	-11<=h<=24, -38<=k<=39, -24	<=l<=22	
Reflections collected	71830		
Independent reflections	24728 [R(int) = 0.0693]		
Completeness to theta = 25.242°	100.0 %		
Absorption correction	Semi-empirical from equivalen	ts	
Max. and min. transmission	0.7456 and 0.6650		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	24728 / 242 / 1516		
Goodness-of-fit on F ²	1.067		
Final R indices [I>2sigma(I)]	R1 = 0.0867, wR2 = 0.2455		
R indices (all data)	R1 = 0.1399, wR2 = 0.2967		
Extinction coefficient	n/a		
Largest diff. peak and hole	3.026 and -1.428 e.Å ⁻³		

Table S6. Crystal data and structure refinement for [4_{MFM}·(Ag)₃](OTf)₃

	Х	у	Z	U(eq)
Ag(1)	8782(1)	4528(1)	6577(1)	28(1)
Ag(2)	4998(1)	2818(1)	8528(1)	30(1)
Ag(3)	5339(1)	3160(1)	3477(1)	30(1)
N(1)	7892(4)	4477(2)	5618(4)	33(2)
N(2)	8806(4)	5223(2)	6033(4)	36(2)
N(3)	9977(4)	4615(2)	6451(4)	33(2)
N(4)	9068(4)	3861(2)	6030(3)	28(2)
N(5)	5283(4)	3035(2)	9673(3)	31(2)
N(6)	4421(4)	3516(2)	8535(4)	35(2)
N(7)	3851(3)	2676(2)	8013(4)	31(2)
N(8)	4673(4)	2193(2)	9178(3)	29(2)
N(9)	6556(3)	3091(2)	3568(4)	31(2)
N(10)	5487(4)	2385(2)	3589(4)	33(2)
N(11)	4598(4)	2890(2)	2541(4)	36(2)
N(12)	5679(4)	3568(3)	2484(4)	40(2)
O(1)	6248(6)	4700(3)	8158(5)	87(3)
O(2)	8600(6)	5376(4)	9151(5)	98(3)
O(3)	9777(6)	3971(3)	9421(4)	83(3)
O(4)	3322(3)	2719(2)	5645(3)	44(2)
O(5)	3301(4)	4266(2)	4290(4)	54(2)
F(1)	4604(4)	1438(2)	6185(3)	64(2)
F(2)	6095(3)	2548(2)	6837(3)	47(1)
F(3)	7300(3)	1560(2)	9877(3)	54(2)
F(4)	6683(3)	1848(2)	7606(3)	45(1)
C(1)	8487(5)	3791(3)	5490(4)	36(2)
C(2)	8200(5)	4191(3)	5150(4)	35(2)
C(3)	7810(5)	4899(3)	5332(5)	40(2)
C(4)	8460(5)	5155(3)	5347(5)	41(2)
C(5)	9543(5)	5321(3)	6032(6)	45(2)
C(6)	9974(5)	4933(3)	5912(5)	40(2)
C(7)	10217(4)	4214(3)	6227(5)	35(2)
C(8)	9098(3) 7211(4)	3970(3) 4210(2)	5726(5) 5727(E)	30(2)
C(9)	(211(4) (081(5)	4319(3)	3727(3) 6271(E)	33(2)
C(10)	0901(3) 6456(5)	4447(3) 472E(2)	6371(3)	34(2)
C(11)	6430(3)	4733(3)	0304(0) 6077(7)	40(3)
C(12) C(13)	6481(7)	4022(4)	7559(6)	55(3)
C(13)	7030(6)	4045(3)	7552(6)	54(3)
C(14) C(15)	7030(0)	4365(3)	6966(5)	39(3)
C(15)	5642(10)	4200(3) 4924(5)	8164(10)	110(6)
C(10)	8475(5)	5577(3)	6354(5)	41(2)
C(18)	8535(5)	5542(3)	7091(5)	41(2) 43(2)
C(19)	8991(6)	5773(3)	7527(7)	61(3)
C(20)	9038(7)	5734(4)	8215(6)	68(4)
C(21)	8615(8)	5455(5)	8488(7)	74(4)
C(22)	8146(6)	5216(4)	8068(6)	61(3)
C(23)	8118(5)	5264(3)	7374(5)	44(2)
C(24)	9099(10)	5595(6)	9595(8)	119(7)
C(25)	10432(5)	4750(3)	7058(5)	44(2)
C(26)	10262(6)	4541(3)	7682(5)	44(2)
C(27)	10633(7)	4216(3)	7994(6)	57(3)
C(28)	10459(7)	4039(4)	8582(6)	59(3)
C(29)	9911(8)	4178(4)	8840(6)	65(4)
C(30)	9519(7)	4511(3)	8558(6)	59(3)
C(31)	9715(6)	4689(3)	7978(5)	52(3)
C(32)	9238(9)	4123(5)	9757(8)	95(5)
C(33)	9201(5)	3484(3)	6444(4)	33(2)
C(34)	8710(4)	3427(3)	6951(4)	28(2)
C(35)	8175(4)	3137(3)	6842(4)	29(2)
C(36)	7750(5)	3074(3)	7329(4)	29(2)

Table S7. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for [4_{MFM}·(Ag)₃](OTf)₃. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(38) 8377(4) 3588(3) 8030(4) 31(2) C(39) 8805(4) 3247(3) 7556(4) 32(2) C(40) 7370(4) 3253(3) 8451(4) 27(2) C(42) 6548(5) 2800(3) 8927(4) 31(2) C(43) 6482(4) 3161(3) 9419(4) 32(2) C(44) 6652(4) 3461(3) 9442(4) 33(2) C(45) 7296(5) 334(3) 9943(4) 342(2) C(46) 6016(5) 3003(3) 9947(4) 342(2) C(48) 4390(5) 3566(3) 9267(5) 39(2) C(49) 3730(5) 3452(3) 8165(5) 39(2) C(50) 3427(5) 3223(3) 8290(4) 3422 C(51) 3665(4) 2280(3) 8290(4) 342 C(52) 3917(5) 2216(3) 7006(4) 342 C(53) 4476(5) 241(3) 7007(4) 332 C(54) 4920(5) 245(3) <t< th=""><th>C(37)</th><th>7832(4)</th><th>3301(3)</th><th>7935(4)</th><th>28(2)</th></t<>	C(37)	7832(4)	3301(3)	7935(4)	28(2)
$\begin{array}{ccccc} C(39) & 8805(4) & 3647(3) & 7556(4) & 3220 \\ C(41) & 6979(4) & 3235(3) & 8445(4) & 27(2) \\ C(41) & 6979(4) & 2863(3) & 8445(4) & 27(2) \\ C(42) & 6548(5) & 2800(3) & 8947(4) & 31(2) \\ C(43) & 6482(4) & 3100(3) & 9419(4) & 3220 \\ C(45) & 7296(5) & 3534(3) & 9437(4) & 33(2) \\ C(46) & 6016(5) & 3003(3) & 9947(4) & 34(2) \\ C(46) & 6016(5) & 3042(3) & 9680(4) & 34(2) \\ C(46) & 4990(6) & 3566(3) & 9267(5) & 39(2) \\ C(46) & 4990(6) & 3566(3) & 9267(5) & 39(2) \\ C(46) & 3127(5) & 3122(3) & 8680(4) & 32(2) \\ C(50) & 3127(5) & 3242(3) & 8229(5) & 42(2) \\ C(51) & 3465(4) & 2280(3) & 8290(4) & 32(2) \\ C(51) & 3467(6) & 2294(3) & 880(4) & 34(2) \\ C(51) & 3477(5) & 225(13) & 7286(4) & 36(2) \\ C(55) & 3747(5) & 225(13) & 7286(4) & 36(2) \\ C(55) & 3747(5) & 225(13) & 7286(4) & 36(2) \\ C(55) & 3747(5) & 225(13) & 7007(4) & 33(2) \\ C(55) & 3747(5) & 225(13) & 7007(4) & 33(2) \\ C(56) & 4307(5) & 2371(3) & 6789(5) & 352(2) \\ C(53) & 4733(6) & 1823(3) & 6470(5) & 4422 \\ C(60) & 5408(5) & 2371(3) & 6789(5) & 342(2) \\ C(56) & 6481(6) & 1284(3) & 9365(5) & 3702 \\ C(64) & 6140(4) & 1647(3) & 9440(5) & 3422 \\ C(66) & 7020(5) & 173(3) & 8237(5) & 3702 \\ C(66) & 7020(5) & 1742(3) & 8237(5) & 3702 \\ C(66) & 7020(5) & 1742(3) & 8237(5) & 3702 \\ C(66) & 7020(5) & 1742(3) & 8237(5) & 3702 \\ C(66) & 7020(5) & 1742(3) & 8237(5) & 3702 \\ C(66) & 7020(5) & 1742(3) & 8237(5) & 3702 \\ C(66) & 7020(5) & 1742(3) & 8237(5) & 3702 \\ C(66) & 7020(5) & 1742(3) & 8237(5) & 3702 \\ C(66) & 7020(5) & 1742(3) & 8237(5) & 3702 \\ C(66) & 7020(5) & 1742(3) & 8237(5) & 3702 \\ C(66) & 7020(5) & 1742(3) & 8237(5) & 3702 \\ C(67) & 5699(6) & 3340(3) & 7638(4) & 33(2) \\ C(77) & 5677(5) & 3353(3) & 5233(4) & 3202 \\ C(77) & 5677(5) & 3353(3) & 5233(4) & 3202 \\ C(77) & 5677(5) & 3353(3) & 5233(4) & 3202 \\ C(77) & 5677(5) & 3353(3) & 5233(4) & 3202 \\ C(77) & 5677(5) & 3353(3) & 5233(4) & 3202 \\ C(78) & 6437(5) & 3267(3) & 5837(4) & 3122 \\ C(80) & 6437(5) & 3267(3) & 5837(4) & 3122 \\ C(80) & 6437(5) & 2366(3) & 3076(5) & 3662 \\ C(80) & 6437(5) & 2366(3) & 3076(5)$	C(38)	8377(4)	3588(3)	8030(4)	31(2)
C(40) 7370(4) 3225(3) 8415(4) 27(2) C(41) 66979(4) 2860(3) 8947(4) 31(2) C(42) 6548(6) 2800(3) 8927(4) 31(2) C(44) 6862(4) 3161(3) 9424(4) 33(2) C(45) 7296(5) 353(4) 8943(4) 33(2) C(46) 6016(5) 3003(3) 9947(4) 34(2) C(47) 5056(5) 3472(3) 8237(5) 39(2) C(49) 3730(5) 3452(3) 8165(5) 39(2) C(50) 3427(5) 2220(3) 924(5) 32(2) C(51) 3665(4) 2240(3) 880(4) 34(2) C(53) 3747(5) 221(3) 981(4) 33(2) C(54) 4307(5) 2415(3) 7007(4) 33(2) C(55) 3747(5) 2415(3) 7007(4) 33(2) C(56) 4307(5) 2416(3) 935(5) 35(2) C(56) 4307(5) 2416(3)	C(39)	8805(4)	3647(3)	7556(4)	32(2)
C(41) 679(4) 2863(3) 8445(4) 27(2) C(42) 6548(5) 2800(3) 9927(4) 31(2) C(43) 6482(4) 3160(3) 9419(4) 32(2) C(45) 7296(5) 3534(3) 9434(4) 33(2) C(46) 6016(5) 3003(3) 947(4) 34(2) C(46) 4930(5) 3564(3) 9257(5) 39(2) C(46) 3327(5) 3422(3) 8165(5) 39(2) C(40) 3427(5) 3223(3) 8239(5) 42(2) C(51) 3466(4) 2280(3) 829(4) 32(2) C(53) 34747(5) 261(3) 7286(4) 36(2) C(55) 34747(5) 261(3) 708(4) 36(2) C(56) 4307(5) 261(3) 708(4) 36(2) C(57) 4201(5) 264(3) 6739(5) 36(2) C(56) 4733(6) 1232(3) 6473(5) 37(2) C(61) 4592(5) 173(3) <t< td=""><td>C(40)</td><td>7370(4)</td><td>3235(3)</td><td>8451(4)</td><td>27(2)</td></t<>	C(40)	7370(4)	3235(3)	8451(4)	27(2)
C(42) 6548(5) 2800(3) 8927(4) 31(2) C(43) 6682(4) 3160(3) 9419(4) 32(2) C(44) 6682(4) 3161(3) 9421(4) 33(2) C(46) 6016(5) 303(3) 9497(4) 34(2) C(47) 5556(5) 3472(3) 9680(4) 34(2) C(48) 4390(5) 3566(3) 9267(5) 39(2) C(51) 3366(3) 9267(5) 39(2) C(51) 3666(3) 42(2) C(51) 3427(5) 2220(3) 9934(5) 44(2) C(52) 3917(5) 221(3) 9680(4) 34(2) C(55) 3747(5) 2415(3) 7007(4) 33(2) C(57) 4201(5) 2024(3) 6728(5) 42(2) C(56) 437(5) 2415(3) 707(4) 33(2) C(55) 374(4) 33(2) C(57) 4201(5) 2571(6) 1863(3) 6690(5) 34(2) C(56) 437(3) 1823(3) 6778(5) 362) <td>C(41)</td> <td>6979(4)</td> <td>2863(3)</td> <td>8445(4)</td> <td>27(2)</td>	C(41)	6979(4)	2863(3)	8445(4)	27(2)
$\begin{array}{ccccc} C(43) & 6482(4) & 3100(3) & 9419(4) & 32(2) \\ C(44) & 6682(4) & 3461(3) & 9424(4) & 33(2) \\ C(45) & 7296(5) & 3534(3) & 8943(4) & 33(2) \\ C(46) & 6016(5) & 3003(3) & 9947(4) & 34(2) \\ C(47) & 5056(5) & 3472(3) & 9680(4) & 38(2) \\ C(49) & 3700(5) & 3563(3) & 9267(5) & 39(2) \\ C(49) & 3720(5) & 3452(3) & 8165(5) & 39(2) \\ C(50) & 3217(5) & 2021(3) & 8239(5) & 42(2) \\ C(51) & 3665(4) & 2280(3) & 8239(5) & 42(2) \\ C(52) & 3917(5) & 2220(3) & 9034(5) & 40(2) \\ C(53) & 4420(5) & 2294(3) & 9880(4) & 33(2) \\ C(55) & 3747(5) & 265(13) & 7268(4) & 36(2) \\ C(56) & 4307(5) & 2261(3) & 7007(4) & 33(2) \\ C(55) & 3747(5) & 261(3) & 7007(4) & 33(2) \\ C(56) & 4307(5) & 22415(3) & 7007(4) & 33(2) \\ C(57) & 420(15) & 2294(3) & 6728(5) & 42(2) \\ C(58) & 4733(6) & 1823(3) & 6470(5) & 443(2) \\ C(59) & 5376(6) & 1986(3) & 6579(5) & 44(2) \\ C(60) & 5468(5) & 2371(3) & 6789(5) & 35(2) \\ C(61) & 4955(5) & 2591(3) & 7012(4) & 33(2) \\ C(63) & 5229(5) & 1736(3) & 9938(4) & 30(2) \\ C(64) & 6140(4) & 1647(3) & 9475(5) & 337(2) \\ C(65) & 611(5) & 1648(3) & 9438(4) & 30(2) \\ C(66) & 7020(5) & 1782(3) & 8237(5) & 37(2) \\ C(66) & 6120(4) & 1647(3) & 9475(5) & 337(2) \\ C(66) & 7020(5) & 1782(3) & 8277(5) & 37(2) \\ C(66) & 5522(4) & 1803(3) & 8301(4) & 30(2) \\ C(70) & 5499(5) & 1782(3) & 8277(5) & 37(2) \\ C(68) & 5522(4) & 1803(3) & 8301(4) & 30(2) \\ C(71) & 4661(5) & 3778(3) & 7005(6) & 42(2) \\ C(72) & 4936(5) & 3776(3) & 6433(4) & 33(2) \\ C(74) & 5593(5) & 362(3) & 7633(4) & 33(2) \\ C(74) & 5593(5) & 362(3) & 7633(4) & 33(2) \\ C(75) & 5593(5) & 362(3) & 7633(4) & 33(2) \\ C(75) & 5593(5) & 362(3) & 7633(4) & 33(2) \\ C(75) & 5593(5) & 362(3) & 7633(4) & 33(2) \\ C(76) & 6437(5) & 3267(3) & 5333(4) & 29(2) \\ C(77) & 6597(5) & 3267(3) & 5333(4) & 29(2) \\ C(77) & 6597(5) & 3267(3) & 5333(4) & 32(2) \\ C(78) & 6437(5) & 236(3) & 3764(5) & 36(2) \\ C(80) & 6437(5) & 2364(3) & 3764(5) & 36(2) \\ C(80) & 6437(5) & 2364(3) & 3764(5) & 36(2) \\ C(80) & 6437(5) & 2364(3) & 3764(5) & 36(2) \\ C(81) & 6437(5) & 2364(3) & 3764(5) & 36(2) \\ C(91) & 3288(5)$	C(42)	6548(5)	2800(3)	8927(4)	31(2)
C(44) 6662(4) 3461(3) 9424(4) 33(2) C(45) 7296(5) 3534(3) 8943(4) 33(2) C(46) 6016(5) 3003(3) 9947(4) 34(2) C(47) 5556(5) 3472(3) 9680(4) 34(2) C(48) 4390(5) 3568(3) 9267(5) 39(2) C(51) 3665(4) 2280(3) 8239(5) 42(2) C(51) 3665(4) 2280(3) 8239(4) 34(2) C(52) 3917(5) 2294(3) 9880(4) 34(2) C(54) 4457(5) 2764(3) 10060(4) 33(2) C(55) 3747(5) 2415(3) 7007(4) 33(2) C(56) 4307(5) 2415(3) 7007(4) 33(2) C(58) 4733(6) 1282(3) 6479(5) 43(2) C(56) 5376(6) 1986(3) 6509(5) 44(2) C(61) 4992(5) 173(3) 8934(4) 33(2) C(61) 4993(5) 250(1)	C(43)	6482(4)	3100(3)	9419(4)	32(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(44)	6862(4)	3461(3)	9424(4)	33(2)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C(45)	7296(5)	3534(3)	8943(4)	33(2)
$\begin{array}{cccc} C(48) & 3490(5) & 34/2(3) & 9680(4) & 38(2) \\ C(49) & 3730(5) & 3452(3) & 8165(5) & 39(2) \\ C(50) & 3427(5) & 3223(3) & 8239(5) & 4220 \\ C(51) & 3665(4) & 2280(3) & 8239(4) & 32(2) \\ C(52) & 917(5) & 2229(3) & 9988(4) & 34(2) \\ C(53) & 4920(5) & 2294(3) & 9880(4) & 34(2) \\ C(54) & 4876(5) & 2764(3) & 10060(4) & 33(2) \\ C(55) & 3747(5) & 2651(3) & 70268(4) & 36(2) \\ C(56) & 4307(5) & 2415(3) & 7007(4) & 33(2) \\ C(57) & 4201(5) & 2024(3) & 6728(5) & 42(2) \\ C(58) & 4733(6) & 1823(3) & 6470(5) & 44(2) \\ C(60) & 5468(5) & 2571(3) & 6789(5) & 352(2) \\ C(61) & 4955(5) & 2591(3) & 7042(4) & 33(2) \\ C(62) & 4892(5) & 1756(3) & 9948(4) & 30(2) \\ C(64) & 6140(4) & 1647(3) & 9938(4) & 30(2) \\ C(65) & 6811(5) & 1648(3) & 9355(5) & 37(2) \\ C(66) & 7020(5) & 1782(3) & 8227(5) & 37(2) \\ C(66) & 5822(4) & 1803(3) & 8304(4) & 30(2) \\ C(67) & 6499(5) & 1782(3) & 8227(5) & 37(2) \\ C(66) & 5822(4) & 1803(3) & 8304(4) & 30(2) \\ C(70) & 5020(5) & 3801(3) & 7638(4) & 33(2) \\ C(71) & 6461(5) & 378(3) & 7005(5) & 42(2) \\ C(72) & 4936(5) & 3796(3) & 6433(4) & 33(2) \\ C(71) & 5679(5) & 3269(3) & 6433(4) & 33(2) \\ C(71) & 5677(5) & 3763(3) & 7081(4) & 33(2) \\ C(73) & 5593(5) & 3267(3) & 5833(4) & 29(2) \\ C(73) & 5598(5) & 3561(3) & 7081(4) & 33(2) \\ C(74) & 5958(5) & 3561(3) & 7081(4) & 33(2) \\ C(75) & 5669(4) & 341(3) & 7658(4) & 32(2) \\ C(76) & 5966(4) & 341(3) & 7658(4) & 32(2) \\ C(77) & 5677(5) & 3753(3) & 2233(4) & 33(2) \\ C(76) & 5966(5) & 3417(3) & 4682(4) & 32(2) \\ C(77) & 5677(5) & 3753(3) & 2233(4) & 33(2) \\ C(76) & 5966(5) & 3417(3) & 4682(4) & 32(2) \\ C(77) & 5677(5) & 3763(3) & 776(5) & 36(2) \\ C(88) & 6437(5) & 3267(3) & 5833(4) & 29(2) \\ C(77) & 5677(5) & 366(3) & 4754(5) & 36(2) \\ C(88) & 6437(5) & 2267(3) & 2283(4) & 33(2) \\ C(76) & 3663(5) & 2266(3) & 3561(5) & 36(2) \\ C(88) & 6437(5) & 2276(3) & 2483(5) & 362(2) \\ C(88) & 6437(5) & 2276(3) & 2882(5) & 44(2) \\ C(90) & 6758(4) & 3776(3) & 2282(5) & 44(2) \\ C(90) & 6758(4) & 3776(3) & 2282(5) & 44(2) \\ C(90) & 6758(4) & 3767(3) & 2282(5) & 44(2) \\ C(90) & 6758(4)$	C(46)	6016(5)	3003(3)	9947(4)	34(2)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C(47)	5056(5)	3472(3)	9680(4)	38(2)
$\begin{array}{c c} C(49) & 3130(3) & 3432(3) & 8130(3) & 8130(3) & 8120(2) \\ C(50) & 3427(5) & 3223(3) & 8229(4) & 32(2) \\ C(51) & 3665(4) & 2280(3) & 8299(4) & 32(2) \\ C(52) & 3917(5) & 2220(3) & 9034(5) & 40(2) \\ C(53) & 4826(5) & 2764(3) & 10060(4) & 34(2) \\ C(54) & 4876(5) & 2764(3) & 10060(4) & 33(2) \\ C(55) & 3747(5) & 2651(3) & 7026(4) & 36(2) \\ C(56) & 4307(5) & 2415(3) & 7007(4) & 33(2) \\ C(57) & 4201(5) & 224(3) & 6728(5) & 42(2) \\ C(58) & 4733(6) & 1823(3) & 6779(5) & 44(2) \\ C(59) & 5376(6) & 1986(3) & 6599(5) & 44(2) \\ C(60) & 5468(5) & 2371(3) & 6789(5) & 35(2) \\ C(61) & 4955(5) & 2591(3) & 7042(4) & 33(2) \\ C(63) & 5629(5) & 1736(3) & 9940(5) & 34(2) \\ C(63) & 5629(5) & 1736(3) & 9948(5) & 33(2) \\ C(65) & 6811(5) & 1648(3) & 9355(5) & 37(2) \\ C(66) & 7020(5) & 1712(3) & 8752(5) & 33(2) \\ C(66) & 7020(5) & 1712(3) & 8752(5) & 37(2) \\ C(68) & 5822(4) & 1803(3) & 8304(4) & 30(2) \\ C(70) & 5020(5) & 3801(3) & 7638(4) & 33(2) \\ C(71) & 4661(5) & 3878(3) & 7005(5) & 42(2) \\ C(71) & 5677(5) & 376(3) & 6430(4) & 34(2) \\ C(73) & 5593(5) & 3629(3) & 6433(4) & 33(2) \\ C(74) & 558(5) & 361(3) & 7038(4) & 33(2) \\ C(76) & 5906(4) & 3641(3) & 7656(4) & 32(2) \\ C(77) & 5677(5) & 3753(3) & 5233(4) & 34(2) \\ C(73) & 5593(5) & 362(3) & 6650(4) & 362(2) \\ C(77) & 5677(5) & 3753(3) & 5233(4) & 34(2) \\ C(73) & 6599(5) & 3417(3) & 4682(4) & 32(2) \\ C(76) & 6506(4) & 3641(3) & 7656(4) & 32(2) \\ C(77) & 5677(5) & 3753(3) & 5233(4) & 34(2) \\ C(78) & 6010(5) & 3468(3) & 4073(4) & 35(2) \\ C(78) & 6010(5) & 3686(3) & 4060(4) & 33(2) \\ C(78) & 6010(5) & 3686(3) & 4060(4) & 33(2) \\ C(78) & 6010(5) & 3686(3) & 4060(4) & 33(2) \\ C(78) & 6010(5) & 3686(3) & 4060(4) & 33(2) \\ C(78) & 6010(5) & 3686(3) & 4073(4) & 35(2) \\ C(77) & 5677(5) & 3753(3) & 5233(4) & 34(2) \\ C(78) & 6010(5) & 3686(3) & 4073(4) & 35(2) \\ C(77) & 5677(5) & 3753(3) & 5233(4) & 34(2) \\ C(78) & 6010(5) & 3686(3) & 4073(4) & 35(2) \\ C(77) & 5677(5) & 3753(3) & 5233(4) & 34(2) \\ C(78) & 6477(5) & 3163(4) & 1960(5) & 4422 \\ C(78) & 6477(5) & 3267(3) & 3297(5) & 32(2) \\ C(77$	C(48)	4390(5)	3568(3)	9267(5)	39(2)
$\begin{array}{ccccc} C(51) & 3465(4) & 2320(3) & 3220(4) & 32(2) \\ C(52) & 3917(5) & 2220(3) & 9034(5) & 40(2) \\ C(53) & 4420(5) & 2294(3) & 9880(4) & 34(2) \\ C(54) & 4876(5) & 2764(3) & 10060(4) & 33(2) \\ C(55) & 3747(5) & 2651(3) & 7007(4) & 33(2) \\ C(55) & 3747(5) & 2651(3) & 7007(4) & 33(2) \\ C(56) & 4307(5) & 2415(3) & 7007(4) & 33(2) \\ C(57) & 4201(5) & 2024(3) & 6728(5) & 44(2) \\ C(58) & 4733(6) & 1282(3) & 6470(5) & 43(2) \\ C(59) & 5376(6) & 1986(3) & 6509(5) & 44(2) \\ C(60) & 5468(5) & 2371(3) & 6789(5) & 35(2) \\ C(61) & 4955(5) & 2591(3) & 7042(4) & 33(2) \\ C(61) & 6495(5) & 1736(3) & 9940(5) & 34(2) \\ C(64) & 6140(4) & 1647(3) & 9475(5) & 33(2) \\ C(66) & 7020(5) & 1712(3) & 8752(5) & 37(2) \\ C(66) & 7020(5) & 1712(3) & 8752(5) & 37(2) \\ C(66) & 7020(5) & 1712(3) & 8752(5) & 37(2) \\ C(66) & 7020(5) & 1712(3) & 8752(5) & 37(2) \\ C(68) & 5822(4) & 1803(3) & 8304(4) & 30(2) \\ C(70) & 520(5) & 301(3) & 7638(4) & 33(2) \\ C(71) & 4661(5) & 3378(3) & 7005(5) & 44(2) \\ C(73) & 5593(5) & 3629(3) & 6433(4) & 33(2) \\ C(71) & 4661(5) & 3378(3) & 7005(5) & 44(2) \\ C(73) & 5593(5) & 3629(3) & 6433(4) & 33(2) \\ C(74) & 558(5) & 361(3) & 7081(4) & 33(2) \\ C(74) & 558(5) & 361(3) & 7081(4) & 33(2) \\ C(75) & 569(4) & 3641(3) & 7656(4) & 32(2) \\ C(76) & 5906(4) & 3549(3) & 5233(4) & 42(2) \\ C(76) & 5906(4) & 3549(3) & 5233(4) & 42(2) \\ C(77) & 5677(5) & 3753(3) & 5233(4) & 32(2) \\ C(76) & 5906(4) & 3549(3) & 3627(3) & 337(4) & 33(2) \\ C(77) & 5677(5) & 3753(3) & 5233(4) & 32(2) \\ C(77) & 5677(5) & 3267(3) & 5237(4) & 31(2) \\ C(88) & 6437(5) & 3267(3) & 3377(4) & 31(2) \\ C(81) & 6477(5) & 3267(3) & 5237(4) & 31(2) \\ C(82) & 6929(4) & 3368(3) & 4073(4) & 35(2) \\ C(78) & 6437(5) & 3267(3) & 3277(4) & 31(2) \\ C(81) & 6477(5) & 3163(4) & 1960(5) & 45(2) \\ C(83) & 6638(5) & 2204(3) & 376(5) & 36(2) \\ C(86) & 4229(5) & 2040(3) & 376(5) & 36(2) \\ C(86) & 4229(5) & 2040(3) & 376(5) & 36(2) \\ C(86) & 4229(5) & 2040(3) & 376(5) & 36(2) \\ C(99) & 6437(5) & 2276(3) & 2890(3) & 2660(5) & 36(2) \\ C(99) & 3865(4) & 2290(3) & 2660(5) & 36(2) \\ C($	C(49)	3730(3) 2427(5)	3432(3) 2022(2)	0103(3) 9220(5)	39(2)
$\begin{array}{ccccc} C(52) & 3917(5) & 220(3) & 9034(5) & 40(2) \\ C(53) & 4920(5) & 2294(3) & 9880(4) & 33(2) \\ C(54) & 4876(5) & 2764(3) & 10060(4) & 33(2) \\ C(55) & 3747(5) & 2651(3) & 7268(4) & 33(2) \\ C(56) & 4307(5) & 2415(3) & 7007(4) & 33(2) \\ C(57) & 4201(5) & 2024(3) & 6728(5) & 42(2) \\ C(58) & 4733(6) & 1823(3) & 6470(5) & 44(2) \\ C(59) & 5376(6) & 1986(3) & 6509(5) & 44(2) \\ C(60) & 5468(5) & 2371(3) & 6789(5) & 33(2) \\ C(61) & 4955(5) & 2591(3) & 7042(4) & 33(2) \\ C(63) & 5629(5) & 1736(3) & 9940(5) & 34(2) \\ C(63) & 5629(5) & 1736(3) & 9948(4) & 30(2) \\ C(64) & 6140(4) & 1647(3) & 9355(5) & 37(2) \\ C(66) & 6811(5) & 1648(3) & 9355(5) & 37(2) \\ C(66) & 6811(5) & 1648(3) & 9355(5) & 37(2) \\ C(66) & 5822(4) & 1803(3) & 8304(4) & 30(2) \\ C(67) & 6499(5) & 1782(3) & 8227(5) & 37(2) \\ C(68) & 5822(4) & 1803(3) & 7638(4) & 33(2) \\ C(70) & 5020(5) & 3801(3) & 7638(4) & 33(2) \\ C(71) & 4661(5) & 378(3) & 7005(5) & 42(2) \\ C(72) & 4936(5) & 3796(3) & 6430(5) & 44(2) \\ C(73) & 5593(5) & 3629(3) & 6433(4) & 32(2) \\ C(74) & 5958(5) & 3661(3) & 7081(4) & 33(2) \\ C(75) & 5669(4) & 3441(3) & 7656(4) & 32(2) \\ C(77) & 5677(5) & 3753(3) & 5233(4) & 34(2) \\ C(78) & 6010(5) & 3666(3) & 4660(4) & 35(2) \\ C(79) & 6569(5) & 3417(3) & 4682(4) & 32(2) \\ C(77) & 5677(5) & 3753(3) & 5233(4) & 34(2) \\ C(78) & 6617(5) & 3267(3) & 5833(4) & 32(2) \\ C(77) & 5677(5) & 3753(3) & 5233(4) & 34(2) \\ C(78) & 6617(5) & 3267(3) & 5833(4) & 32(2) \\ C(77) & 5677(5) & 3753(3) & 5233(4) & 33(2) \\ C(78) & 668(5) & 2446(3) & 3766(5) & 46(2) \\ C(80) & 6779(4) & 3207(3) & 5277(4) & 31(2) \\ C(81) & 6457(5) & 2264(3) & 3766(5) & 46(2) \\ C(84) & 6187(5) & 2246(3) & 3766(5) & 36(2) \\ C(85) & 4970(5) & 2204(3) & 3766(5) & 36(2) \\ C(86) & 4329(5) & 246(3) & 3766(5) & 36(2) \\ C(86) & 4329(5) & 246(3) & 3766(5) & 36(2) \\ C(86) & 4329(5) & 246(3) & 3766(5) & 36(2) \\ C(86) & 4329(5) & 2266(3) & 3076(5) & 36(2) \\ C(90) & 6758(4) & 2390(3) & 2660(5) & 36(2) \\ C(90) & 6758(4) & 2390(3) & 2660(5) & 36(2) \\ C(91) & 372(4) & 3289(3) & 3066(5) & 36(2) \\ C(100) & 372(4) &$	C(50)	3427(3) 3665(4)	3023(3) 2280(3)	8290(4)	42(2) 32(2)
$\begin{array}{ccccc} C(53) & 4920(5) & 2294(3) & 9880(4) & 34(2) \\ C(54) & 4876(5) & 2764(3) & 10060(4) & 33(2) \\ C(55) & 3747(5) & 2451(3) & 7007(4) & 33(2) \\ C(55) & 4201(5) & 2024(3) & 6728(5) & 42(2) \\ C(58) & 4733(6) & 1823(3) & 6470(5) & 44(2) \\ C(59) & 5376(6) & 1986(3) & 6509(5) & 44(2) \\ C(60) & 5468(5) & 2371(3) & 6789(5) & 35(2) \\ C(61) & 4955(5) & 2591(3) & 7042(4) & 33(2) \\ C(62) & 4892(5) & 1763(3) & 9940(5) & 34(2) \\ C(64) & 6140(4) & 1647(3) & 9475(5) & 33(2) \\ C(65) & 6811(5) & 1648(3) & 9355(5) & 37(2) \\ C(66) & 7020(5) & 1712(3) & 8752(5) & 33(2) \\ C(66) & 7020(5) & 1712(3) & 8752(5) & 34(2) \\ C(67) & 6499(5) & 1782(3) & 8227(5) & 34(2) \\ C(69) & 4744(5) & 3892(3) & 8277(5) & 392(2) \\ C(70) & 5020(5) & 376(3) & 6430(5) & 442(2) \\ C(71) & 4661(5) & 3788(3) & 7005(5) & 42(2) \\ C(72) & 4936(5) & 3796(3) & 6430(5) & 442(2) \\ C(74) & 5958(5) & 3561(3) & 7081(4) & 33(2) \\ C(74) & 5958(5) & 3561(3) & 7081(4) & 33(2) \\ C(75) & 5669(4) & 3441(3) & 7656(4) & 32(2) \\ C(76) & 5906(4) & 3549(3) & 5833(4) & 29(2) \\ C(77) & 5677(5) & 3753(3) & 5233(4) & 34(2) \\ C(76) & 5906(4) & 3549(3) & 5833(4) & 29(2) \\ C(77) & 5677(5) & 3753(3) & 5233(4) & 34(2) \\ C(78) & 6010(5) & 3686(3) & 4660(4) & 35(2) \\ C(79) & 6569(5) & 3417(3) & 4682(4) & 32(2) \\ C(76) & 5906(4) & 3549(3) & 5833(4) & 29(2) \\ C(77) & 5677(5) & 3753(3) & 5233(4) & 34(2) \\ C(78) & 663(5) & 246(3) & 376(5) & 34(2) \\ C(78) & 663(5) & 246(3) & 376(5) & 34(2) \\ C(80) & 6779(4) & 3207(3) & 5837(4) & 31(2) \\ C(81) & 6457(5) & 3267(3) & 5837(4) & 31(2) \\ C(82) & 6929(4) & 3368(3) & 4073(4) & 35(2) \\ C(84) & 6187(5) & 2245(3) & 3395(5) & 36(2) \\ C(84) & 6187(5) & 2245(3) & 3395(5) & 36(2) \\ C(86) & 4829(5) & 2460(3) & 2437(5) & 40(2) \\ C(87) & 4677(5) & 3163(4) & 1960(5) & 4622 \\ C(89) & 6437(5) & 2572(3) & 2882(6) & 442(2) \\ C(89) & 6437(5) & 2572(3) & 2880(4) & 33(2) \\ C(90) & 6758(4) & 3178(3) & 2901(5) & 342(2) \\ C(90) & 6758(4) & 376(3) & 2226(3) & 4463(6) & 57(3) \\ C(90) & 6758(4) & 277(3) & 2282(5) & 44(2) \\ C(90) & 6758(4) & 277(3) & 2282(5) & 44(2) \\ C(102)$	C(52)	3003(4) 3917(5)	2200(3) 2220(3)	9034(5)	$\frac{32(2)}{40(2)}$
$\begin{array}{cccc} C(54) & 4876(5) & 2774(3) & 1006(14) & 33(2) \\ C(55) & 3747(5) & 2651(3) & 7268(4) & 36(2) \\ C(55) & 4307(5) & 2415(3) & 7007(4) & 33(2) \\ C(57) & 4201(5) & 2024(3) & 6728(5) & 4422 \\ C(58) & 4733(6) & 1823(3) & 6470(5) & 43(2) \\ C(59) & 5376(6) & 1986(3) & 6509(5) & 44(2) \\ C(60) & 5468(5) & 2371(3) & 6789(5) & 33(2) \\ C(61) & 4955(5) & 2591(3) & 7042(4) & 33(2) \\ C(62) & 4892(5) & 1763(3) & 9040(5) & 34(2) \\ C(63) & 5629(5) & 1736(3) & 9040(5) & 34(2) \\ C(64) & 6140(4) & 1647(3) & 9475(5) & 33(2) \\ C(65) & 6811(5) & 1648(3) & 9355(5) & 37(2) \\ C(66) & 7020(5) & 1782(3) & 8272(5) & 37(2) \\ C(66) & 690(5) & 1782(3) & 8277(5) & 39(2) \\ C(66) & 5822(4) & 1803(3) & 8304(4) & 30(2) \\ C(69) & 4744(5) & 3892(3) & 8277(5) & 39(2) \\ C(70) & 5020(5) & 3801(3) & 7638(4) & 33(2) \\ C(71) & 4661(5) & 378(3) & 7005(5) & 42(2) \\ C(72) & 4936(5) & 3796(3) & 64330(5) & 44(2) \\ C(73) & 5593(5) & 3629(3) & 6433(4) & 33(2) \\ C(74) & 5958(5) & 3561(3) & 7081(4) & 33(2) \\ C(76) & 5966(4) & 3441(3) & 7656(4) & 32(2) \\ C(77) & 5677(5) & 3753(3) & 5233(4) & 29(2) \\ C(77) & 5677(5) & 3753(3) & 5233(4) & 32(2) \\ C(78) & 6010(5) & 3686(3) & 4660(4) & 35(2) \\ C(79) & 6569(5) & 3417(3) & 4682(4) & 32(2) \\ C(78) & 607(5) & 2204(3) & 3076(5) & 43(2) \\ C(80) & 6779(4) & 3207(3) & 5237(4) & 31(2) \\ C(81) & 6457(5) & 2264(3) & 3762(5) & 40(2) \\ C(81) & 6457(5) & 2264(3) & 3762(5) & 40(2) \\ C(81) & 6457(5) & 2264(3) & 3762(5) & 40(2) \\ C(83) & 6683(5) & 2264(3) & 3762(5) & 40(2) \\ C(84) & 6187(5) & 2264(3) & 3762(5) & 40(2) \\ C(85) & 4970(5) & 2204(3) & 3376(5) & 33(2) \\ C(86) & 4829(5) & 2460(3) & 2437(5) & 40(2) \\ C(87) & 6758(4) & 3178(3) & 2901(5) & 38(2) \\ C(90) & 6758(4) & 3178(3) & 2901(5) & 38(2) \\ C(90) & 6758(4) & 3178(3) & 2901(5) & 38(2) \\ C(90) & 6758(4) & 3178(3) & 2901(5) & 38(2) \\ C(90) & 6758(4) & 3178(3) & 2282(5) & 44(2) \\ C(90) & 6758(4) & 3762(3) & 2286(6) & 57(3) \\ C(90) & 6758(4) & 3762(3) & 2286(3) & 3076(5) & 36(2) \\ C(90) & 6758(4) & 2572(3) & 2580(4) & 332(2) \\ C(90) & 6758(4) & 2572(3) & 2580(4) & 332(2) \\ C($	C(52)	4920(5)	2220(3) 2294(3)	9880(4)	$\frac{40(2)}{34(2)}$
$\begin{array}{ccccc} C(55) & 3747(5) & 2651(3) & 7268(4) & 36(2) \\ C(56) & 4307(5) & 2415(3) & 7007(4) & 33(2) \\ C(57) & 4201(5) & 2024(3) & 6728(5) & 42(2) \\ C(58) & 4733(6) & 1823(3) & 6470(5) & 44(2) \\ C(60) & 5468(5) & 2371(3) & 6789(5) & 35(2) \\ C(61) & 4955(5) & 2591(3) & 7042(4) & 33(2) \\ C(61) & 4955(5) & 2591(3) & 7042(4) & 33(2) \\ C(63) & 5629(5) & 1736(3) & 9938(4) & 30(2) \\ C(64) & 6140(4) & 1647(3) & 9475(5) & 33(2) \\ C(65) & 6811(5) & 1648(3) & 9355(5) & 37(2) \\ C(66) & 7020(5) & 1712(3) & 8752(5) & 37(2) \\ C(66) & 7020(5) & 1712(3) & 8752(5) & 37(2) \\ C(68) & 5822(4) & 1803(3) & 8304(4) & 30(2) \\ C(70) & 5020(5) & 3801(3) & 7638(4) & 33(2) \\ C(71) & 4661(5) & 3878(3) & 7005(5) & 44(2) \\ C(73) & 5593(5) & 3629(3) & 64330(5) & 44(2) \\ C(73) & 5593(5) & 3629(3) & 64330(5) & 44(2) \\ C(73) & 5593(5) & 3629(3) & 6453(4) & 33(2) \\ C(74) & 5958(5) & 3561(3) & 7081(4) & 33(2) \\ C(74) & 5958(5) & 3561(3) & 7081(4) & 33(2) \\ C(74) & 5958(5) & 3561(3) & 7081(4) & 33(2) \\ C(75) & 5669(4) & 3641(3) & 7656(4) & 32(2) \\ C(76) & 5906(4) & 3549(3) & 5833(4) & 29(2) \\ C(77) & 5677(5) & 3753(3) & 5233(4) & 34(2) \\ C(78) & 6010(5) & 3868(3) & 4660(4) & 35(2) \\ C(79) & 6569(5) & 3417(3) & 4882(4) & 32(2) \\ C(78) & 6618(5) & 2246(3) & 3762(5) & 40(2) \\ C(81) & 6457(5) & 3267(3) & 5837(4) & 31(2) \\ C(82) & 6929(4) & 3668(3) & 4073(4) & 35(2) \\ C(78) & 663(5) & 246(3) & 3762(5) & 40(2) \\ C(84) & 6187(5) & 3267(3) & 2323(4) & 34(2) \\ C(85) & 4970(5) & 2204(3) & 3376(5) & 36(2) \\ C(86) & 4829(5) & 2404(3) & 2337(5) & 40(2) \\ C(87) & 4677(5) & 3163(4) & 1960(5) & 452(2) \\ C(89) & 6437(5) & 3572(3) & 2582(5) & 44(2) \\ C(89) & 6437(5) & 3572(3) & 2582(5) & 44(2) \\ C(89) & 6437(5) & 2572(3) & 2582(5) & 44(2) \\ C(90) & 6758(4) & 3178(3) & 2901(3) & 3376(5) & 36(2) \\ C(91) & 5452(5) & 2168(3) & 403(2) & 20(2) \\ C(94) & 3720(5) & 2226(3) & 4863(5) & 36(2) \\ C(94) & 3720(5) & 2568(3) & 5018(4) & 33(2) \\ C(95) & 3807(5) & 2572(3) & 2282(5) & 41(2) \\ C(102) & 3274(5) & 3627(3) & 2222(5) & 41(2) \\ C(102) & 3274(5) & 357(3) & 3222(5) & 41(2) \\ $	C(54)	4876(5)	2764(3)	10060(4)	33(2)
$\begin{array}{cccccc} C(56) & 4307(5) & 2415(3) & 7007(4) & 33(2) \\ C(57) & 4201(5) & 2024(3) & 6728(5) & 44(2) \\ C(58) & 4733(6) & 1823(3) & 6470(5) & 43(2) \\ C(59) & 5376(6) & 1986(3) & 6509(5) & 44(2) \\ C(60) & 5468(5) & 2371(3) & 6789(5) & 35(2) \\ C(61) & 4955(5) & 2591(3) & 7042(4) & 33(2) \\ C(62) & 4892(5) & 1736(3) & 9040(5) & 34(2) \\ C(63) & 5629(5) & 1736(3) & 9040(5) & 34(2) \\ C(64) & 6140(4) & 1647(3) & 9475(5) & 33(2) \\ C(65) & 6811(5) & 1648(3) & 9355(5) & 37(2) \\ C(66) & 7020(5) & 1712(3) & 8752(5) & 34(2) \\ C(66) & 7020(5) & 1712(3) & 8752(5) & 34(2) \\ C(66) & 5822(4) & 1803(3) & 8304(4) & 30(2) \\ C(68) & 5822(4) & 1803(3) & 8304(4) & 30(2) \\ C(70) & 5020(5) & 3801(3) & 7638(4) & 33(2) \\ C(70) & 5020(5) & 3801(3) & 7638(4) & 33(2) \\ C(71) & 4661(5) & 3878(3) & 7005(5) & 42(2) \\ C(72) & 4936(5) & 3796(3) & 6430(5) & 44(2) \\ C(73) & 5593(5) & 3629(3) & 6433(5) & 44(2) \\ C(73) & 5593(5) & 3629(3) & 6433(4) & 33(2) \\ C(74) & 5988(5) & 3561(3) & 7081(4) & 33(2) \\ C(75) & 5669(4) & 3641(3) & 7656(4) & 32(2) \\ C(76) & 5906(4) & 3549(3) & 5833(4) & 29(2) \\ C(77) & 5677(5) & 3753(3) & 5233(4) & 34(2) \\ C(78) & 6010(5) & 3686(3) & 4660(4) & 35(2) \\ C(79) & 6509(5) & 3417(3) & 5837(4) & 31(2) \\ C(78) & 6010(5) & 3686(3) & 4660(4) & 35(2) \\ C(79) & 6509(5) & 3417(3) & 5277(4) & 31(2) \\ C(81) & 6437(5) & 3267(3) & 5337(4) & 31(2) \\ C(81) & 6437(5) & 3267(3) & 5337(4) & 31(2) \\ C(81) & 6437(5) & 3267(3) & 5337(4) & 31(2) \\ C(81) & 6437(5) & 3267(3) & 3395(5) & 36(2) \\ C(83) & 6633(5) & 2460(3) & 2437(5) & 36(2) \\ C(84) & 6187(5) & 2367(3) & 3395(5) & 36(2) \\ C(85) & 4970(5) & 2264(3) & 376(5) & 36(2) \\ C(86) & 4829(5) & 2460(3) & 2437(5) & 36(2) \\ C(81) & 6437(5) & 3572(3) & 2582(5) & 44(2) \\ C(89) & 6437(5) & 3572(3) & 2582(5) & 44(2) \\ C(90) & 6788(4) & 178(3) & 209(15) & 342(2) \\ C(91) & 328(5) & 226(3) & 4633(5) & 36(2) \\ C(92) & 4875(5) & 2307(3) & 4534(5) & 40(2) \\ C(93) & 4259(5) & 2904(3) & 4534(5) & 30(2) \\ C(94) & 3720(5) & 2226(3) & 4663(5) & 36(2) \\ C(95) & 3807(5) & 2572(3) & 2582(5) & 41(2) \\ C(102) & 3274$	C(55)	3747(5)	2651(3)	7268(4)	36(2)
$\begin{array}{ccccc} C(57) & 4201(5) & 2024(3) & 6728(5) & 42(2) \\ C(58) & 4733(6) & 1823(3) & 6470(5) & 44(2) \\ C(59) & 5376(6) & 1986(3) & 6509(5) & 44(2) \\ C(60) & 5468(5) & 2371(3) & 6789(5) & 35(2) \\ C(61) & 4955(5) & 2591(3) & 7042(4) & 33(2) \\ C(62) & 4892(5) & 1763(3) & 9040(5) & 34(2) \\ C(63) & 5629(5) & 1736(3) & 8938(4) & 30(2) \\ C(64) & (6140(4) & 1647(3) & 9475(5) & 33(2) \\ C(65) & 6811(5) & 1648(3) & 9355(5) & 37(2) \\ C(66) & 7020(5) & 1712(3) & 8752(5) & 34(2) \\ C(67) & 6499(5) & 1782(3) & 8227(5) & 37(2) \\ C(68) & 5822(4) & 1803(3) & 8304(4) & 30(2) \\ C(70) & 5020(5) & 3801(3) & 7638(4) & 33(2) \\ C(71) & 4661(5) & 3878(3) & 7005(5) & 42(2) \\ C(73) & 5593(5) & 3629(3) & 6433(4) & 33(2) \\ C(74) & 5958(5) & 3564(3) & 708(4) & 33(2) \\ C(75) & 5669(4) & 3641(3) & 7656(4) & 32(2) \\ C(76) & 5906(4) & 3549(3) & 5833(4) & 29(2) \\ C(76) & 5906(4) & 3549(3) & 5833(4) & 29(2) \\ C(77) & 5677(5) & 3753(3) & 5233(4) & 34(2) \\ C(78) & 6010(5) & 3686(3) & 4660(4) & 35(2) \\ C(79) & 6569(5) & 3417(3) & 5833(4) & 29(2) \\ C(79) & 6569(5) & 3417(3) & 5833(4) & 29(2) \\ C(79) & 6569(5) & 3417(3) & 5833(4) & 29(2) \\ C(78) & 6010(5) & 3686(3) & 4660(4) & 35(2) \\ C(79) & 6569(5) & 3417(3) & 5833(4) & 29(2) \\ C(78) & 6010(5) & 3686(3) & 4660(4) & 35(2) \\ C(79) & 6569(5) & 3417(3) & 5833(4) & 29(2) \\ C(78) & 6010(5) & 3686(3) & 4660(4) & 35(2) \\ C(80) & 6779(4) & 3207(3) & 5277(4) & 31(2) \\ C(81) & 6457(5) & 3267(3) & 5837(4) & 31(2) \\ C(81) & 6457(5) & 3267(3) & 5837(4) & 31(2) \\ C(81) & 6457(5) & 3267(3) & 5837(4) & 31(2) \\ C(81) & 6457(5) & 3267(3) & 5837(4) & 31(2) \\ C(82) & 6929(4) & 3368(3) & 4073(4) & 35(2) \\ C(84) & 6187(5) & 2204(3) & 3395(5) & 36(2) \\ C(84) & 6187(5) & 2204(3) & 3395(5) & 36(2) \\ C(84) & 6437(5) & 327(3) & 2582(5) & 44(2) \\ C(89) & 6437(5) & 2263(3) & 4534(5) & 36(2) \\ C(90) & 6758(4) & 3780(3) & 2552(3) & 366(3) \\ C(90) & 372(5) & 2263(3) & 376(5) & 36(2) \\ C(91) & 372(5) & 2263(3) & 376(5) & 36(2) \\ C(99) & 3865(4) & 2590(4) & 5586(6) & 55(3) \\ C(99) & 3865(4) & 2590(3) & 2660(5) & 36(2) \\ C(100) & 372(4)$	C(56)	4307(5)	2415(3)	7007(4)	33(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(57)	4201(5)	2024(3)	6728(5)	42(2)
C(59) 5376(6) 198(3) 6509(5) 44(2) C(60) 5468(5) 2371(3) 6789(5) 35(2) C(61) 4955(5) 2591(3) 7042(4) 33(2) C(62) 4892(5) 1736(3) 9940(5) 34(2) C(63) 5629(5) 1736(3) 8938(4) 30(2) C(64) 6140(4) 1647(3) 9475(5) 33(2) C(66) 7020(5) 1712(3) 8752(5) 37(2) C(66) 7020(5) 3891(3) 7638(4) 30(2) C(70) 5020(5) 3801(3) 7638(4) 33(2) C(71) 4661(5) 3878(3) 7005(5) 42(2) C(73) 5593(5) 3629(3) 6453(4) 33(2) C(74) 5558(5) 3561(3) 7081(4) 32(2) C(75) 5669(4) 3649(3) 5833(4) 29(2) C(74) 5593(5) 3629(3) 6453(4) 32(2) C(75) 5669(4) 3649(3)	C(58)	4733(6)	1823(3)	6470(5)	43(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(59)	5376(6)	1986(3)	6509(5)	44(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(60)	5468(5)	2371(3)	6789(5)	35(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(61)	4955(5)	2591(3)	7042(4)	33(2)
C(63) 5629(5) 1736(3) 8938(4) 30(2) C(64) 6140(4) 1647(3) 9475(5) 33(2) C(65) 6811(5) 1648(3) 9355(5) 37(2) C(66) 7020(5) 1712(3) 8752(5) 34(2) C(67) 6499(5) 1782(3) 8227(5) 37(2) C(68) 5822(4) 1803(3) 8304(4) 30(2) C(70) 5020(5) 3801(3) 7638(4) 33(2) C(71) 4661(5) 3878(3) 7005(5) 42(2) C(72) 4936(5) 3796(3) 6430(4) 33(2) C(74) 5958(5) 3561(3) 7081(4) 33(2) C(74) 5958(5) 3561(3) 7081(4) 33(2) C(76) 5906(4) 3549(3) 5833(4) 29(2) C(77) 5677(5) 3753(3) 5233(4) 34(2) C(78) 6010(5) 3686(3) 4660(4) 35(2) C(79) 6569(5) 3417(3)	C(62)	4892(5)	1763(3)	9040(5)	34(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(63)	5629(5)	1736(3)	8938(4)	30(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(64)	6140(4)	1647(3)	9475(5)	33(2)
$\begin{array}{ccccc} C(66) & 7020(5) & 1712(3) & 8752(5) & 342(2) \\ C(67) & 6499(5) & 1782(3) & 8227(5) & 37(2) \\ C(69) & 4744(5) & 3892(3) & 8277(5) & 39(2) \\ C(70) & 5020(5) & 3801(3) & 7638(4) & 33(2) \\ C(71) & 4661(5) & 3878(3) & 7005(5) & 42(2) \\ C(72) & 4936(5) & 3796(3) & 6430(5) & 444(2) \\ C(73) & 5593(5) & 3629(3) & 6433(4) & 33(2) \\ C(74) & 5958(5) & 3561(3) & 7081(4) & 33(2) \\ C(75) & 5669(4) & 3641(3) & 7656(4) & 32(2) \\ C(76) & 5906(4) & 3549(3) & 5833(4) & 29(2) \\ C(77) & 5677(5) & 3753(3) & 5233(4) & 29(2) \\ C(78) & 6010(5) & 3686(3) & 4660(4) & 35(2) \\ C(79) & 6569(5) & 3417(3) & 4682(4) & 32(2) \\ C(78) & 6010(5) & 3686(3) & 4660(4) & 35(2) \\ C(79) & 6569(5) & 3417(3) & 4682(4) & 32(2) \\ C(80) & 6779(4) & 3207(3) & 5277(4) & 31(2) \\ C(81) & 6457(5) & 3267(3) & 5837(4) & 31(2) \\ C(82) & 6929(4) & 3368(3) & 4073(4) & 35(2) \\ C(83) & 6683(5) & 2646(3) & 3762(5) & 40(2) \\ C(84) & 6187(5) & 2204(3) & 3076(5) & 38(2) \\ C(85) & 4970(5) & 2204(3) & 3076(5) & 38(2) \\ C(86) & 4829(5) & 2460(3) & 2437(5) & 40(2) \\ C(88) & 5411(5) & 3296(3) & 1927(4) & 42(2) \\ C(89) & 6437(5) & 3572(3) & 2582(5) & 44(2) \\ C(89) & 6437(5) & 3572(3) & 2582(5) & 44(2) \\ C(90) & 6758(4) & 3178(3) & 2901(5) & 38(2) \\ C(91) & 5452(5) & 2168(3) & 4232(5) & 36(2) \\ C(92) & 4875(5) & 2307(3) & 4593(4) & 32(2) \\ C(94) & 3720(5) & 2226(3) & 4863(5) & 38(2) \\ C(94) & 3720(5) & 2226(3) & 4863(5) & 38(2) \\ C(95) & 3807(5) & 2572(3) & 2580(4) & 33(2) \\ C(94) & 3720(5) & 2226(3) & 4863(5) & 38(2) \\ C(94) & 3720(5) & 2226(3) & 4863(5) & 38(2) \\ C(95) & 3807(5) & 2572(3) & 2580(4) & 33(2) \\ C(94) & 3720(5) & 2226(3) & 4863(5) & 38(2) \\ C(95) & 3807(5) & 2572(3) & 2580(4) & 33(2) \\ C(96) & 4426(4) & 2784(3) & 5355(4) & 32(2) \\ C(96) & 4426(4) & 2784(3) & 5355(4) & 32(2) \\ C(97) & 4950(5) & 2658(3) & 5018(4) & 32(2) \\ C(99) & 3865(4) & 2506(4) & 5568(6) & 55(3) \\ C(99) & 3865(4) & 2890(3) & 2660(5) & 36(2) \\ C(101) & 3388(5) & 3627(3) & 2822(5) & 41(2) \\ C(102) & 374(5) & 3927(3) & 3222(5) & 41(2) \\ C(102) & 374(5) & 3929(3) & 3916(5) & 41(2) \\ C(102) &$	C(65)	6811(5)	1648(3)	9355(5)	37(2)
$\begin{array}{ccccc} C(6) & 6499(5) & 1782(3) & 8227(5) & 37(2) \\ C(69) & 4744(5) & 3892(3) & 8277(5) & 39(2) \\ C(70) & 5020(5) & 3801(3) & 7638(4) & 33(2) \\ C(71) & 4661(5) & 3878(3) & 7005(5) & 42(2) \\ C(72) & 4936(5) & 3796(3) & 6430(5) & 44(2) \\ C(73) & 5593(5) & 3629(3) & 6453(4) & 33(2) \\ C(74) & 5958(5) & 3561(3) & 7081(4) & 33(2) \\ C(75) & 5669(4) & 3549(3) & 5833(4) & 29(2) \\ C(76) & 5906(4) & 3549(3) & 5833(4) & 29(2) \\ C(77) & 5677(5) & 3753(3) & 5233(4) & 34(2) \\ C(78) & 6010(5) & 3686(3) & 4660(4) & 35(2) \\ C(79) & 6559(5) & 3417(3) & 4682(4) & 32(2) \\ C(80) & 6779(4) & 3207(3) & 5277(4) & 31(2) \\ C(81) & 6457(5) & 2267(3) & 5837(4) & 31(2) \\ C(82) & 6929(4) & 3368(3) & 4073(4) & 35(2) \\ C(83) & 6683(5) & 2646(3) & 3762(5) & 40(2) \\ C(84) & 6187(5) & 2204(3) & 3076(5) & 38(2) \\ C(85) & 4970(5) & 2204(3) & 3076(5) & 38(2) \\ C(86) & 4829(5) & 2460(3) & 2437(5) & 40(2) \\ C(87) & 4677(5) & 3163(4) & 1960(5) & 45(2) \\ C(88) & 5411(5) & 3296(3) & 1227(4) & 42(2) \\ C(89) & 6437(5) & 5572(3) & 2582(5) & 44(2) \\ C(90) & 6758(4) & 3178(3) & 2901(5) & 38(2) \\ C(91) & 5452(5) & 2106(3) & 4232(5) & 36(2) \\ C(92) & 4875(5) & 2307(3) & 4593(4) & 32(2) \\ C(93) & 4259(5) & 2094(3) & 4534(5) & 40(2) \\ C(94) & 3720(5) & 2226(3) & 4863(5) & 38(2) \\ C(95) & 3807(5) & 2572(3) & 2580(4) & 33(2) \\ C(96) & 4426(4) & 2784(3) & 3325(5) & 36(2) \\ C(96) & 4426(4) & 2784(3) & 3235(5) & 36(2) \\ C(96) & 4426(4) & 2784(3) & 3235(5) & 36(2) \\ C(96) & 4426(4) & 2784(3) & 3535(4) & 32(2) \\ C(97) & 4950(5) & 2658(3) & 5018(4) & 33(2) \\ C(96) & 3807(5) & 2572(3) & 5280(4) & 33(2) \\ C(96) & 348(5) & 2572(3) & 5280(4) & 33(2) \\ C(96) & 348(5) & 2572(3) & 5280(4) & 33(2) \\ C(96) & 348(5) & 2572(3) & 5280(4) & 33(2) \\ C(96) & 348(5) & 3627(3) & 2822(5) & 41(2) \\ C(97) & 4950(5) & 2658(3) & 5018(4) & 33(2) \\ C(98) & 2684(5) & 2506(4) & 5568(6) & 55(3) \\ C(99) & 3865(4) & 2890(3) & 2660(5) & 36(2) \\ C(100) & 3722(4) & 3268(3) & 3076(5) & 35(2) \\ C(101) & 3388(5) & 3627(3) & 2822(5) & 41(2) \\ C(102) & 3274(5) & 3957(3) & 3222(5) & 41(2) \\ C(102) & 3274$	C(66)	7020(5)	1712(3)	8752(5)	34(2)
$\begin{array}{cccc} C(66) & 5622(4) & 1603(5) & 6504(4) & 30(2) \\ C(70) & 5020(5) & 3801(3) & 7638(4) & 33(2) \\ C(71) & 4661(5) & 3878(3) & 7005(5) & 42(2) \\ C(72) & 4936(5) & 3796(3) & 6430(5) & 44(2) \\ C(73) & 5593(5) & 3629(3) & 6453(4) & 33(2) \\ C(74) & 5958(5) & 3561(3) & 7081(4) & 33(2) \\ C(75) & 5669(4) & 3641(3) & 7656(4) & 32(2) \\ C(76) & 5906(4) & 3549(3) & 5833(4) & 29(2) \\ C(77) & 5677(5) & 3753(3) & 5233(4) & 34(2) \\ C(78) & 6010(5) & 3686(3) & 4660(4) & 35(2) \\ C(79) & 6569(5) & 3417(3) & 4882(4) & 32(2) \\ C(80) & 6779(4) & 3207(3) & 5277(4) & 31(2) \\ C(81) & 6457(5) & 3267(3) & 5837(4) & 31(2) \\ C(82) & 6929(4) & 3368(3) & 4073(4) & 35(2) \\ C(83) & 6683(5) & 2646(3) & 3765(5) & 40(2) \\ C(84) & 6187(5) & 2345(3) & 3395(5) & 366(2) \\ C(85) & 4970(5) & 2204(3) & 3076(5) & 38(2) \\ C(86) & 4829(5) & 2460(3) & 2437(5) & 40(2) \\ C(87) & 4677(5) & 3163(4) & 1960(5) & 45(2) \\ C(88) & 5411(5) & 3296(3) & 1927(4) & 42(2) \\ C(89) & 6437(5) & 3572(3) & 2582(5) & 44(2) \\ C(90) & 6788(4) & 3178(3) & 2901(5) & 38(2) \\ C(91) & 5452(5) & 2108(3) & 4237(5) & 40(2) \\ C(92) & 4875(5) & 2307(3) & 4534(5) & 302(5) \\ C(93) & 4259(5) & 2094(3) & 4534(5) & 302(2) \\ C(93) & 4259(5) & 2094(3) & 4534(5) & 40(2) \\ C(94) & 3720(5) & 2226(3) & 4636(5) & 38(2) \\ C(95) & 3807(5) & 2572(3) & 2582(5) & 44(2) \\ C(90) & 6788(4) & 3178(3) & 2901(5) & 38(2) \\ C(93) & 4259(5) & 2094(3) & 4534(5) & 40(2) \\ C(94) & 3720(5) & 2257(3) & 5280(4) & 33(2) \\ C(95) & 3807(5) & 2572(3) & 5280(4) & 33(2) \\ C(96) & 4426(4) & 2784(3) & 5355(4) & 32(2) \\ C(97) & 4950(5) & 2658(3) & 5018(4) & 33(2) \\ C(96) & 4426(4) & 2784(3) & 5355(4) & 32(2) \\ C(97) & 4950(5) & 2658(3) & 5018(4) & 33(2) \\ C(98) & 2684(5) & 2506(4) & 5568(6) & 55(3) \\ C(100) & 3722(4) & 3268(3) & 3076(5) & 35(2) \\ C(101) & 3388(5) & 3627(3) & 2822(5) & 41(2) \\ C(102) & 3274(5) & 3957(3) & 3222(5) & 45(2) \\ C(103) & 3471(5) & 3929(3) & 3916(5) & 41(2) \\ C(102) & 3274(5) & 3957(3) & 3222(5) & 41(2) \\ C(102) & 3274(5) & 3957(3) & 3222(5) & 41(2) \\ C(103) & 3471(5) & 3929(3) & 3916(5) & 41(2) \\ C($	C(67)	6499(5)	1/82(3)	8227(5)	37(2)
$\begin{array}{cccccc} C(50) & +144(5) & 3692(5) & 3672(7(5) & 3592(5) \\ 5020(5) & 3801(3) & 7638(4) & 33(2) \\ C(71) & 4661(5) & 3878(3) & 7005(5) & 42(2) \\ C(72) & 4936(5) & 3796(3) & 6430(5) & 44(2) \\ C(73) & 5593(5) & 3629(3) & 6453(4) & 33(2) \\ C(74) & 5958(5) & 3561(3) & 7081(4) & 33(2) \\ C(75) & 5669(4) & 3641(3) & 7656(4) & 32(2) \\ C(76) & 5906(4) & 3549(3) & 5833(4) & 29(2) \\ C(77) & 5677(5) & 3753(3) & 5233(4) & 34(2) \\ C(78) & 6010(5) & 3686(3) & 4660(4) & 35(2) \\ C(79) & 6569(5) & 3417(3) & 4682(4) & 32(2) \\ C(79) & 6569(5) & 3417(3) & 4682(4) & 32(2) \\ C(80) & 6779(4) & 3207(3) & 5277(4) & 31(2) \\ C(81) & 6457(5) & 2367(3) & 5837(4) & 31(2) \\ C(82) & 6929(4) & 3368(3) & 4073(4) & 35(2) \\ C(83) & 6683(5) & 2646(3) & 3762(5) & 40(2) \\ C(84) & 6187(5) & 2345(3) & 3395(5) & 36(2) \\ C(85) & 4970(5) & 2204(3) & 3076(5) & 38(2) \\ C(86) & 4829(5) & 2460(3) & 2437(5) & 40(2) \\ C(87) & 4677(5) & 3163(4) & 1960(5) & 45(2) \\ C(88) & 5411(5) & 3296(3) & 1927(4) & 42(2) \\ C(89) & 6437(5) & 3572(3) & 2582(5) & 44(2) \\ C(90) & 6758(4) & 3178(3) & 2901(5) & 38(2) \\ C(91) & 5452(5) & 2094(3) & 4534(5) & 302(2) \\ C(93) & 4259(5) & 2094(3) & 4534(5) & 302(2) \\ C(93) & 4259(5) & 2094(3) & 4534(5) & 302(2) \\ C(94) & 3720(5) & 2226(3) & 4863(5) & 38(2) \\ C(94) & 3720(5) & 2256(3) & 5018(4) & 33(2) \\ C(96) & 4426(4) & 2784(3) & 5355(4) & 32(2) \\ C(97) & 4950(5) & 2568(3) & 5018(4) & 33(2) \\ C(96) & 4426(4) & 2784(3) & 5355(4) & 32(2) \\ C(97) & 4950(5) & 2568(3) & 5018(4) & 33(2) \\ C(98) & 2684(5) & 2506(4) & 5568(6) & 55(3) \\ C(100) & 3722(4) & 3268(3) & 3076(5) & 35(2) \\ C(101) & 3388(5) & 3627(3) & 2822(5) & 41(2) \\ C(102) & 3274(5) & 3957(3) & 3222(5) & 45(2) \\ C(103) & 3471(5) & 3929(3) & 3916(5) & 41(2) \\ C(102) & 3274(5) & 3957(3) & 3222(5) & 45(2) \\ C(103) & 3471(5) & 3929(3) & 3916(5) & 41(2) \\ C(102) & 3274(5) & 3957(3) & 3222(5) & 45(2) \\ C(103) & 3471(5) & 3929(3) & 3916(5) & 41(2) \\ C(102) & 3274(5) & 3957(3) & 3222(5) & 45(2) \\ C(103) & 3471(5) & 3929(3) & 3916(5) & 41(2) \\ C(102) & 3274(5) & 3957(3) & 3226(5) & 3016(5) $	C(68)	3822(4) 4744(5)	1803(3) 2802(2)	8304(4) 8277(5)	30(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(09)	4744(5) 5020(5)	3892(3) 3801(3)	7638(4)	39(2) 33(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(70)	4661(5)	3878(3)	7005(5)	42(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(72)	4936(5)	3796(3)	6430(5)	44(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(73)	5593(5)	3629(3)	6453(4)	33(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(74)	5958(5)	3561(3)	7081(4)	33(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(75)	5669(4)	3641(3)	7656(4)	32(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(76)	5906(4)	3549(3)	5833(4)	29(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(77)	5677(5)	3753(3)	5233(4)	34(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(78)	6010(5)	3686(3)	4660(4)	35(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(79)	6569(5)	3417(3)	4682(4)	32(2)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	C(80)	6779(4)	3207(3)	5277(4)	31(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(81)	6457(5)	3267(3)	5837(4)	31(2)
$\begin{array}{c} C(83) & 6683(5) & 2646(3) & 3762(5) & 40(2) \\ C(84) & 6187(5) & 2345(3) & 3395(5) & 36(2) \\ C(85) & 4970(5) & 2204(3) & 3076(5) & 38(2) \\ C(86) & 4829(5) & 2460(3) & 2437(5) & 40(2) \\ C(87) & 4677(5) & 3163(4) & 1960(5) & 45(2) \\ C(88) & 5411(5) & 3296(3) & 1927(4) & 42(2) \\ C(89) & 6437(5) & 3572(3) & 2582(5) & 44(2) \\ C(90) & 6758(4) & 3178(3) & 2901(5) & 38(2) \\ C(91) & 5452(5) & 2168(3) & 4232(5) & 36(2) \\ C(92) & 4875(5) & 2307(3) & 4593(4) & 32(2) \\ C(93) & 4259(5) & 2094(3) & 4534(5) & 40(2) \\ C(94) & 3720(5) & 2226(3) & 4863(5) & 38(2) \\ C(95) & 3807(5) & 2572(3) & 5280(4) & 33(2) \\ C(96) & 4426(4) & 2784(3) & 5355(4) & 32(2) \\ C(97) & 4950(5) & 2658(3) & 5018(4) & 33(2) \\ C(98) & 2684(5) & 2506(4) & 5568(6) & 55(3) \\ C(99) & 3865(4) & 2890(3) & 2660(5) & 36(2) \\ C(100) & 3722(4) & 3268(3) & 3076(5) & 35(2) \\ C(101) & 3388(5) & 3627(3) & 2822(5) & 41(2) \\ C(102) & 3274(5) & 3929(3) & 3916(5) & 41(2) \\ \end{array}$	C(82)	6929(4)	3368(3)	4073(4)	35(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(83)	6683(5)	2646(3)	3762(5)	40(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(84)	0107(5) 4070(5)	2343(3) 2204(2)	3395(5) 2076(5)	30(2) 28(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(86)	4970(3)	2204(3) 2460(3)	2/37(5)	$\frac{30(2)}{40(2)}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(87)	4677(5)	2400(3) 3163(4)	1960(5)	40(2) 45(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(88)	5411(5)	3296(3)	1900(3) 1927(4)	43(2) 42(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(89)	6437(5)	3572(3)	2582(5)	44(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(90)	6758(4)	3178(3)	2901(5)	38(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(91)	5452(5)	2168(3)	4232(5)	36(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(92)	4875(5)	2307(3)	4593(4)	32(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(93)	4259(5)	2094(3)	4534(5)	40(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(94)	3720(5)	2226(3)	4863(5)	38(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(95)	3807(5)	2572(3)	5280(4)	33(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(96)	4426(4)	2784(3)	5355(4)	32(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(97)	4950(5)	2658(3)	5018(4)	33(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(98)	2684(5)	2506(4)	5568(6)	55(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(99)	3805(4) 2722(4)	2890(3)	2000(5) 2076(5)	36(Z) 25(2)
C(101) $3500(5)$ $5027(5)$ $2022(5)$ $41(2)$ $C(102)$ $3274(5)$ $3957(3)$ $3222(5)$ $45(2)$ $C(103)$ $3471(5)$ $3929(3)$ $3916(5)$ $41(2)$	C(100) C(101)	3122(4) 3288(5)	3627(3)	3070(3) 2822(5)	33(2) 41(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C(101)	3274(5)	3027(3) 3957(3)	3222(5)	41(2) 45(2)
	C(102)	3471(5)	3929(3)	3916(5)	41(2)

C(104)	3808(5)	3575(3)	4187(5)	36(2)
C(105)	3925(5)	3247(3)	3764(5)	34(2)
C(106)	3426(6)	4219(3)	4998(6)	54(3)
C(107)	5406(7)	4012(4)	2371(6)	62(3)
C(108)	5464(7)	4289(4)	3028(5)	43(3)
C(109)	4934(6)	4265(4)	3417(6)	44(3)
C(110)	4962(6)	4501(4)	3999(6)	47(3)
C(111)	5519(7)	4760(4)	4193(5)	52(2)
C(112)	6048(6)	4784(4)	3805(6)	48(3)
C(113)	6021(6)	4548(4)	3222(6)	48(3)
O(6A)	5526(7)	5051(4)	4775(6)	60(3)
C(114)	4945(10)	4989(9)	5175(12)	61(5)
C(208)	5490(20)	4206(11)	1707(11)	184(8)
C(209)	6170(20)	4310(12)	1655(12)	185(8)
C(210)	6335(15)	4482(11)	1066(16)	186(8)
C(211)	5828(18)	4550(11)	528(11)	185(8)
C(212)	5154(16)	4447(11)	581(12)	183(8)
C(212)	4985(17)	4275(11)	1170(16)	184(8)
O(6B)	6024(18)	4595(12)	-179(12)	186(8)
C(214)	6770(20)	4632(17)	-270(20)	179(9)
S(1)	1410(1)	3111(1)	6648(1)	49(1)
O(7)	1206(5)	3043(3)	5953(4)	78(3)
O(8)	902(4)	3296(3)	7005(4)	69(3)
O(9)	1795(4)	2769(2)	6987(4)	56(2)
C(115)	2035(5)	3526(4)	6648(6)	56(3)
F(5)	1797(4)	3850(2)	6287(4)	84(3)
F(6)	2607(3)	3405(2)	6422(4)	64(2)
F(7)	2232(4)	3663(3)	7275(4)	85(2)
S(2)	7987(1)	2023(1)	5399(1)	48(1)
O(10)	8450(4)	1696(3)	5640(5)	85(3)
O(11)	7755(6)	1985(4)	4722(4)	95(4)
O(12)	8203(6)	2434(4)	5594(7)	115(4)
C(116)	7236(6)	1950(4)	5794(6)	57(3)
F(8)	6750(4)	2208(3)	5613(4)	76(2)
F(9)	6989(5)	1583(3)	5692(7)	124(3)
F(10)	7382(5)	1970(4)	6447(5)	129(4)
S(3)	8374(2)	4113(1)	3333(2)	69(1)
O(13)	8367(5)	3713(3)	3573(6)	93(3)
O(14)	8877(6)	4364(4)	3708(6)	113(4)
O(15)	7730(7)	4348(4)	3254(6)	124(4)
C(117)	8635(12)	4066(6)	2555(10)	107(6)
F(11)	9248(7)	3936(6)	2594(9)	194(7)
F(12)	8653(8)	4448(4)	2229(6)	152(4)
F(13)	8190(6)	3845(4)	2137(8)	158(5)
- ()				-00(0)

Table S8. Bond lengths [Å] and angles [°] for [4 _{MFM} ·(Ag) ₃](OTf) ₃ .		Ag(3)-N(9) Ag(3)-N(10) Ag(3)-N(12) N(1)-C(3)	2.393(7) 2.495(7) 2.553(8) 1.464(11)
Ag(1)-N(3) Ag(1)-N(1) Ag(1)-N(2) Ag(1)-N(4) Ag(2)-N(7) Ag(2)-N(5) Ag(2)-N(6) Ag(2)-N(8) Ag(3)-N(11)	2.421(7) $2.439(7)$ $2.478(7)$ $2.493(7)$ $2.404(7)$ $2.405(7)$ $2.502(8)$ $2.516(7)$ $2.392(7)$	N(1)-C(9) $N(1)-C(2)$ $N(2)-C(4)$ $N(2)-C(5)$ $N(2)-C(17)$ $N(3)-C(7)$ $N(3)-C(25)$ $N(3)-C(25)$ $N(3)-C(6)$ $N(4)-C(33)$ $N(4)-C(1)$	$\begin{array}{c} 1.464(11)\\ 1.479(11)\\ 1.498(12)\\ 1.476(12)\\ 1.488(12)\\ 1.482(12)\\ 1.492(12)\\ 1.459(11)\\ 1.482(13)\\ 1.486(11)\\ 1.488(11)\\ 1.489(11)\\ \end{array}$

N(4)-C(8)	1.504(11)	C(12)-H(12)	0.9500
N(5)-C(47)	1.465(12)	C(13)-C(14)	1.405(16)
N(5)-C(54)	1.473(11)	C(14) - C(15)	1.372(15)
N(5)-C(46)	1.482(11)	C(14)-H(14)	0.9500
N(6) - C(49)	1.479(12)	C(15)-H(15)	0.9500
N(6) - C(69) N(6) - C(48)	1.483(12) 1.405(11)	C(16) - H(16R) C(16) - H(16R)	0.9800
N(0)-C(40) N(7)-C(51)	1.493(11) 1.445(11)	C(10) - H(10D) C(16) - H(16C)	0.9800
N(7)-C(51) N(7)-C(55)	1.445(11) 1.492(11)	C(10)-11(10C) C(17)-C(18)	1.481(15)
N(7)-C(50)	1.492(11) 1 495(12)	C(17) - E(10) C(17) - H(17A)	0.9900
N(8)-C(53)	1.471(11)	C(17) - H(17B)	0.9900
N(8)-C(62)	1.474(11)	C(18) - C(23)	1.383(15)
N(8)-C(52)	1.485(11)	C(18)-C(19)	1.384(15)
N(9)-C(82)	1.471(11)	C(19)-C(20)	1.385(18)
N(9)-C(90)	1.480(11)	C(19)-H(19)	0.9500
N(9)-C(83)	1.485(12)	C(20)-C(21)	1.38(2)
N(10)-C(85)	1.470(12)	C(20)-H(20)	0.9500
N(10)-C(91)	1.480(12)	C(21)-C(22)	1.395(17)
N(10)-C(84)	1.490(11)	C(22)-C(23)	1.402(15)
N(11) - C(86)	1.469(12)	C(22)-H(22)	0.9500
N(11) - C(87)	1.486(12)	C(23)-H(23)	0.9500
N(11)-C(99) N(12) C(99)	1.496(11) 1.462(12)	C(24) - H(24A)	0.9800
N(12)-C(80) N(12)-C(80)	1.402(12) 1.483(12)	C(24)-H(24B) C(24)-H(24C)	0.9800
N(12)-C(107)	1.403(12) 1.521(14)	C(25)-C(26)	1.504(14)
O(1)- $C(13)$	1.321(14) 1.360(14)	C(25) - H(25A)	0.9900
O(1)- $C(16)$	1.394(19)	C(25) - H(25B)	0.9900
O(2)-C(21)	1.366(17)	C(26)-C(27)	1.372(14)
O(2)-C(24)	1.423(19)	C(26)-C(31)	1.384(16)
O(3)-C(29)	1.400(14)	C(27)-C(28)	1.396(17)
O(3)-C(32)	1.421(19)	C(27)-H(27)	0.9500
O(4)-C(95)	1.367(11)	C(28)-C(29)	1.337(19)
O(4)-C(98)	1.419(12)	C(28)-H(28)	0.9500
O(5)-C(103)	1.379(12)	C(29)-C(30)	1.389(17)
O(5) - C(106) E(1) $C(58)$	1.426(13)	C(30)-C(31)	1.402(15)
F(1)-C(50) F(2)-C(60)	1.303(11) 1.351(11)	C(30) - H(30) C(31) - H(31)	0.9500
F(3)-C(65)	1.331(11) 1.360(11)	C(31)-H(31) C(32)-H(32A)	0.9300
F(4)-C(67)	1.300(11) 1.367(10)	C(32)-H(32R) C(32)-H(32B)	0.9800
C(1)-C(2)	1.522(12)	C(32) - H(32C)	0.9800
C(1)-H(1A)	0.9900	C(33)-C(34)	1.512(11)
C(1)-H(1B)	0.9900	C(33)-H(33A)	0.9900
C(2)-H(2A)	0.9900	C(33)-H(33B)	0.9900
C(2)-H(2B)	0.9900	C(34)-C(39)	1.398(12)
C(3)-C(4)	1.517(13)	C(34)-C(35)	1.399(12)
C(3)-H(3A)	0.9900	C(35)-C(36)	1.389(12)
C(3)-H(3B)	0.9900	C(35)-H(35)	0.9500
C(4)-H(4A) C(4)-H(4P)	0.9900	C(36)-C(37)	1.412(12)
$C(4) - \Pi(4B)$ C(5) C(6)	0.9900 1.527(14)	$C(30) - \Pi(30)$ C(27) C(28)	0.9500 1 407(12)
C(5)-C(6) C(5)-H(5A)	0.9900	C(37)-C(30) C(37)-C(40)	1.407(12) 1.489(12)
C(5)-H(5R)	0.9900	C(38)-C(39)	1.409(12) 1.371(12)
C(6) - H(6A)	0.9900	C(38) - H(38)	0.9500
C(6)-H(6B)	0.9900	C(39)-H(39)	0.9500
C(7)-C(8)	1.540(13)	C(40)-C(45)	1.395(12)
C(7)-H(7A)	0.9900	C(40)-C(41)	1.415(12)
C(7)-H(7B)	0.9900	C(41)-C(42)	1.388(12)
C(8)-H(8A)	0.9900	C(41)-H(41)	0.9500
C(8)-H(8B)	0.9900	C(42)-C(43)	1.397(12)
C(9)-C(10)	1.490(13)	C(42)-H(42)	0.9500
C(9)-H(9A)	0.9900	C(43)- $C(44)$	1.375(12)
C(9) - H(9B)	0.9900	C(43)- $C(46)$	1.529(12)
C(10) - C(15) C(10) - C(11)	1.300(13) 1.287(12)	C(44) - C(45) C(44) - H(44)	1.398(12)
C(10) - C(11) C(11) - C(12)	1.307(13) 1.288(16)	$C(44) - \Pi(44)$ $C(45) - \Pi(45)$	0.9300
C(11) - C(12) C(11) - H(11)	0.9500	C(46)-H(46A)	0.9300
C(12)-C(13)	1.355(17)	C(46)-H(46B)	0.9900
	• •		

C(47)-C(48)	1.492(13)	C(80)-H(80)	0.9500
C(47)-H(47A)	0.9900	C(81)-H(81)	0.9500
C(47)-H(47B)	0.9900	C(82)-H(82A)	0.9900
C(48)-H(48A)	0.9900	C(82)-H(82B)	0.9900
C(48)-H(48B)	0.9900	C(83)-C(84)	1.495(13)
C(49)-C(50)	1.508(14)	C(83)-H(83A)	0.9900
C(49)-H(49A)	0.9900	C(83)-H(83B)	0.9900
C(49)-H(49B)	0.9900	C(84)-H(84A)	0.9900
C(50)-H(50A)	0.9900	C(84)-H(84B)	0.9900
C(50)-H(50B)	0.9900	C(85)-C(86)	1.521(14)
C(51)-C(52)	1.529(13)	C(85)-H(85A)	0.9900
C(51)-H(51A)	0.9900	C(85)-H(85B)	0.9900
C(51)-H(51B)	0.9900	C(86)-H(86A)	0.9900
C(52)-H(52A)	0.9900	C(86)-H(86B)	0.9900
C(52)-H(52B)	0.9900	C(87)-C(88)	1.520(13)
C(53)-C(54)	1.548(13)	C(87)-H(87A)	0.9900
C(53)-H(53A)	0.9900	C(87)-H(87B)	0.9900
C(53)-H(53B)	0.9900	C(88)-H(88A)	0.9900
C(54)-H(54A)	0.9900	C(88)-H(88B)	0.9900
C(54)-H(54B)	0.9900	C(89)-C(90)	1.511(14)
C(55)-C(56)	1.490(13)	C(89)-H(89A)	0.9900
C(55)-H(55A)	0.9900	C(89)-H(89B)	0.9900
C(55)-H(55B)	0.9900	C(90)-H(90A)	0.9900
C(56)-C(57)	1.375(14)	C(90)-H(90B)	0.9900
C(56)-C(61)	1.389(13)	C(91)-C(92)	1.500(12)
C(57)-C(58)	1.390(14)	C(91)-H(91A)	0.9900
C(57)-H(57)	0.9500	C(91)-H(91B)	0.9900
C(58)-C(59)	1.365(15)	C(92)-C(93)	1.385(13)
C(59)-C(60)	1.353(14)	C(92)-C(97)	1.406(12)
C(59)-H(59)	0.9500	C(93)-C(94)	1.390(13)
C(60)-C(61)	1.383(12)	C(93)-H(93)	0.9500
C(61)-H(61)	0.9500	C(94)-C(95)	1.384(13)
C(62)-C(63)	1.497(12)	C(94)-H(94)	0.9500
C(62)-H(62A)	0.9900	C(95)-C(96)	1.387(12)
C(62)-H(62B)	0.9900	C(96)-C(97)	1.372(13)
C(63)-C(68)	1.399(12)	C(96)-H(96)	0.9500
C(63)-C(64)	1.407(13)	C(97)-H(97)	0.9500
C(64) - C(65)	1.377(13)	C(98)-H(98A)	0.9800
C(64)-H(64)	0.9500	C(98)-H(98B)	0.9800
C(65)-C(66)	1.352(13)	C(98)-H(98C)	0.9800
C(66) - C(67)	1.391(14)	C(99) - C(100)	1.515(13)
C(66)-H(66)	0.9500	C(99) - H(99A)	0.9900
C(67) - C(68)	1.368(13)	C(99) - H(99B)	0.9900
C(68)-H(68)	0.9500	C(100) - C(101)	1.385(13)
C(69) - C(70)	1.494(12)	C(100) - C(105)	1.395(13)
$C(69) - \Pi(69A)$	0.9900	C(101) - C(102) C(101) - U(101)	1.303(13)
$C(69) - \Pi(69B)$	0.9900	C(101) - H(101) C(102) - C(102)	0.9500
C(70) - C(73) C(70) - C(71)	1.373(12) 1.206(12)	C(102) - C(103) C(102) - U(103)	1.400(14)
C(70)- $C(71)$	1.390(13) 1.270(12)	$C(102) - \Pi(102)$ C(102) - C(104)	1.9500
C(71) + C(72) C(71) + (71)	0.9500	C(103) - C(104) C(104) - C(105)	1.300(13) 1.287(12)
$C(71)$ - $\Pi(71)$ C(72)- $C(73)$	1.396(13)	C(104) - C(105) C(104) - H(104)	0.9500
C(72)- $U(73)$	0.9500	C(104) - H(104) C(105) - H(105)	0.9500
$C(72)$ - $\Pi(72)$ C(73)- $C(74)$	1.300(12)	C(106) - H(103)	0.9300
C(73)-C(74) C(73)-C(76)	1.390(12) 1.480(12)	C(106) - H(10R)	0.9800
C(74) - C(75)	1.409(12) 1.382(12)	C(106) - H(10C)	0.9800
C(74)-C(75)	0.9500	$C(100) - \Pi(10C)$ C(107) - C(208)	1 505(5)
C(75)-H(75)	0.9500	C(107) - C(200)	1.505(5)
C(76)- $C(77)$	1 396(12)	C(107) - U(100)	n 9900
C(76)- $C(81)$	1.070(12) 1 $411(12)$	C(107)-H(10E)	0.9900
C(77)- $C(78)$	1.420(12)	C(107)-H(10E) C(107)-H(10F)	0.9900
C(77)-H(77)	0.9500	C(107) - H(10G)	0.9900
C(78)-C(79)	1 394(13)	C(108) - C(109)	1 3900
C(78) - H(78)	0.9500	C(108) - C(113)	1 3900
C(79)- $C(80)$	1 390(12)	C(109) - C(110)	1.3900
C(79)- $C(82)$	1.505(12)	C(109) - H(109)	0.9500
C(80)-C(81)	1.380(12)	C(110) - C(111)	1.3900
	/		
C(110)-H(110)	0.9500	C(3)-N(1)-C(9)	108.5(7)
-------------------	-----------	-------------------	----------
C(111)-C(112)	1.3900	C(3)-N(1)-C(2)	110.1(7)
C(111)-O(6A)	1.495(5)	C(9)-N(1)-C(2)	109.8(7)
C(111)-C(114)#1	1.85(2)	C(3)-N(1)-Ag(1)	106.4(5)
C(112)-C(113)	1.3900	C(9)-N(1)-Ag(1)	118.5(5)
C(112)-H(112)	0.9500	C(2)-N(1)-Ag(1)	103.3(5)
C(113)-H(113)	0.9500	C(4)-N(2)-C(5)	111.1(8)
O(6A)-C(114)#1	0.96(3)	C(4)-N(2)-C(17)	110.1(7)
O(6A)-C(114)	1.499(5)	C(5)-N(2)-C(17)	109.2(7)
C(114)-H(11A)	0.9800	C(4)-N(2)-Ag(1)	104.4(5)
C(114)-H(11B)	0.9800	C(5)-N(2)-Ag(1)	105.2(5)
C(114)-H(11C)	0.9800	C(17)-N(2)-Ag(1)	116.7(6)
C(208)-C(209)	1.3900	C(7)-N(3)-C(25)	109.0(7)
C(208)-C(213)	1.3900	C(7)-N(3)-C(6)	110.0(7)
C(209)-C(210)	1.3900	C(25)-N(3)-C(6)	110.4(7)
C(209)-H(209)	0.9500	C(7)-N(3)-Ag(1)	107.0(5)
C(210)-C(211)	1.3900	C(25)-N(3)-Ag(1)	116.1(6)
C(210)-H(210)	0.9500	C(6)-N(3)-Ag(1)	104.3(5)
C(211)-C(212)	1.3900	C(33)-N(4)-C(1)	110.7(7)
C(211)-O(6B)	1.533(17)	C(33)-N(4)-C(8)	109.6(7)
C(212)-C(213)	1.3900	C(1)-N(4)-C(8)	109.6(7)
C(212)-H(212)	0.9500	C(33)-N(4)-Ag(1)	118.8(5)
C(213)-H(213)	0.9500	C(1)-N(4)-Ag(1)	104.7(5)
O(6B)-C(214)	1.52(2)	C(8)-N(4)-Ag(1)	102.9(5)
C(214)-H(21A)	0.9800	C(47)-N(5)-C(54)	111.2(7)
C(214)-H(21B)	0.9800	C(47)-N(5)-C(46)	110.3(7)
C(214)-H(21C)	0.9800	C(54)-N(5)-C(46)	109.7(7)
S(1)-O(7)	1.424(8)	C(47)-N(5)-Ag(2)	104.5(5)
S(1)-O(8)	1.436(8)	C(54)-N(5)-Ag(2)	105.5(5)
S(1)-O(9)	1.449(8)	C(46)-N(5)-Ag(2)	115.5(5)
S(1)-C(115)	1.808(13)	C(49)-N(6)-C(69)	110.3(7)
C(115)-F(5)	1.316(13)	C(49)-N(6)-C(48)	110.9(7)
C(115)-F(6)	1.329(12)	C(69)-N(6)-C(48)	109.6(7)
C(115)-F(7)	1.346(13)	C(49)-N(6)-Ag(2)	105.2(5)
S(2)-O(11)	1.387(9)	C(69)-N(6)-Ag(2)	120.0(5)
S(2)-O(12)	1.416(11)	C(48)-N(6)-Ag(2)	100.4(5)
S(2)-O(10)	1.428(10)	C(51)-N(7)-C(55)	109.6(7)
S(2)-C(116)	1.790(11)	C(51)-N(7)-C(50)	110.3(7)
C(116)-F(9)	1.275(15)	C(55)-N(7)-C(50)	109.7(7)
C(116)-F(8)	1.280(13)	C(51)-N(7)-Ag(2)	105.8(5)
C(116)- $F(10)$	1.312(15)	C(55)-N(7)-Ag(2)	116.1(5)
S(3)-O(13)	1.366(10)	C(50)-N(7)-Ag(2)	105.2(5)
S(3)-O(14)	1.413(11)	C(53)-N(8)-C(62)	108.6(7)
S(3)-O(15)	1.467(11)	C(53)-N(8)-C(52)	111.8(7)
S(3)-C(117)	1.72(2)	C(62)-N(8)-C(52)	109.3(7)
C(117)- $F(11)$	1.27(2)	C(53)-N(8)-Ag(2)	104.7(5)
C(117)- $F(13)$	1.34(2)	C(62)-N(8)-Ag(2)	122.4(5)
C(117)- $F(12)$	1.39(2)	C(52)-N(8)-Ag(2)	99.8(5)
		C(82)-N(9)-C(90)	110.3(7)
N(3)-Ag(1)-N(1)	122.2(3)	C(82)-N(9)-C(83)	109.9(7)
N(3)-Ag(1)-N(2)	77.0(2)	C(90)-N(9)-C(83)	111.2(7)
N(1)-Ag(1)-N(2)	76.3(2)	C(82)-N(9)-Ag(3)	113.7(5)
N(3)-Ag(1)-N(4)	76.8(2)	C(90)-N(9)-Ag(3)	107.6(5)
N(1)-Ag(1)-N(4)	77.0(2)	C(83)-N(9)-Ag(3)	103.9(5)
N(2)-Ag(1)-N(4)	123.3(2)	C(85)-N(10)-C(91)	108.9(7)
N(7)-Ag(2)-N(5)	123.7(2)	C(85)-N(10)-C(84)	111.3(7)
N(7)-Ag(2)-N(6)	76.6(3)	C(91)-N(10)-C(84)	110.1(7)
N(5)-Ag(2)-N(6)	77.7(2)	C(85)-N(10)-Ag(3)	105.3(6)
N(7)-Ag(2)-N(8)	77.6(2)	C(91)-N(10)-Ag(3)	121.5(5)
N(5)-Ag(2)-N(8)	76.7(2)	C(84)-N(10)-Ag(3)	99.3(5)
N(6)-Ag(2)-N(8)	123.7(2)	C(86)-N(11)-C(87)	111.6(7)
N(11)-Ag(3)-N(9)	122.0(2)	C(86)-N(11)-C(99)	110.4(7)
N(11)-Ag(3)-N(10)	76.5(3)	C(87)-N(11)-C(99)	109.4(7)
N(9)-Ag(3)-N(10)	78.4(2)	C(86)-N(11)-Ag(3)	106.2(5)
N(11)-Ag(3)-N(12)	76.1(3)	C(87)-N(11)-Ag(3)	107.1(6)
N(9)-Ag(3)-N(12)	75.0(3)	C(99)-N(11)-Ag(3)	112.0(5)
N(10)-Ag(3)-N(12)	122.4(2)	C(88)-N(12)-C(89)	111.3(8)

C(88)-N(12)-C(107)	110.6(8)	C(10)-C(11)-C(12)	120.6(10)
C(89)-N(12)-C(107)	110.1(8)	C(10)-C(11)-H(11)	119.7
C(88)-N(12)-Ag(3)	101.3(5)	C(12)-C(11)-H(11)	119.7
C(89)-N(12)-Ag(3)	105.4(5)	C(13)-C(12)-C(11)	120.6(11)
C(107)-N(12)-Åg(3)	117.8(6)	C(13)-C(12)-H(12)	119.7
C(13)-O(1)-C(16)	117.7(13)	C(11)-C(12)-H(12)	119.7
C(21)-O(2)-C(24)	114.9(14)	C(12)-C(13)-O(1)	124.7(11)
C(29)-O(3)-C(32)	118.3(12)	C(12)-C(13)-C(14)	119.0(11)
C(95)-O(4)-C(98)	116.8(7)	O(1)-C(13)-C(14)	116.3(11)
C(103)-O(5)-C(106)	116.3(8)	C(15)-C(14)-C(13)	121.0(10)
N(4)-C(1)-C(2)	114.1(7)	C(15)-C(14)-H(14)	119.5
N(4)-C(1)-H(1A)	108.7	C(13)-C(14)-H(14)	119.5
C(2)-C(1)-H(1A)	108.7	C(14)-C(15)-C(10)	119.8(10)
N(4)-C(1)-H(1B)	108.7	C(14)-C(15)-H(15)	120.1
C(2)-C(1)-H(1B)	108.7	C(10)-C(15)-H(15)	120.1
H(1A)-C(1)-H(1B)	107.6	O(1)-C(16)-H(16A)	109.5
N(1)-C(2)-C(1)	112.6(7)	O(1)-C(16)-H(16B)	109.5
N(1)-C(2)-H(2A)	109.1	H(16A)-C(16)-H(16B)	109.5
C(1)-C(2)-H(2A)	109.1	O(1)-C(16)-H(16C)	109.5
N(1)-C(2)-H(2B)	109.1	H(16A)-C(16)-H(16C)	109.5
C(1)-C(2)-H(2B)	109.1	H(16B)-C(16)-H(16C)	109.5
H(2A)-C(2)-H(2B)	107.8	C(18)-C(17)-N(2)	113.4(8)
N(1)-C(3)-C(4)	116.0(8)	C(18)-C(17)-H(17A)	108.9
N(1)-C(3)-H(3A)	108.3	N(2)-C(17)-H(17A)	108.9
C(4)-C(3)-H(3A)	108.3	C(18)-C(17)-H(17B)	108.9
N(1)-C(3)-H(3B)	108.3	N(2)-C(17)-H(17B)	108.9
C(4)-C(3)-H(3B)	108.3	H(17A)-C(17)-H(17B)	107.7
H(3A)-C(3)-H(3B)	107.4	C(23)-C(18)-C(19)	116.9(11)
N(2)-C(4)-C(3)	112.5(8)	C(23)-C(18)-C(17)	119.4(9)
N(2)-C(4)-H(4A)	109.1	C(19)-C(18)-C(17)	123.8(10)
C(3)-C(4)-H(4A)	109.1	C(18)-C(19)-C(20)	122.6(12)
N(2)-C(4)-H(4B)	109.1	C(18)-C(19)-H(19)	118.7
C(3)-C(4)-H(4B)	109.1	C(20)-C(19)-H(19)	118.7
H(4A)-C(4)-H(4B)	107.8	C(19)-C(20)-C(21)	119.6(11)
N(2)-C(5)-C(6)	113.3(8)	C(19) - C(20) - H(20)	120.2
N(2)-C(5)-H(5A)	108.9	C(21)-C(20)-H(20)	120.2
C(6)-C(5)-H(5A)	108.9	O(2)-C(21)-C(20)	127.0(12)
N(2)-C(5)-H(5B)	108.9	O(2)-C(21)-C(22)	113.2(14)
C(6)-C(5)-H(5B)	108.9	C(20)-C(21)-C(22)	119.7(12)
H(5A)-C(5)-H(5B)	107.7	C(21)-C(22)-C(23)	118.8(12)
N(3)-C(6)-C(5)	112.4(8)	C(21)-C(22)-H(22)	120.6
N(3)-C(6)-H(6A)	109.1	C(23)-C(22)-H(22)	120.6
C(5)-C(6)-H(6A)	109.1	C(18)-C(23)-C(22)	122.4(10)
N(3)-C(6)-H(6B)	109.1	C(18)-C(23)-H(23)	118.8
C(5)-C(6)-H(6B)	109.1	C(22)-C(23)-H(23)	118.8
H(6A)-C(6)-H(6B)	107.9	O(2)-C(24)-H(24A)	109.5
N(3)-C(7)-C(8)	115.0(7)	O(2)-C(24)-H(24B)	109.5
N(3)-C(7)-H(7A)	108.5	H(24A)-C(24)-H(24B)	109.5
C(8)-C(7)-H(7A)	108.5	O(2)-C(24)-H(24C)	109.5
N(3)-C(7)-H(7B)	108.5	H(24A)-C(24)-H(24C)	109.5
C(8)-C(7)-H(7B)	108.5	H(24B)-C(24)-H(24C)	109.5
H(7A)-C(7)-H(7B)	107.5	N(3)-C(25)-C(26)	112.6(8)
N(4)-C(8)-C(7)	111.4(7)	N(3)-C(25)-H(25A)	109.1
N(4)-C(8)-H(8A)	109.4	C(26)-C(25)-H(25A)	109.1
C(7)-C(8)-H(8A)	109.4	N(3)-C(25)-H(25B)	109.1
N(4)-C(8)-H(8B)	109.4	C(26)-C(25)-H(25B)	109.1
C(7)-C(8)-H(8B)	109.4	H(25A)-C(25)-H(25B)	107.8
H(8A)-C(8)-H(8B)	108.0	C(27)-C(26)-C(31)	117.4(11)
N(1)-C(9)-C(10)	115.1(7)	C(27)-C(26)-C(25)	123.6(10)
N(1)-C(9)-H(9A)	108.5	C(31)-C(26)-C(25)	118.9(9)
C(10)-C(9)-H(9A)	108.5	C(26)-C(27)-C(28)	121.1(12)
N(1)-C(9)-H(9B)	108.5	C(26)-C(27)-H(27)	119.5
C(10)-C(9)-H(9B)	108.5	C(28)-C(27)-H(27)	119.5
H(9A)-C(9)-H(9B)	107.5	C(29)-C(28)-C(27)	120.0(11)
C(15)-C(10)-C(11)	119.1(9)	C(29)-C(28)-H(28)	120.0
C(15)-C(10)-C(9)	120.0(8)	C(27)-C(28)-H(28)	120.0
C(11) - C(10) - C(9)	120.9(9)	C(28)-C(29)-C(30)	122.0(12)

C(28)-C(29)-O(3)	115.0(12)	H(47A)-C(47)-H(47B)	107.4
C(30)-C(29)-O(3)	123.0(14)	C(47)-C(48)-N(6)	112.4(7)
C(29)-C(30)-C(31)	116.8(13)	C(47)-C(48)-H(48A)	109.1
C(29)-C(30)-H(30)	121.6	N(6)-C(48)-H(48A)	109.1
C(31)-C(30)-H(30)	121.6	C(47)-C(48)-H(48B)	109.1
C(26)-C(31)-C(30)	122.6(11)	N(6)-C(48)-H(48B)	109.1
C(26)-C(31)-H(31)	118.7	H(48A)-C(48)-H(48B)	107.9
C(30)-C(31)-H(31)	118.7	N(6)-C(49)-C(50)	115.3(8)
O(3)-C(32)-H(32A)	109.5	N(6)-C(49)-H(49A)	108.4
O(3)-C(32)-H(32B)	109.5	C(50)-C(49)-H(49A)	108.4
H(32A)-C(32)-H(32B)	109.5	N(6)-C(49)-H(49B)	108.4
O(3)-C(32)-H(32C)	109.5	C(50)-C(49)-H(49B)	108.4
H(32A)-C(32)-H(32C)	109.5	H(49A)-C(49)-H(49B)	107.5
H(32B)-C(32)-H(32C)	109.5	N(7)-C(50)-C(49)	113.4(8)
N(4)-C(33)-C(34)	113.7(7)	N(7)-C(50)-H(50A)	108.9
N(4)-C(33)-H(33A)	108.8	C(49)-C(50)-H(50A)	108.9
C(34)-C(33)-H(33A)	108.8	N(7)-C(50)-H(50B)	108.9
N(4)-C(33)-H(33B)	108.8	C(49)-C(50)-H(50B)	108.9
C(34)-C(33)-H(33B)	108.8	H(50A)-C(50)-H(50B)	107.7
H(33A)-C(33)-H(33B)	107.7	N(7)-C(51)-C(52)	114.9(8)
C(39)-C(34)-C(35)	118.7(8)	N(7)-C(51)-H(51A)	108.5
C(39)-C(34)-C(33)	120.5(8)	C(52)-C(51)-H(51A)	108.5
C(35)-C(34)-C(33)	120.8(8)	N(7)-C(51)-H(51B)	108.5
C(36)-C(35)-C(34)	119.9(8)	C(52)-C(51)-H(51B)	108.5
C(36)-C(35)-H(35)	120.1	H(51A)-C(51)-H(51B)	107.5
C(34)-C(35)-H(35)	120.1	N(8)-C(52)-C(51)	112.7(7)
C(35)-C(36)-C(37)	121.8(8)	N(8)-C(52)-H(52A)	109.0
C(35)-C(36)-H(36)	119.1	C(51)-C(52)-H(52A)	109.0
C(37)-C(36)-H(36)	119.1	N(8)-C(52)-H(52B)	109.0
C(38)-C(37)-C(36)	116.8(8)	C(51)-C(52)-H(52B)	109.0
C(38)-C(37)-C(40)	121.6(8)	H(52A)-C(52)-H(52B)	107.8
C(36)-C(37)-C(40)	121.6(8)	N(8)-C(53)-C(54)	114.6(7)
C(39)-C(38)-C(37)	121.6(8)	N(8)-C(53)-H(53A)	108.6
C(39)-C(38)-H(38)	119.2	C(54)-C(53)-H(53A)	108.6
C(37)-C(38)-H(38)	119.2	N(8)-C(53)-H(53B)	108.6
C(38)-C(39)-C(34)	121.2(8)	C(54)-C(53)-H(53B)	108.6
C(38)-C(39)-H(39)	119.4	H(53A)-C(53)-H(53B)	107.6
C(34)-C(39)-H(39)	119.4	N(5)-C(54)-C(53)	113.0(7)
C(45)-C(40)-C(41)	118.0(8)	N(5)-C(54)-H(54A)	109.0
C(45)-C(40)-C(37)	122.3(8)	C(53)-C(54)-H(54A)	109.0
C(41)-C(40)-C(37)	119.7(7)	N(5)-C(54)-H(54B)	109.0
C(42)-C(41)-C(40)	120.1(8)	C(53)-C(54)-H(54B)	109.0
C(42)-C(41)-H(41)	120.0	H(54A)-C(54)-H(54B)	107.8
C(40)-C(41)-H(41)	120.0	C(56)-C(55)-N(7)	112.0(7)
C(41)-C(42)-C(43)	121.4(8)	C(56)-C(55)-H(55A)	109.2
C(41)-C(42)-H(42)	119.3	N(7)-C(55)-H(55A)	109.2
C(43)-C(42)-H(42)	119.3	C(56)-C(55)-H(55B)	109.2
C(44)-C(43)-C(42)	118.6(8)	N(7)-C(55)-H(55B)	109.2
C(44)-C(43)-C(46)	122.7(8)	H(55A)-C(55)-H(55B)	107.9
C(42)-C(43)-C(46)	118.7(8)	C(57)-C(56)-C(61)	118.5(9)
C(43)-C(44)-C(45)	121.1(8)	C(57)-C(56)-C(55)	121.6(9)
C(43)-C(44)-H(44)	119.4	C(61)-C(56)-C(55)	120.0(8)
C(45)-C(44)-H(44)	119.4	C(56)-C(57)-C(58)	119.4(9)
C(40)-C(45)-C(44)	120.8(8)	C(56)-C(57)-H(57)	120.3
C(40)- $C(45)$ - $H(45)$	119.6	C(58)-C(57)-H(57)	120.3
C(44)-C(45)-H(45)	119.6	F(1)-C(58)-C(59)	119.2(9)
N(5)-C(46)-C(43)	111.9(7)	F(1)-C(58)-C(57)	117.7(10)
N(5)-C(46)-H(46A)	109.2	C(59)-C(58)-C(57)	123.0(9)
C(43)-C(46)-H(46A)	109.2	C(60)-C(59)-C(58)	116.3(10)
N(5)-C(46)-H(46B)	109.2	C(60)-C(59)-H(59)	121.8
C(43)-C(46)-H(46B)	109.2	C(58)-C(59)-H(59)	121.8
H(46A)-C(46)-H(46B)	107.9	F(2)-C(60)-C(59)	118.6(8)
N(5)-C(47)-C(48)	115.9(8)	F(2)-C(60)-C(61)	118.1(8)
N(5)-C(47)-H(47A)	108.3	C(59)-C(60)-C(61)	123.3(9)
C(48)-C(47)-H(47A)	108.3	C(60)-C(61)-C(56)	119.4(9)
N(5)-C(47)-H(47B)	108.3	C(60)-C(61)-H(61)	120.3
C(48)-C(47)-H(47B)	108.3	C(56)-C(61)-H(61)	120.3

N(8)-C(62)-C(63)	113.2(7)	N(9)-C(82)-H(82A)	109.1
N(8)-C(62)-H(62A)	108.9	C(79)-C(82)-H(82A)	109.1
C(63)-C(62)-H(62A)	108.9	N(9)-C(82)-H(82B)	109.1
N(8)-C(62)-H(62B)	108.9	C(79)-C(82)-H(82B)	109.1
C(63)-C(62)-H(62B)	108.9	H(82A)-C(82)-H(82B)	107.9
H(62A)-C(62)-H(62B)	107.7	N(9)-C(83)-C(84)	113.9(8)
C(68)-C(63)-C(64)	118 7(8)	N(9)-C(83)-H(83A)	108.8
C(68) - C(63) - C(62)	120.2(8)	C(84)- $C(83)$ - $H(83A)$	108.8
C(64) - C(63) - C(62)	120.2(0) 121 1(8)	N(0) - C(83) - H(83R)	100.0
C(64) - C(63) - C(62)	121.1(0) 110 1(0)	C(94) C(92) H(92B)	100.0
C(03) - C(04) - C(03)	110.1(0)	$U(04) - U(03) - \Pi(03D)$	100.0
$C(63) - C(64) - \Pi(64)$	120.9	$\Pi(\delta 3A) - C(\delta 3) - \Pi(\delta 3B)$	107.7
C(63) - C(64) - H(64)	120.9	N(10) - C(84) - C(83)	112.6(7)
C(66) - C(65) - F(3)	117.2(8)	N(10)-C(84)-H(84A)	109.1
C(66) - C(65) - C(64)	125.1(9)	C(83)-C(84)-H(84A)	109.1
F(3)-C(65)-C(64)	117.6(8)	N(10)-C(84)-H(84B)	109.1
C(65)-C(66)-C(67)	115.1(8)	C(83)-C(84)-H(84B)	109.1
C(65)-C(66)-H(66)	122.4	H(84A)-C(84)-H(84B)	107.8
C(67)-C(66)-H(66)	122.4	N(10)-C(85)-C(86)	114.7(7)
F(4)-C(67)-C(68)	118.6(9)	N(10)-C(85)-H(85A)	108.6
F(4)-C(67)-C(66)	117.5(8)	C(86)-C(85)-H(85A)	108.6
C(68)-C(67)-C(66)	123.8(8)	N(10)-C(85)-H(85B)	108.6
C(67)-C(68)-C(63)	119.1(9)	C(86)-C(85)-H(85B)	108.6
C(67)-C(68)-H(68)	120.5	H(85A)-C(85)-H(85B)	107.6
C(63)-C(68)-H(68)	120.5	N(11)-C(86)-C(85)	113.9(7)
N(6)-C(69)-C(70)	111 6(7)	N(11)-C(86)-H(86A)	108.8
N(6) - C(69) - H(69A)	109.3	C(85)-C(86)-H(86A)	108.8
C(70) = C(69) = H(69A)	109.3	N(11)-C(86)-H(86B)	108.8
N(6) - C(60) - H(60B)	109.3	C(85) - C(86) - H(86B)	100.0
C(70) C(60) H(60P)	109.3	U(96A) C(96) U(96D)	107.7
$U(70) - U(09) - \Pi(09B)$	109.3	$\Pi(00A) - C(00) - \Pi(00D)$ N(11) $C(97) C(99)$	107.7 112.6(0)
$\Pi(09A) - C(09) - \Pi(09B)$	100.0	N(11) - C(07) - C(00)	113.0(0)
C(75) - C(70) - C(71)	110.0(8)	N(11) - C(87) - H(87A)	100.0
C(75) - C(70) - C(69)	119.7(8)	C(88)-C(87)-H(87A)	108.8
C(71) - C(70) - C(69)	123.7(8)	N(11)-C(87)-H(87B)	108.8
C(72) - C(71) - C(70)	122.0(9)	C(88)-C(87)-H(87B)	108.8
C(72)-C(71)-H(71)	119.0	H(87A)-C(87)-H(87B)	107.7
C(70)-C(71)-H(71)	119.0	N(12)-C(88)-C(87)	112.4(8)
C(71)-C(72)-C(73)	121.0(9)	N(12)-C(88)-H(88A)	109.1
C(71)-C(72)-H(72)	119.5	C(87)-C(88)-H(88A)	109.1
C(73)-C(72)-H(72)	119.5	N(12)-C(88)-H(88B)	109.1
C(74)-C(73)-C(72)	117.2(8)	C(87)-C(88)-H(88B)	109.1
C(74)-C(73)-C(76)	121.0(8)	H(88A)-C(88)-H(88B)	107.9
C(72)-C(73)-C(76)	121.7(8)	N(12)-C(89)-C(90)	114.1(7)
C(75)-C(74)-C(73)	120.9(9)	N(12)-C(89)-H(89A)	108.7
C(75)-C(74)-H(74)	119.6	C(90)-C(89)-H(89A)	108.7
C(73)-C(74)-H(74)	119.6	N(12)-C(89)-H(89B)	108.7
C(70)-C(75)-C(74)	122.3(8)	C(90)-C(89)-H(89B)	108.7
C(70)-C(75)-H(75)	118.9	H(89A)-C(89)-H(89B)	107.6
C(74)-C(75)-H(75)	118.9	N(9)-C(90)-C(89)	1132(8)
C(77) - C(76) - C(81)	117 4(8)	N(9)-C(90)-H(90A)	108.9
C(77) - C(76) - C(73)	121.8(8)	C(89)-C(90)-H(90A)	108.9
C(81) - C(76) - C(73)	121.0(0)	N(0) - C(0) - H(0) B	100.9
C(76) C(77) C(78)	120.0(0) 120.4(0)	C(90) C(00) H(00P)	100.9
C(70) - C(77) - C(78)	110.9	U(004) C(00) U(00D)	100.9
$C(76) - C(77) - \Pi(77)$	119.8	H(90A) - C(90) - H(90B)	107.7
C(78) - C(77) - H(77)	119.8	N(10) - C(91) - C(92)	114.5(7)
C(79) - C(78) - C(77)	121.1(9)	N(10)-C(91)-H(91A)	108.6
C(79)-C(78)-H(78)	119.4	C(92)-C(91)-H(91A)	108.6
C(77)-C(78)-H(78)	119.4	N(10)-C(91)-H(91B)	108.6
C(80)-C(79)-C(78)	117.9(8)	C(92)-C(91)-H(91B)	108.6
C(80)-C(79)-C(82)	122.5(9)	H(91A)-C(91)-H(91B)	107.6
C(78)-C(79)-C(82)	119.7(8)	C(93)-C(92)-C(97)	117.6(8)
C(81)-C(80)-C(79)	121.6(9)	C(93)-C(92)-C(91)	121.9(8)
C(81)-C(80)-H(80)	119.2	C(97)-C(92)-C(91)	120.5(8)
C(79)-C(80)-H(80)	119.2	C(92)-C(93)-C(94)	122.0(8)
C(80)-C(81)-C(76)	121.6(8)	C(92)-C(93)-H(93)	119.0
C(80)-C(81)-H(81)	119.2	C(94)-C(93)-H(93)	119.0
C(76)-C(81)-H(81)	119.2	C(95)-C(94)-C(93)	119.4(9)
N(9)-C(82)-C(79)	112.4(7)	C(95)-C(94)-H(94)	120.3

C(93)-C(94)-H(94)	120.3	C(112)-C(111)-C(110)	120.0
O(4) - C(95) - C(94)	124 3(8)	C(112)-C(111)-O(6A)	1187(9)
O(4) C(05) C(0()	11(2(0))	C(112) C(111) O(01)	121.0(0)
O(4)- $C(95)$ - $C(96)$	110.3(8)	C(110) - C(111) - O(6A)	121.0(9)
C(94)- $C(95)$ - $C(96)$	119.4(9)	C(112)-C(111)-C(114)#1	147.7(10)
C(97)-C(96)-C(95)	121.0(8)	C(110)-C(111)-C(114)#1	90.3(10)
C(97)- $C(96)$ - $H(96)$	119.5	O(6A) - C(111) - C(114) # 1	31.0(10)
C(05) C(06) H(06)	110 5	C(111) C(112) C(112)	120.0
C(93)-C(96)-H(96)	119.5	C(111) - C(112) - C(113)	120.0
C(96)-C(97)-C(92)	120.7(8)	C(111)-C(112)-H(112)	120.0
C(96)-C(97)-H(97)	119.7	C(113)-C(112)-H(112)	120.0
C(92)-C(97)-H(97)	119.7	C(112)-C(113)-C(108)	120.0
O(4) - C(98) - H(984)	109.5	C(112) - C(113) - H(113)	120.0
O(4) - C(00) - H(00R)	109.5	$C(112) - C(113) - \Pi(113)$	120.0
O(4) - C(98) - H(98B)	109.5	C(108) - C(113) - H(113)	120.0
H(98A)-C(98)-H(98B)	109.5	C(114)#1- $O(6A)$ - $C(111)$	95.3(18)
O(4)-C(98)-H(98C)	109.5	C(114)#1-O(6A)-C(114)	26(3)
H(98A)-C(98)-H(98C)	109.5	C(111)-O(6A)-C(114)	1144(13)
U(0.02) $C(0.02)$ $U(0.02)$	100.5	O(6A) C(11A) H(11A)	100 5
N(11) O(00) O(100)	109.5	$O(0A) - O(114) - \Pi(11A)$	109.5
N(11)-C(99)-C(100)	110.2(7)	O(6A) - C(114) - H(11B)	109.5
N(11)-C(99)-H(99A)	109.6	H(11A)-C(114)-H(11B)	109.5
C(100)-C(99)-H(99A)	109.6	O(6A)-C(114)-H(11C)	109.5
N(11) - C(99) - H(99B)	109.6	H(11A)-C(114)-H(11C)	109.5
C(100) C(00) H(00P)	100.6	H(11R) C(114) H(11C) H(11R) C(114) H(11C)	109.5
С(100)-С(99)-П(99В)	109.6	$\Pi(\Pi D) - C(\Pi 4) - \Pi(\Pi C)$	109.5
H(99A)-C(99)-H(99B)	108.1	C(209)-C(208)-C(213)	120.0
C(101)-C(100)-C(105)	117.8(9)	C(209)-C(208)-C(107)	113(3)
C(101)-C(100)-C(99)	124.6(9)	C(213)-C(208)-C(107)	127(3)
C(105) - C(100) - C(99)	117.6(8)	C(208) - C(200) - C(210)	120.0
C(103) - C(100) - C(99)	117.0(0)	C(208) - C(209) - C(210)	120.0
C(102)- $C(101)$ - $C(100)$	121.9(9)	C(208) - C(209) - H(209)	120.0
C(102)-C(101)-H(101)	119.0	C(210)-C(209)-H(209)	120.0
C(100)-C(101)-H(101)	119.0	C(211)-C(210)-C(209)	120.0
C(101) - C(102) - C(103)	119 7(9)	C(211) - C(210) - H(210)	120.0
C(101) C(102) C(103) C(101) C(102) H(102)	190.1	C(211) C(210) H(210) C(200) C(210) H(210)	120.0
C(101) - C(102) - H(102)	120.1	C(209) - C(210) - H(210)	120.0
C(103)- $C(102)$ - $H(102)$	120.1	C(210)-C(211)-C(212)	120.0
O(5)-C(103)-C(104)	124.0(9)	C(210)-C(211)-O(6B)	120(2)
O(5)-C(103)-C(102)	116.2(8)	C(212)-C(211)-O(6B)	117(2)
C(104) - C(103) - C(102)	110.8(0)	C(212) = C(212) = C(211)	120.0
C(104) - C(103) - C(102)	119.0(9)	C(213) - C(212) - C(211)	120.0
C(103)- $C(104)$ - $C(105)$	118.9(9)	C(213) - C(212) - H(212)	120.0
C(103)-C(104)-H(104)	120.6	C(211)-C(212)-H(212)	120.0
C(105)-C(104)-H(104)	120.6	C(212)-C(213)-C(208)	120.0
C(104)-C(105)-C(100)	121 8(9)	C(212)-C(213)-H(213)	120.0
C(104) - C(105) - H(105)	110 1	C(212) = C(213) = H(213)	120.0
C(104) - C(105) - H(105)	119.1	$C(200) - C(213) - \Pi(213)$	120.0
C(100)-C(105)-H(105)	119.1	C(214) - O(6B) - C(211)	119(3)
O(5)-C(106)-H(10A)	109.5	O(6B)-C(214)-H(21A)	109.5
O(5)-C(106)-H(10B)	109.5	O(6B)-C(214)-H(21B)	109.5
H(10A) - C(106) - H(10B)	109.5	H(21A)-C(214)-H(21B)	109 5
O(5) C(106) H(10C)	100 E	O(6P) C(214) H(21C)	100.5
U(3)-U(100)-H(10U)	109.5	$O(0B) - C(214) - \Pi(21C)$	109.5
H(10A)-C(106)-H(10C)	109.5	H(21A)-C(214)-H(21C)	109.5
H(10B)-C(106)-H(10C)	109.5	H(21B)-C(214)-H(21C)	109.5
C(208)-C(107)-N(12)	115.9(18)	O(7)-S(1)-O(8)	115.6(6)
N(12)-C(107)-C(108)	114 1(10)	O(7)-S(1)-O(9)	1143(6)
N(12) C(107) U(100)	108.7	O(8) S(1) O(0)	115.5(0)
$N(12) - C(107) - \Pi(10D)$	100.7	O(8) - S(1) - O(9)	115.5(4)
C(108)- $C(107)$ - $H(10D)$	108.7	O(7)- $S(1)$ - $C(115)$	102.4(5)
N(12)-C(107)-H(10E)	108.7	O(8)-S(1)-C(115)	102.8(6)
C(108)-C(107)-H(10E)	108.7	O(9)-S(1)-C(115)	103.6(5)
H(10D)-C(107)-H(10F)	107.6	F(5)-C(115)-F(6)	107.1(10)
C(209) C(107) H(10E)	109.2	F(5) C(115) F(7)	107.1(10) 107.6(11)
$C(200) - C(107) - \Pi(10F)$	100.5	F(3)-C(113)-F(7)	107.0(11)
N(12)-C(107)-H(10F)	108.3	F(6)-C(115)-F(7)	105.4(9)
C(208)-C(107)-H(10G)	108.3	F(5)-C(115)-S(1)	112.4(8)
N(12)-C(107)-H(10G)	108.3	F(6)-C(115)-S(1)	113.5(9)
H(10F) - C(107) - H(10C)	107.4	F(7)-C(115)-S(1)	110 4(8)
C(100) C(100) C(110)	100.0	(1) = (11) = 0(11)	112 0(0)
C(109) - C(108) - C(113)	120.0	O(11) - S(2) - O(12)	113.8(8)
C(109)-C(108)-C(107)	117.8(9)	O(11)-S(2)-O(10)	112.5(6)
C(113)-C(108)-C(107)	122.2(9)	O(12)-S(2)-O(10)	115.2(8)
C(110)-C(109)-C(108)	120.0	O(11)-S(2)-C(116)	104 0(6)
C(110) C(100) U(100)	120.0	O(12) S(2) C(114)	102 4(7)
$C(110) - C(109) - \Pi(109)$	120.0	O(12) - S(2) - O(110)	103.4(7)
C(108) - C(109) - H(109)	120.0	O(10)-S(2)-C(116)	106.4(5)
C(111)-C(110)-C(109)	120.0	F(9)-C(116)-F(8)	106.8(11)
C(111)-C(110)-H(110)	120.0	F(9)-C(116)-F(10)	103.5(11)
C(109)-C(110)-H(110)	120.0	F(8)-C(116)-F(10)	1081(12)
O(10) - O(110) - 11(110)	120.0	1(0) - O(110) - 1(10)	100.1(12)

F(9)-C(116)-S(2)	111.7(10)	F(13)-C(117)-F(12)	102.6(17)
F(8)-C(116)-S(2)	115.0(8)	F(11)-C(117)-S(3)	111.8(17)
F(10)-C(116)-S(2)	111.0(9)	F(13)-C(117)-S(3)	111.8(16)
O(13)-S(3)-O(14)	112.3(8)	F(12)-C(117)-S(3)	112.7(14)
O(13)-S(3)-O(15)	117.8(8)		
O(14)-S(3)-O(15)	107.8(9)		
O(13)-S(3)-C(117)	105.1(9)	Symmetry transformations used to gene	arate equivalent atoms:
O(14)-S(3)-C(117)	105.3(9)	Symmetry transformations used to gene	rate equivalent atoms.
O(15)-S(3)-C(117)	107.8(9)	#1 -x+1v+1z+1	
F(11)-C(117)-F(13)	114.0(19)		
F(11)-C(117)-F(12)	103.3(18)		

Table S9. Anisotropic displacement parameters $(Å^2 x \ 10^3)$ for $[4_{MFM^{\bullet}}(Ag)_3](OTf)_3$. The anisotropic displacement factor exponent takes the form: $-2p^2 [h^2 a^{*2}U^{11} + ... + 2hk a^* b^* U^{12}]$.

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
$\overline{Ag(1)}$	27(1)	27(1)	31(1)	3(1)	6(1)	-1(1)
Ag(2)	26(1)	40(1)	25(1)	1(1)	7(1)	2(1)
Ag(3)	26(1)	36(1)	28(1)	-4(1)	5(1)	-3(1)
N(1)	29(4)	30(4)	38(4)	4(3)	1(3)	-2(3)
N(2)	29(4)	30(4)	48(5)	11(3)	1(3)	0(3)
N(3)	28(4)	29(4)	42(4)	7(3)	6(3)	-5(3)
N(4)	30(4)	26(4)	29(4)	-1(3)	5(3)	3(3)
N(5)	31(4)	42(4)	23(4)	-5(3)	11(3)	3(3)
N(6)	35(4)	44(4)	26(4)	3(3)	10(3)	6(3)
N(7)	21(4)	46(4)	28(4)	0(3)	6(3)	5(3)
N(8)	25(4)	37(4)	26(4)	-2(3)	8(3)	1(3)
N(9)	21(4)	40(4)	31(4)	-4(3)	4(3)	-3(3)
N(10)	30(4)	37(4)	34(4)	-7(3)	16(3)	-6(3)
N(11)	29(4)	47(5)	31(4)	-6(3)	4(3)	-4(3)
N(12)	37(4)	49(5)	35(4)	-1(4)	4(4)	-3(4)
O(1)	111(8)	81(7)	78(7)	-6(5)	46(6)	12(6)
O(2)	120(9)	111(8)	56(6)	-21(6)	-10(6)	1(7)
O(3)	140(9)	63(6)	48(5)	6(4)	11(6)	-30(6)
O(4)	32(4)	61(4)	39(4)	-13(3)	4(3)	2(3)
O(5)	59(5)	36(4)	64(5)	-4(3)	-9(4)	13(3)
F(1)	78(5)	56(4)	60(4)	-26(3)	12(3)	-9(3)
F(2)	38(3)	42(3)	65(4)	10(3)	25(3)	-3(2)
F(3)	37(3)	82(4)	40(3)	-6(3)	-6(3)	15(3)
F(4)	52(3)	55(3)	31(3)	7(2)	22(3)	8(3)
C(1)	42(5)	33(5)	31(5)	-2(4)	1(4)	2(4)
C(2)	32(5)	45(5)	27(5)	2(4)	-2(4)	3(4)
C(3)	39(5)	38(5)	41(5)	12(4)	0(4)	2(4)
C(4)	41(5)	42(5)	39(5)	21(4)	3(4)	3(4)
C(5)	40(6)	39(5)	57(7)	12(5)	8(5)	-7(4)
C(6)	33(5)	40(5)	48(6)	15(4)	12(4)	-3(4)
C(7)	28(5)	37(5)	43(5)	5(4)	12(4)	9(4)
C(8)	34(5)	39(5)	37(5)	1(4)	11(4)	5(4)
C(9)	27(5)	33(5)	44(5)	-1(4)	-1(4)	-6(4)
C(10)	33(5)	26(4)	41(5)	8(4)	3(4)	-5(4)
C(11)	38(6)	50(6)	55(7)	7(5)	1(5)	5(5)
C(12)	55(7)	50(7)	76(9)	6(6)	10(6)	14(6)
C(13)	72(8)	35(6)	63(8)	-1(5)	28(6)	2(5)
C(14)	76(8)	37(6)	51(7)	16(5)	7(6)	-4(5)
C(15)	44(6)	28(5)	45(6)	9(4)	11(4)	-2(4)
C(16)	142(17)	74(10)	125(15)	-10(10)	60(13)	31(11)
C(17)	38(5)	30(5)	56(6)	4(4)	5(5)	2(4)

C(18)	41(6)	27(5)	58(7)	-5(4)	-5(5)	3(4)
C(19)	57(7)	35(6)	87(10)	-8(6)	-4(7)	-6(5)
C(20)	85(10)	49(7)	58(8)	-14(6)	-29(7)	8(7)
C(21)	86(10)	78(9)	54(8)	-26(7)	-5(7)	4(8)
C(22)	58(7)	76(8)	46(7)	0(6)	-4(6)	-13(6)
C(23)	41(6)	52(6)	38(6)	-9(5)	-1(4)	0(5)
C(24)	144(17)	125(15)	75(11)	-40(10)	-37(11)	16(13)
C(25)	31(5)	39(5)	60(7)	12(5)	-3(5)	-3(4)
C(26)	51(6)	29(5)	50(6)	-2(4)	2(5)	-6(4)
C(27)	69(8)	35(6)	57(7)	-1(5)	-22(6)	-4(5)
C(28)	68(8)	44(6)	59(8)	6(5)	-15(6)	5(6)
C(29)	104(11)	42(6)	42(6)	9(5)	-18(7)	-25(7)
C(30)	93(9)	42(6)	42(6)	4(5)	3(6)	-11(6)
C(31)	78(8)	30(5)	47(6)	3(5)	3(6)	-5(5)
C(32)	118(9)	95(8)	68(7)	10(7)	-1(7)	-23(7)
C(33)	36(5)	32(5)	33(5)	2(4)	11(4)	1(4)
C(34)	25(4)	32(4)	29(4)	7(4)	4(3)	5(4)
C(35)	32(5) 32(E)	29(4)	20(4)	-3(3)	3(4) 1(4)	0(4)
C(30) C(27)	33(3) 26(4)	20(4) 27(4)	20(4) 21(5)	-1(3)	1(4) 0(4)	$\frac{2(4)}{7(2)}$
C(37)	20(4) 30(5)	27(4) 30(4)	31(5) 32(5)	-7(4)	0(4) 0(4)	1(3)
C(30)	27(4)	35(5)	32(5)	-1(4)	-1(4)	-2(4)
C(40)	26(4)	29(4)	25(4)	4(3)	2(3)	1(3)
C(41)	24(4)	30(4)	27(4)	-1(3)	5(3)	3(3)
C(42)	36(5)	25(4)	33(5)	4(4)	6(4)	0(4)
C(43)	26(4)	39(5)	29(5)	4(4)	1(4)	5(4)
C(44)	30(5)	37(5)	33(5)	-1(4)	4(4)	0(4)
C(45)	33(5)	32(5)	32(5)	3(4)	-1(4)	1(4)
C(46)	35(5)	45(5)	22(4)	-2(4)	3(4)	-5(4)
C(47)	46(6)	42(5)	27(5)	-3(4)	10(4)	7(4)
C(48)	39(5)	45(5)	35(5)	2(4)	10(4)	10(4)
C(49)	37(5)	50(6)	30(5)	2(4)	8(4)	8(4)
C(50)	30(5)	57(6)	39(5)	2(5)	7(4)	10(4)
C(51)	20(4)	42(5)	35(5)	4(4)	6(4)	-1(4)
C(52)	28(5)	50(6)	47(6)	-2(5)	21(4)	4(4)
C(53)	37(5)	45(5)	22(4)	4(4)	9(4)	2(4)
C(54)	36(5)	42(5)	24(4)	1(4)	16(4)	3(4)
C(55)	31(5)	46(5)	30(5)	3(4)	-1(4)	5(4)
C(56)	33(5) 42(6)	43(5)	24(4) 24(5)	1(4) 2(4)	4(4)	-3(4) 12(5)
C(57)	43(0) 58(7)	30(0) 39(5)	34(5) 33(5)	-6(4)	0(4) 0(5)	-13(3)
C(50)	59(7)	47(6)	28(5)	-0(4) 6(4)	$\frac{9(3)}{12(5)}$	5(5)
C(60)	39(7) 38(5)	$\frac{47(0)}{36(5)}$	25(5)	9(4)	12(3) 15(4)	1(4)
C(61)	40(5)	35(5)	26(5)	4(4)	9(4)	1(1) 1(4)
C(62)	32(5)	38(5)	33(5)	4(4)	11(4)	-3(4)
C(63)	39(5)	27(4)	25(4)	-2(3)	9(4)	0(4)
C(64)	31(5)	36(5)	33(5)	-1(4)	11(4)	0(4)
C(65)	43(5)	35(5)	31(5)	-5(4)	2(4)	3(4)
C(66)	29(5)	31(5)	44(5)	-3(4)	11(4)	6(4)
C(67)	55(6)	25(4)	37(5)	0(4)	25(5)	1(4)
C(68)	30(5)	35(5)	27(4)	1(4)	8(4)	-3(4)
C(69)	45(6)	35(5)	39(5)	-2(4)	13(4)	8(4)
C(70)	35(5)	32(5)	33(5)	7(4)	6(4)	4(4)
C(71)	36(5)	51(6)	39(5)	-2(4)	9(4)	7(4)
C(72)	36(5)	54(6)	41(6)	7(5)	3(4)	6(5)
C(73)	37(5)	28(4)	33(5)	-2(4)	6(4)	-1(4)
C(74)	37(5)	35(5)	28(5)	-2(4)	5(4)	3(4)
C(75)	29(5)	37(5) 21(4)	29(5)	0(4)	4(4)	0(4)
C(70)	20(4) 21(5)	31(4) 27(5)	20(4) 24(5)	0(4)	2(4) 2(4)	-11(4)
C(78)	31(3) 34(5)	37(3) 16(5)	34(3) 26(5)	-1(4)	$\Delta(4)$ $\Lambda(\Lambda)$	-2(4) -12(4)
C(79)	33(5)	20(5)	25(3) 25(4)	-5(4)	5(4)	-10(4)
C(80)	28(5)	31(5)	33(5)	-2(4)	-1(4)	-8(4)
C(81)	35(5)	33(5)	24(4)	-1(3)	3(4)	-8(4)
C(82)	25(4)	44(5)	36(5)	-4(4)	3(4)	-13(4)
C(83)	25(5)	47(6)	49(6)	-1(5)	8(4)	-1(4)
C(84)	35(5)	38(5)	36(5)	-7(4)	10(4)	-3(4)

C(85)	42(5)	34(5)	40(5)	-14(4)	15(4)	-12(4)
C(86)	37(5)	52(6)	32(5)	-12(4)	8(4)	-12(4)
C(87)	32(5)	71(7)	31(5)	2(5)	4(4)	-5(5)
C(88)	36(5)	68(7)	23(5)	8(4)	4(4)	-8(5)
C(89)	34(5)	62(7)	36(5)	6(5)	8(4)	-21(5)
C(90)	21(4)	63(6)	32(5)	1(4)	12(4)	-7(4)
C(91)	39(5)	30(5)	41(5)	-1(4)	12(4)	1(4)
C(92)	36(5)	31(5)	27(4)	-1(4)	3(4)	-2(4)
C(93)	50(6)	33(5)	36(5)	-11(4)	9(4)	-14(4)
C(94)	39(5)	41(5)	36(5)	-4(4)	7(4)	-11(4)
C(95)	35(5)	39(5)	24(4)	4(4)	-1(4)	-4(4)
C(96)	32(5)	38(5)	24(4)	1(4)	-2(4)	0(4)
C(97)	31(5)	32(5)	37(5)	0(4)	0(4)	-9(4)
C(98)	35(6)	80(8)	53(7)	-19(6)	13(5)	-6(5)
C(99)	23(4)	56(6)	30(5)	-1(4)	6(4)	-6(4)
C(100)	20(4)	46(5)	38(5)	-1(4)	4(4)	-3(4)
C(101)	31(5)	55(6)	36(5)	15(5)	-6(4)	-3(4)
C(102)	44(6)	40(6)	48(6)	12(5)	-9(5)	2(5)
C(103)	38(5)	30(5)	54(6)	1(4)	-4(5)	0(4)
C(104)	34(5)	39(5)	33(5)	2(4)	-7(4)	0(4)
C(105)	33(5)	34(5)	36(5)	3(4)	3(4)	3(4)
C(106)	59(7)	41(6)	59(7)	-14(5)	-5(6)	11(5)
C(107)	64(8)	64(8)	58(7)	4(6)	8(6)	2(6)
C(108)	43(5)	41(5)	46(5)	-2(5)	6(5)	-6(5)
C(109)	42(5)	40(5)	48(5)	-3(5)	5(5)	-2(5)
C(110)	45(5)	44(5)	51(5)	-2(4)	5(4)	0(4)
C(111)	54(4)	49(4)	53(4)	-2(3)	5(3)	-3(3)
C(112)	51(4)	45(4)	48(4)	-6(3)	7(3)	-6(3)
C(113)	48(5)	45(5)	50(5)	-5(4)	6(4)	-8(4)
O(6A)	61(4)	58(4)	61(4)	-4(3)	5(4)	-3(4)
C(114)	60(7)	60(7)	62(8)	-5(7)	7(7)	2(6)
C(208)	184(9)	183(8)	183(9)	0(3)	24(4)	1(3)
C(209)	186(9)	185(8)	185(8)	1(3)	24(4)	0(3)
C(210)	187(8)	186(8)	185(8)	2(3)	24(4)	-2(3)
C(211)	186(8)	184(8)	184(8)	1(3)	24(3)	-1(3)
C(212)	184(8)	182(8)	182(8)	0(3)	25(4)	1(3)
C(213)	185(8)	183(8)	183(9)	-1(3)	24(4)	1(3)
O(6B)	189(9)	184(8)	186(8) 177(11)	1(4)	23(4)	-1(4)
C(214)	188(11)	1/1(11) 70(2)	1/7(11) 22(1)	Z(7)	$\frac{24(7)}{7(1)}$	2(7)
S(1)	37(1)	79(2)	32(1)	18(1)	7(1)	-1(1)
O(7)	63(6)	131(8)	37(4)	14(5) 27(5)	0(4)	-39(6)
O(8)	43(4)	94(6)	75(6) 52(5)	37(5) 14(4)	25(4)	21(4)
O(9) C(115)	36(3)	$\frac{60(3)}{75(9)}$	55(3)	$\frac{14(4)}{7(6)}$	23(4) 2(5)	10(4) 14(5)
C(115) E(5)	30(0)	73(0) 92(E)	34(7) 122(7)	7(0) E2(E)	-3(3)	14(3) 19(4)
F(5) F(6)	49(4) 35(3)	79(5)	722(7)	52(5) 5(4)	10(4) 14(3)	10(4)
F(0) = F(7)	81(5)	91(6)	79(5)	-24(4)	-5(4)	7(4)
S(2)	45(2)	56(2)	16(3)	-24(4)	-3(4) 22(1)	-6(1)
O(10)	43(2)	115(8)	102(8)	-3(1) 22(6)	17(5)	14(5)
O(10)	105(8)	151(10)	34(5)	12(5)	27(5)	49(7)
O(11)	100(0) 100(7)	101(10) 103(7)	153(8)	-42(6)	59(6)	-25(6)
C(116)	43(6)	86(9)	44(7)	34(6)	8(5)	0(6)
F(8)	54(4)	104(6)	73(5)	24(4)	22(4)	18(4)
F(9)	84(5)	96(6)	203(8)	19(6)	59(6)	-11(5)
F(10)	90(6)	224(9)	77(5)	27(6)	27(5)	19(6)
S(3)	64(2)	54(2)	86(2)	8(2)	-2(2)	-17(2)
O(13)	72(5)	88(6)	126(7)	37(5)	35(5)	9(5)
O(14)	110(7)	129(7)	99(7)	3(6)	13(6)	-57(6)
O(15)	111(7)	156(8)	98(7)	8(6)	-12(6)	67(7)
C(117)	109(7)	102(7)	110(7)	2(5)	15(5)	-3(5)
F(11)	92(9)	254(18)	243(18)	46(14)	47(10)	-22(10)
F(12)	186(9)	144(7)	123(7)	18(6)	10(7)	-41(7)
F(13)	124(9)	121(9)	219(14)	-59(9)	-15(9)	-36(8)
	×- /	- \- /	x/	~ /	~ /	(-)

Table S10. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10^3) for $[4_{MFM} \cdot (Ag)_3](OTf)_3$.

	х	у	Z	U(eq)
H(1A)	8116	3645	5683	- 13
H(1R)	8642	3604	5148	43
H(2A)	8570	4341	4964	42
H(2B)	7846	4116	4773	42
H(3A)	7488	5056	5575	48
H(3B)	7597	4873	4861	48
H(4A)	8776	5009	5083	49
H(4B)	8346	5430	5133	49
H(5A)	9726	5447	6468	54
H(5B)	9589	5530	5679	54
H(6A)	9790	4804	5479	48
H(6B)	10450	5022	5884	48
H(7A)	10344	4033	6623	42
H(7B)	10636	4263	6017	42
H(8A)	9567	4153	5326	44
H(8B)	9913	3717	5580	44
H(9A)	7218	4008	5707	42
H(9B)	6870	4418	5355	42
H(11)	6271	4874	5984	58
H(12)	5822	5008	6974	72
H(14)	7235	4243	7959	65
H(15)	7640	4073	6967	46
H(16A)	5533	4941	8623	165
H(16B)	5698	5208	7992	165
H(16C)	5270	4781	7881	165
H(17A)	8686	5844	6237	49
H(17B)	7984	5587	6169	49
H(19)	9283	5967	7346	73
H(20)	9358	5898	8498	81
H(22)	7851	5024	8249	73
H(23)	7800	5100	7088	53
$\Pi(24A)$ $\Pi(24B)$	9052	5521 EE10	10057	179
$\Pi(24D)$ $\Pi(24C)$	9002	5808	9499	179
H(24C) H(25A)	10205	5058	7109	52
H(25R)	10353	5058 4685	7100	53
H(27)	11016	4005	7808	68
H(28)	10729	3820	8798	71
H(30)	9136	4612	8749	71
H(31)	9462	4921	7779	62
H(32A)	9203	3949	10151	142
H(32B)	9333	4414	9896	142
H(32C)	8807	4111	9454	142
H(33A)	9673	3499	6682	39
H(33B)	9173	3235	6148	39
H(35)	8102	2983	6435	35
H(36)	7394	2872	7252	35
H(38)	8450	3746	8433	37
H(39)	9172	3841	7639	38
H(41)	7011	2657	8112	33
H(42)	6293	2547	8922	37
H(44)	6828	3666	9761	40
H(45)	7545	3789	8950	39
H(46A)	6113	2717	10123	41
H(46B)	6117	3202	10324	41

H(47A)	5412	3651	9524	46
H(47B)	5021	3552	10149	46
H(48A)	4256	3859	9355	47
H(48B)	4034	3379	9401	47
H(49A)	3749	3503	7684	47
H(49B)	3418	3663	8319	47
H(50A)	3373	2977	8714	50
H(50B)	2967	3013	7976	50
H(51A)	3849	2050	8037	39
H(51B)	3160	2256	8220	39
H(52A)	3756	2458	9287	48
H(52B)	3714	1960	9191	48
H(53A)	5403	2203	9980	41
H(53B)	4651	2131	10170	41
H(54A)	4392	2854	9979	39
H(54B)	5037	2801	10543	39
H(55A)	3305	2512	7118	43
H(55B)	3725	2939	7081	43
H(57)	3768	1891	6713	51
H(59)	5739	1838	6349	53
H(61)	5045	2859	7238	40
H(62A)	4606	1657	8634	40
H(62B)	4814	1580	9417	40
H(64)	6026	1589	9909	39
H(66)	7489	1710	8690	41
H(68)	5487	1863	7933	36
H(69A)	5120	3990	8615	47
H(69B)	4401	4120	8201	47
H(71)	4213	3992	6973	50
H(72)	4675	3853	6009	53
H(74)	6413	3457	7117	40
H(75)	5929	3585	8077	38
H(77)	5298	3938	5208	41
H(78)	5848	3827	4254	42
H(80)	7152	3017	5300	37
H(81)	6611	3116	6234	37
H(82A)	6982	3648	3873	42
H(82B)	7392	3253	4211	42
H(83A)	6664	2617	4248	48
H(83B)	7151	2569	3679	48
H(84A)	6164	2396	2908	43
H(84B)	6353	2055	3486	43
H(85A)	4537	2172	3269	45
H(85B)	5122	1920	2962	45
H(86A)	5252	2472	2223	48
H(86B)	4476	2315	2125	48
H(87A)	4393	3417	1983	54
H(87B)	4503	3012	1543	54
H(88A)	5702	3043	1930	51
H(88B)	5434	3446	1501	51
H(89A)	6597	3815	2867	52
H(89B)	6599	3612	2143	52
H(90A)	6624	2937	2603	46
H(90B)	7262	3205	2945	46
H(91A)	5888	2215	4527	43
H(91B)	5407	1863	4146	43
H(93)	4202	1851	4261	48
H(94)	3297	2080	4801	46
H(96)	4487	3020	5644	38
H(97)	5368	2810	5073	40
H(98A)	2380	2639	5852	83
H(98B)	2477	2521	5099	83
H(98C)	2757	2212	5699	83
H(99A)	3765	2630	2896	43
H(99B)	3565	2898	2226	43
H(101)	3233	3644	2357	50
H(102)	3063	4205	3032	54

H(104)	3957	3557	4653	43
H(105)	4149	3002	3949	41
H(10A)	3288	4475	5213	81
H(10B)	3162	3981	5133	81
H(10C)	3914	4168	5136	81
H(10D)	4920	3997	2174	75
H(10E)	5660	4153	2043	75
H(10F)	4913	4010	2417	75
H(10G)	5638	4193	2730	75
H(109)	4553	4088	3285	52
H(110)	4600	4485	4265	56
H(112)	6429	4961	3937	57
H(113)	6383	4564	2957	57
H(11A)	5122	4986	5652	91
H(11B)	4617	5219	5082	91
H(11C)	4718	4722	5050	91
H(209)	6512	4263	2022	222
H(210)	6796	4553	1030	223
H(212)	4807	4494	213	219
H(213)	4524	4204	1206	220
H(21A)	6812	4659	-747	268
H(21B)	6969	4881	-31	268
H(21C)	7017	4381	-90	268

Table S11. Crystal data and structure refine	ement for [3 _{FMF} ·(Ag) ₃](OT	`f)3.	
Identification code	[3 _{FMF} ·(Ag) ₃](OTf) ₃		
Empirical formula	C114 H122 Ag3 Cl7 F18 N12 O8 S2		
	$[Ag_3(C_{110}H_{120}N_{12}O_2F_{12})] \cdot 2(CF_3SO_3) \cdot Cl \cdot 2(CHC)$		
Formula weight	2766.11		
Temperature	120 K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 13.6616(15) Å	α= 107.432(2)°.	
	b = 20.107(2) Å	$\beta = 95.398(2)^{\circ}.$	
	c = 26.216(3) Å	$\gamma = 106.045(2)^{\circ}$.	
Volume	6479.0(12) Å ³		
Z	2		
Density (calculated)	1.418 Mg/m ³		
Absorption coefficient	0.707 mm ⁻¹		
F(000)	2816		
Crystal size	0.272 x 0.212 x 0.134 mm ³		
Theta range for data collection	0.830 to 27.925°.		
Index ranges	-17<=h<=17, -26<=k<=26, -34<=l<=34		
Reflections collected	86934		
Independent reflections	30941 [R(int) = 0.0750]		
Completeness to theta = 25.242°	99.9 %		
Absorption correction	Semi-empirical from equiva	lents	
Max. and min. transmission	0.7456 and 0.6695		
Refinement method	Full-matrix least-squares on	F ²	
Data / restraints / parameters	30941 / 18 / 1486		
Goodness-of-fit on F ²	1.053		
Final R indices [I>2sigma(I)]	R1 = 0.1123, wR2 = 0.3129		
R indices (all data)	R1 = 0.1493, wR2 = 0.3439		
Extinction coefficient	n/a		
Largest diff. peak and hole	6.415 and -1.930 e.Å ⁻³		

	х	у	Z	U(eq)
Ag(1)	9070(1)	6983(1)	9066(1)	16(1)
Ag(2)	4636(1)	1396(1)	7939(1)	18(1)
Ag(3)	2267(1)	2190(1)	4266(1)	20(1)
F(1)	13245(5)	6315(4)	9660(3)	59(2)
F(2)	9943(6)	5780(3)	10115(3)	43(2)
F(3)	9656(5)	8023(4)	11700(2)	41(2)
F(4)	7916(5)	5731(3)	10361(3)	38(1)
F(5)	4688(4)	5484(3)	9517(3)	36(1)
F(6)	7512(4)	4631(3)	9232(2)	31(1)
F(7)	419(5)	139(3)	4522(2)	34(1)
F(8)	-2447(5)	960(5)	4441(3)	53(2)
F(9)	2356(5)	-162(3)	4472(2)	37(1)
O(1)	4154(5)	4166(4)	7972(3)	30(2)
O(2)	6465(6)	2565(4)	6335(3)	34(2)
F(10)	1004(5)	-1166(3)	2597(2)	40(2)
F(11)	2713(4)	1009(3)	5564(2)	32(1)
F(12)	5811(5)	1012(4)	4939(3)	45(2)
N(1)	10668(6)	8031(4)	9361(3)	20(1)
N(2)	8522(5)	8022(4)	9563(3)	18(1)
N(3)	7557(6)	6864(4)	8434(3)	20(1)
N(4)	9744(6)	6887(4)	8228(3)	19(1)
N(5)	6104(6)	1008(4)	8264(3)	22(2)
N(6)	4728(6)	1686(4)	8917(3)	24(2)
N(7)	2815(5)	778(4)	7994(3)	22(2)
N(8)	4225(6)	136(4)	7335(3)	22(2)
N(9)	1904(7)	3348(4)	4658(3)	27(2)
N(10)	980(6)	2157(4)	3533(3)	20(1)
N(11)	3072(6)	1917(4)	3458(3)	20(1)
N(12)	3997(6)	3084(4)	4583(3)	25(2)
C(1)	10306(7)	8683(4)	9472(3)	20(2)
C(2)	9476(7)	8649(5)	9821(3)	23(2)
C(3)	7912(6)	8133(4)	9111(3)	18(2)
C(4)	7112(7)	7428(5)	8723(4)	23(2)
C(5)	8017(7)	7065(5)	7983(3)	20(2)
C(6)	8803(7)	6682(5)	7805(3)	23(2)
C(7)	10410(7)	7640(5)	8332(4)	24(2)
C(8)	11181(7)	7957(5)	8878(3)	23(2)
C(9)	11421(7)	8110(5)	9841(4)	22(2)
C(10)	11479(7)	7378(5)	9852(3)	22(2)
C(11)	12363(8)	7169(6)	9733(4)	34(2)
C(12)	12377(8)	6502(6)	9767(4)	37(2)
C(13)	11586(9)	6006(6)	9886(4)	37(3)
C(14)	10/41(9)	6238(5)	9992(4)	31(2)
C(15)	10658(8)	6899(5)	9977(4)	26(2)
C(16)	(/34(5)	7919(4)	9969(3)	7(1)
C(17)	8238(6)	7573(5)	10345(3)	17(2)
C(18)	8819(7)	7980(5)	10860(3)	23(2)
C(19)	9084(8)	7621(6)	11187(4) 11024(4)	29(2)
C(20)	8799(7)	6862(6)	11034(4) 10525(4)	26(2)
C(21)	8224(<i>1</i>)	04/5(5)	10525(4) 10165(2)	20(2)
C(22)	(940(6) (720(7)	0009(5) 6125(E)	10105(3) 8204(2)	19(2)
C(23)	0/20(7)	0133(5) E77((5)	0200(3)	22(2)
C(24)	6507(7)	5770(5)	$\frac{0031(3)}{0001(4)}$	21(2)
C(23)	5667(7)	5001(5) E446(5)	0091(4)	24(2)
C(20)	3490(0) 6007(7)	3440(3) FOF4(5)	9200(4)	24(2)
C(21)	0097(7) 6009(7)	5034(3)	7373(4) 0124(2)	24(2)
C(20)	0900(<i>1</i>) 7141(7)	5282(5)	9124(3) 8755(2)	20(2)
C(29)	(141(<i>t</i>)) 10225(7)	6367(5)	8038(3)	22(2) 21(2)
0,00/	10323(77	0007(0)	0030(3/	21(2)

Table S12. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2$ x 10³) for [**3**_{FMF}·(Ag)₃](OTf)₃. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(31)	9789(7)	5609(5)	8057(3)	21(2)
C(32)	9880(7)	5489(5)	8553(3)	19(2)
C(33)	9403(7)	4804(5)	8581(3)	21(2)
C(34)	8831(6)	4208(5)	8113(3)	18(2)
C(35)	8751(7)	4339(5)	7625(3)	24(2)
C(36)	9225(8)	5030(5)	7591(3)	25(2)
C(37)	8351(6)	3462(5)	8137(3)	19(2)
C(38)	8706(7)	3240(5)	8557(3)	21(2)
C(39)	8310(7)	2520(5)	8546(3)	22(2)
C(40)	7519(7)	2014(5)	8128(3)	20(2)
C(41)	7122(7)	2234(5)	7725(4)	23(2)
C(42)	7520(7) 7124(7)	2937(3) 1214(5)	7729(3)	23(2)
C(43)	(124(7))	1214(3) 1200(5)	8867(4)	22(2) 24(2)
C(44) C(45)	5290(7)	1299(3) 1273(6)	9101(4)	24(2) 25(2)
C(46)	3632(7)	1273(0) 1438(6)	8979(4)	23(2) 28(2)
C(47)	2986(7)	718(6)	8549(4)	20(2) 27(2)
C(48)	2463(7)	45(5)	7558(4)	28(2)
C(49)	3316(7)	-315(5)	7473(4)	28(2)
C(50)	5141(7)	-84(5)	7443(4)	28(2)
C(51)	5639(7)	205(5)	8046(4)	28(2)
C(52)	5185(7)	2489(5)	9208(4)	28(2)
C(53)	4917(7)	2941(5)	8888(3)	24(2)
C(54)	4145(7)	3275(5)	8991(4)	25(2)
C(55)	3903(7)	3688(5)	8673(4)	27(2)
C(56)	4445(7)	3761(5)	8259(4)	26(2)
C(57)	5217(7)	3436(5)	8152(4)	29(2)
C(58)	5436(7)	3039(5)	8470(4)	27(2)
C(59)	4711(9)	4298(6)	7564(5)	37(2)
C(60)	4038(7)	71(5)	6744(4)	27(2)
C(61)	46/1(7)	(28(5))	6645(3)	25(2)
C(62)	4410(8) 4007(8)	1373(6) 2001(5)	6687(2)	31(2) 28(2)
C(03)	4997(0) 5856(8)	2001(5) 2001(5)	6448(4)	20(2)
C(65)	6128(7)	1351(5)	6309(4)	$2^{j}(2)$ $2^{j}(2)$
C(66)	5544(7)	719(5)	6404(4)	26(2)
C(67)	6194(9)	3225(6)	6455(4)	36(2)
C(68)	1995(7)	1128(5)	7963(4)	25(2)
C(69)	1946(6)	1404(5)	7496(4)	21(2)
C(70)	2666(7)	2075(5)	7526(4)	24(2)
C(71)	2590(7)	2370(5)	7119(4)	23(2)
C(72)	1809(7)	2022(5)	6656(3)	20(2)
C(73)	1113(7)	1344(5)	6616(4)	26(2)
C(74)	1177(7)	1041(5)	7029(4)	25(2)
C(75)	1674(7)	2364(5)	6239(4)	22(2)
C(76)	2037(7)	3122(5)	6370(4)	27(2)
C(77)	1895(8)	3465(5)	5993(4)	28(2)
C(78)	1331(7) 1000(7)	3037(5) 2277(5)	5460(4) 5222(4)	20(2) 26(2)
C(19)	1000(7) 1147(7)	2277(5) 1948(5)	5525(4) 5706(4)	20(2) 23(2)
C(81)	1147(7) 1180(9)	3390(6)	5700(4) 5041(4)	23(2) 32(2)
C(82)	1492(8)	3480(5)	4166(4)	$\frac{32(2)}{27(2)}$
C(83)	635(8)	2800(5)	3769(3)	23(2)
C(84)	1590(7)	2272(5)	3103(3)	22(2)
C(85)	2271(8)	1786(5)	2987(3)	25(2)
C(86)	3918(8)	2620(5)	3568(4)	26(2)
C(87)	4567(8)	2896(6)	4140(4)	30(2)
C(88)	3817(8)	3788(5)	4638(4)	30(2)
C(89)	2940(8)	3894(5)	4934(4)	29(2)
C(90)	68(7)	1486(5)	3292(3)	23(2)
C(91)	-316(7)	1175(5)	3720(3)	22(2)
C(92)	240(7)	792(5)	3931(3)	21(2)
C(93)	-119(8)	506(5)	4317(4)	26(2)
C(94)	-1029(8) 1552(7)	542(6)	4499(4) 4270(4)	32(2)
C(95)	-1002(7)	911(0) 1232(6)	4219(4) 3897(1)	32(2)
C(97)	3561(10)	1304(5)	3343(4)	35(2) 35(3)
	\ /	< = /	· · ·	- (-)

C(98)	2831(6)	616(5)	3405(3)	19(2)
C(99)	2870(7)	555(5)	3926(3)	22(2)
C(100)	2294(7)	-88(5)	3974(4)	26(2)
C(101)	1645(7)	-680(5)	3537(4)	26(2)
C(102)	1604(7)	-595(5)	3038(4)	29(2)
C(103)	2175(7)	33(5)	2961(3)	24(2)
C(104)	4590(8)	3118(5)	5106(4)	30(2)
C(105)	4481(7)	2371(5)	5141(3)	28(2)
C(106)	3619(7)	2016(5)	5322(3)	25(2)
C(107)	3545(7)	1341(5)	5371(3)	24(2)
C(108)	4255(7)	980(6)	5247(4)	26(2)
C(109)	5092(8)	1342(6)	5070(4)	34(2)
C(110)	5235(7)	2023(6)	5014(4)	30(2)
S(1)	6407(2)	5204(1)	6516(1)	37(1)
O(3)	6566(7)	4926(4)	6952(3)	45(2)
O(4)	6903(6)	5983(4)	6652(3)	42(2)
O(5)	6521(9)	4761(5)	5989(3)	69(3)
C(111)	5093(11)	5113(6)	6440(4)	49(4)
F(13)	4833(6)	5549(5)	6899(3)	60(2)
F(14)	4447(7)	4425(5)	6354(3)	76(3)
F(15)	4719(7)	5321(6)	6031(4)	82(3)
S(2)	9647(2)	9678(1)	8392(1)	23(1)
O(6)	9272(5)	8893(3)	8277(3)	25(1)
O(7)	9606(6)	9891(4)	7921(3)	31(2)
O(8)	10578(5)	10054(4)	8795(3)	34(2)
C(112)	8644(6)	9991(4)	8725(3)	14(1)
F(16)	8644(5)	9854(3)	9203(2)	36(1)
F(17)	7730(4)	9644(4)	8406(3)	43(2)
F(18)	8873(5)	10716(3)	8848(3)	40(2)
Cl(1A)	14163(8)	9166(6)	9295(6)	100(3)
Cl(1B)	7576(10)	4221(7)	5097(6)	113(4)
C(113)	1601(10)	4608(7)	7897(4)	43(3)
Cl(2)	1420(3)	3671(2)	7732(1)	45(1)
Cl(3)	2393(3)	5109(2)	8547(1)	64(1)
Cl(4)	2132(4)	4941(2)	7406(2)	78(1)
C(114)	9206(14)	2832(9)	6141(7)	72(4)
Cl(5)	9041(4)	2668(2)	6738(2)	72(1)
Cl(6)	8364(4)	2082(3)	5576(2)	91(2)
Cl(7)	9027(6)	3657(3)	6126(3)	113(2)

Table S13.	Bond lengt	hs [Å]	and	angles	[°]	for
[3 FMF•(Ag) ₃](OTf)3.					

Ag(1)-N(3)	2.433(7)
Ag(1)-N(4)	2.437(7)
Ag(1)-N(1)	2.443(7)
Ag(1)-N(2)	2.459(7)
Ag(2)-N(8)	2.426(8)
Ag(2)-N(6)	2.434(7)
Ag(2)-N(7)	2.495(7)
Ag(2)-N(5)	2.510(7)
Ag(3)-N(12)	2.428(8)
Ag(3)-N(10)	2.449(7)
Ag(3)-N(9)	2.454(8)
Ag(3)-N(11)	2.464(7)
F(1)-C(12)	1.369(12)
F(2)-C(14)	1.353(13)

F(3)-C(19)	1.370(10)
F(4)-C(21)	1.353(11)
F(5)-C(26)	1.346(10)
F(6)-C(28)	1.367(10)
F(7)-C(93)	1.354(11)
F(8)-C(95)	1.351(11)
F(9)-C(100)	1.356(10)
O(1)-C(56)	1.372(12)
O(1)-C(59)	1.416(12)
O(2)-C(64)	1.339(13)
O(2)-C(67)	1.428(12)
F(10)-C(102)	1.355(10)
F(11)-C(107)	1.373(10)
F(12)-C(109)	1.344(12)
N(1)-C(1)	1.486(11)
N(1)-C(9)	1.488(11)
N(1)-C(8)	1.492(11)
N(2)-C(2)	1.469(11)
N(2)-C(3)	1.491(10)
N(2)-C(16)	1.597(9)
	- (-)

N(3)-C(4)	1.479(11)	C(18)-C(19)	1.357(13)
N(3)-C(23)	1.493(11)	C(18) - H(18A)	0.9300
N(3)-C(5)	1.499(10)	C(19)- $C(20)$	1.385(14)
N(4) - C(7)	1.462(11)	C(20) - C(21)	1.360(13)
N(4) - C(30)	1.481(11)	C(20)-H(20A) C(21)-C(22)	0.9300
N(4)- $C(6)$	1.488(11)	C(21) - C(22)	1.395(12)
N(5) - C(51) N(5) - C(44)	1.400(12) 1.470(11)	$C(22) - \Pi(22A)$	0.9300 1 500(12)
N(5)-C(44) N(5)-C(43)	1.479(11) 1.502(11)	C(23)-C(24) C(23)-H(23A)	0.9700
N(6)-C(45)	1.302(11) 1.452(12)	C(23)-H(23R)	0.9700
N(6) - C(52)	1.481(12)	C(24)- $C(25)$	1.394(13)
N(6) - C(46)	1.483(11)	C(24) - C(29)	1.402(12)
N(7) - C(48)	1.485(12)	C(25) - C(26)	1.379(13)
N(7)-C(68)	1.486(12)	C(25)-H(25A)	0.9300
N(7)-C(47)	1.496(11)	C(26)-C(27)	1.369(13)
N(8)-C(49)	1.466(12)	C(27)-C(28)	1.376(13)
N(8)-C(50)	1.468(11)	C(27)-H(27A)	0.9300
N(8)-C(60)	1.506(12)	C(28)-C(29)	1.368(12)
N(9)-C(81)	1.476(13)	C(29)-H(29A)	0.9300
N(9)-C(82)	1.483(12)	C(30)-C(31)	1.514(12)
N(9)-C(89)	1.486(12)	C(30)-H(30A)	0.9700
N(10)-C(90)	1.478(11)	C(30)-H(30B)	0.9700
N(10)-C(83)	1.480(11)	C(31)- $C(36)$	1.386(12)
N(10)-C(84)	1.500(11)	C(31)- $C(32)$	1.393(11)
N(11) - C(85)	1.477(11)	C(32) - C(33)	1.379(12)
N(11) - C(86) N(11) - C(97)	1.480(11) 1.525(12)	C(32)-H(32A) C(22)-C(24)	0.9300
N(11) - C(97) N(12) - C(98)	1.525(12) 1.471(12)	C(33) - C(34) C(22) + U(224)	1.403(12)
N(12)-C(87)	1.471(12) 1.474(12)	C(33)-G(35)	1.383(11)
N(12)-C(104)	1.474(12) 1 496(11)	C(34)- $C(37)$	1.303(11) 1 483(11)
C(1)-C(2)	1.523(12)	C(35)- $C(36)$	1.395(13)
C(1)-H(1A)	0.9700	C(35) - H(35A)	0.9300
C(1)-H(1B)	0.9700	C(36)-H(36A)	0.9300
C(2)-H(2A)	0.9700	C(37)-C(38)	1.401(11)
C(2)-H(2B)	0.9700	C(37)-C(42)	1.402(12)
C(3)-C(4)	1.520(12)	C(38)-C(39)	1.389(12)
C(3)-H(3A)	0.9700	C(38)-H(38A)	0.9300
C(3)-H(3B)	0.9700	C(39)-C(40)	1.380(12)
C(4)-H(4A)	0.9700	C(39)-H(39A)	0.9300
C(4)-H(4B)	0.9700	C(40)- $C(41)$	1.383(12)
C(5) - C(6)	1.517(12)	C(40)- $C(43)$	1.513(12)
C(5)-H(5A)	0.9700	C(41) - C(42)	1.365(13)
C(5) - H(5B)	0.9700	$C(41) - \Pi(41A)$ C(42) + H(42A)	0.9300
C(6) - H(6R)	0.9700	$C(42) - \Pi(42A)$ C(43) - H(43A)	0.9300
C(7)- $C(8)$	1.537(12)	C(43)-H(43R)	0.9700
C(7) - H(7A)	0.9700	C(44) - C(45)	1.518(12)
C(7) - H(7B)	0.9700	C(44) - H(44A)	0.9700
C(8) - H(8A)	0.9700	C(44)-H(44B)	0.9700
C(8)-H(8B)	0.9700	C(45)-H(45A)	0.9700
C(9)-C(10)	1.505(12)	C(45)-H(45B)	0.9700
C(9)-H(9A)	0.9700	C(46)-C(47)	1.508(14)
C(9)-H(9B)	0.9700	C(46)-H(46A)	0.9700
C(10)-C(15)	1.398(14)	C(46)-H(46B)	0.9700
C(10)-C(11)	1.416(13)	C(47)-H(47A)	0.9700
C(11)-C(12)	1.376(16)	C(47)-H(47B)	0.9700
C(11)-H(11A)	0.9300	C(48)-C(49)	1.533(13)
C(12)- $C(13)$	1.383(17)	C(48)-H(48A)	0.9700
C(13)- $C(14)$	1.382(15)	C(48)-H(48B)	0.9700
C(13)-H(13A)	0.9300	C(49)-H(49A) C(40)-H(40B)	0.9700
C(14)-C(15)	1.376(13)	C(49) - H(49B)	0.9700
$C(15) - \Pi(15A)$ C(16) C(17)	0.9300	C(30) - C(31) C(50) + U(50A)	1.526(14)
C(10)-C(17) C(16)-H(164)	1.374(10) 0.9700	C(50)-H(50R)	0.9700
C(10)-11(10A) C(16)-H(16B)	0.9700	C(51)-H(51A)	0.2700
C(10)-11(10D) C(17)- $C(18)$	1 380(12)	C(51)-H(51B)	0.9700
C(17)-C(12)	1.300(12)	C(52)-C(53)	1497(14)

C(52)-H(52A)	0.9700	C(85)-H(85B)	0.9700
C(52)-H(52B)	0.9700	C(86)-C(87)	1.522(13)
C(53)-C(58)	1.395(12)	C(86)-H(86A)	0.9700
C(53)-C(54)	1.404(13)	C(86)-H(86B)	0.9700
C(54) - C(55)	1.417(13)	C(87)-H(87A)	0.9700
C(54)-H(54A)	0.9300	C(87) - H(87B)	0.9700
C(55) - C(56)	1.390(13)	C(88) - C(89)	1.516(14)
C(55)-H(55A)	0.9300	C(88) - H(88A)	0.9700
C(56) - C(57)	1.394(14) 1.280(14)	C(88) - H(88B)	0.9700
C(57) - C(58)	1.380(14)	$C(89) - \Pi(89R)$	0.9700
$C(57) - \Pi(57A)$ $C(58) = \Pi(58A)$	0.9300	$C(09) - \Pi(09B)$ C(00) C(01)	0.9700
C(50)-H(50A) C(50)-H(50A)	0.9500	C(90) - C(91) C(90) - H(90A)	0.0700
C(59)-H(59R)	0.9600	C(90) - H(90R)	0.9700
C(59)-H(59C)	0.9600	$C(90)$ - $\Pi(90B)$ C(91)- $C(96)$	1.379(14)
C(60)- $C(61)$	1.476(14)	C(91) - C(92)	1.379(14) 1.404(12)
C(60)-H(60A)	0.9700	C(92) - C(93)	1.101(12) 1.373(12)
C(60)-H(60B)	0.9700	C(92) - H(92A)	0.9300
C(61)-C(62)	1.393(13)	C(93)-C(94)	1.385(14)
C(61)- $C(66)$	1.402(13)	C(94)-C(95)	1.365(16)
C(62)-C(63)	1.405(15)	C(94)-H(94A)	0.9300
C(62)-H(62A)	0.9300	C(95)-C(96)	1.393(15)
C(63)-C(64)	1.382(15)	C(96)-H(96A)	0.9300
C(63)-H(63A)	0.9300	C(97)-C(98)	1.530(12)
C(64)-C(65)	1.409(13)	C(97)-H(97A)	0.9700
C(65)-C(66)	1.407(13)	C(97)-H(97B)	0.9700
C(65)-H(65A)	0.9300	C(98)-C(103)	1.392(12)
C(66)-H(66A)	0.9300	C(98)-C(99)	1.405(11)
C(67)-H(67A)	0.9600	C(99)-C(100)	1.364(13)
C(67)-H(67B)	0.9600	C(99)-H(99A)	0.9300
C(67)-H(67C)	0.9600	C(100)-C(101)	1.386(13)
C(68)-C(69)	1.491(12)	C(101)-C(102)	1.369(14)
C(68)-H(68A)	0.9700	C(101) - H(10A)	0.9300
C(68) - H(68B)	0.9700	C(102) - C(103)	1.372(14)
C(69) - C(74)	1.390(12)	C(103)-H(10B) C(104)-C(105)	0.9300
C(69) - C(70)	1.408(12) 1.278(12)	C(104) - C(105) C(104) + H(10C)	1.301(14)
C(70) - C(71) C(70) - H(70A)	1.376(13)	C(104) - H(10C) C(104) + H(10D)	0.9700
$C(70)$ - $\Pi(70X)$ C(71)- $C(72)$	1.391(12)	$C(104) - \Pi(10D)$ C(105) - C(106)	1 401(13)
C(71)-C(72)	0.9300	C(105) - C(100)	1.401(13) 1.408(14)
C(72)-C(73)	1.398(12)	C(106) - C(107)	1.100(14) 1.378(14)
C(72) - C(75)	1.478(12)	C(106) - H(10E)	0.9300
C(73)-C(74)	1.401(13)	C(107) - C(108)	1.372(13)
C(73)-H(73A)	0.9300	C(108) - C(109)	1.376(14)
C(74)-H(74A)	0.9300	C(108)-H(10F)	0.9300
C(75)-C(76)	1.388(13)	C(109)-C(110)	1.384(16)
C(75)-C(80)	1.395(12)	C(110)-H(11B)	0.9300
C(76)-C(77)	1.391(14)	S(1)-O(3)	1.438(8)
C(76)-H(76A)	0.9300	S(1)-O(4)	1.441(7)
C(77)-C(78)	1.406(13)	S(1)-O(5)	1.451(9)
C(77)-H(77A)	0.9300	S(1)-C(111)	1.739(15)
C(78)-C(79)	1.388(13)	C(111)-F(14)	1.357(12)
C(78)-C(81)	1.508(13)	C(111)-F(15)	1.369(12)
C(79)-C(80)	1.386(13)	C(111)-F(13)	1.401(16)
C(79)-H(79A)	0.9300	S(2)-O(7)	1.424(6)
C(80)-H(80A)	0.9300	S(2)-O(8)	1.430(7)
C(81)-H(81A)	0.9700	S(2)-O(6) S(2)-O(112)	1.442(6)
$C(01) - \Pi(01D)$ C(82) - C(82)	U.97UU 1 525(12)	S(2) - U(112) C(112) = U(17)	1.848(8) 1.212(0)
C(02) = C(03) C(02) = U(02A)	1.333(13)	C(112)-F(17) C(112) E(19)	1.312(9) 1.222(0)
$C(02) - \Pi(02A)$ C(82) - H(82B)	0.9700	C(112)-F(16) C(112)-F(16)	1.332(9)
C(83)-H(83A)	0.9700	$C(112)$ - $\Gamma(10)$ C(113)- $Cl(2)$	1.300(9)
C(83)-H(83R)	0.9700	C(113)-CI(2) C(113)-CI(4)	1.740(13)
C(84)-C(85)	1 513(13)	C(113)-Cl(3)	1 765(12)
C(84)-H(84A)	0.9700	C(113) - H(113)	0.9800
C(84)-H(84B)	0.9700	C(114)- $Cl(5)$	1.715(19)
C(85)-H(85A)	0.9700	C(114)-Cl(7)	1.755(18)

C(114)-Cl(6)	1.781(17)	C(50)-N(8)-C(60)	108.2(7)
C(114)-H(114)	0.9800	C(49)-N(8)-Ag(2)	107.8(5)
- ()		C(50)-N(8)-Ag(2)	106.0(5)
$N(3)-A_{\sigma}(1)-N(4)$	78 3(2)	C(60) - N(8) - Ag(2)	1121(5)
$N(3) - A_{g}(1) - N(1)$	124 A(2)	C(81)-N(9)-C(82)	109.9(8)
$N(4) - A_{\alpha}(1) - N(1)$	77 A(2)	C(81)-N(9)-C(80)	109.9(0) 109.2(7)
N(4) - Ag(1) - N(1) $N(2) A_{\alpha}(1) - N(2)$	77.4(2)	$C(01)^{-1}V(0)^{-}C(00)$	109.3(7) 111.2(7)
N(3)-Ag(1)- $N(2)$	11.3(2)	C(02) - IN(9) - C(09)	111.2(7)
N(4) - Ag(1) - N(2)	124.0(2)	C(81) - N(9) - Ag(3)	119.5(6)
N(1)-Ag(1)-N(2)	76.2(2)	C(82)-N(9)-Ag(3)	102.4(5)
N(8)-Ag(2)-N(6)	121.2(3)	C(89)-N(9)-Ag(3)	104.2(6)
N(8)-Ag(2)-N(7)	75.3(2)	C(90)-N(10)-C(83)	109.7(7)
N(6)-Ag(2)-N(7)	77.6(2)	C(90)-N(10)-C(84)	109.5(6)
N(8)-Ag(2)-N(5)	76.7(2)	C(83)-N(10)-C(84)	110.1(7)
N(6)-Ag(2)-N(5)	74.4(2)	C(90)-N(10)-Ag(3)	118.0(5)
N(7)-Ag(2)-N(5)	121.0(2)	C(83)-N(10)-Ag(3)	105.2(5)
N(12)-Ag(3)-N(10)	124.2(2)	C(84)-N(10)-Ag(3)	104.0(5)
N(12)-Ag(3)-N(9)	77.7(3)	C(85)-N(11)-C(86)	110.6(7)
N(10)-Ag(3)-N(9)	77.5(2)	C(85)-N(11)-C(97)	110.5(7)
N(12)-Ag(3)-N(11)	77.2(2)	C(86)-N(11)-C(97)	107.4(7)
N(10)-Ag(3)-N(11)	76.5(2)	C(85)-N(11)-Ag(3)	106.0(5)
N(9)-Ag(3)-N(11)	1236(2)	C(86)-N(11)-Ag(3)	$102\ 2(5)$
C(56)-O(1)-C(59)	117 9(8)	C(97)-N(11)-Ag(3)	1197(5)
C(64) - O(2) - C(67)	117.8(9)	C(88)-N(12)-C(87)	119.7(3) 110.3(7)
C(0) = O(2) = C(0)	117.0(5) 110 1(7)	C(88)-N(12)-C(104)	110.3(7) 110.7(7)
C(1) - N(1) - C(9)	110.1(7) 100.0(7)	$C(00)^{-11}(12)^{-1}C(104)$ $C(07)^{-11}(12)^{-1}C(104)$	110.7(7) 100.0(8)
C(1) - N(1) - C(0)	109.9(7)	C(07) - IN(12) - C(104)	109.9(6)
C(9)-N(1)-C(8)	109.1(7)	C(88) - IN(12) - Ag(3)	103.3(6)
C(1)-N(1)-Ag(1)	104.3(5)	C(87)-N(12)-Ag(3)	105.7(5)
C(9)-N(1)-Ag(1)	117.8(5)	C(104) - N(12) - Ag(3)	116.3(5)
C(8)-N(1)-Ag(1)	105.3(5)	N(1)-C(1)-C(2)	112.3(7)
C(2)-N(2)-C(3)	111.3(7)	N(1)-C(1)-H(1A)	109.1
C(2)-N(2)-C(16)	113.0(6)	C(2)-C(1)-H(1A)	109.1
C(3)-N(2)-C(16)	103.9(6)	N(1)-C(1)-H(1B)	109.1
C(2)-N(2)-Ag(1)	106.4(5)	C(2)-C(1)-H(1B)	109.1
C(3)-N(2)-Ag(1)	101.7(4)	H(1A)-C(1)-H(1B)	107.9
C(16)-N(2)-Ag(1)	119.9(4)	N(2)-C(2)-C(1)	113.7(7)
C(4)-N(3)-C(23)	109.2(7)	N(2)-C(2)-H(2A)	108.8
C(4)-N(3)-C(5)	109.7(6)	C(1)-C(2)-H(2A)	108.8
C(23)-N(3)-C(5)	109.9(6)	N(2)-C(2)-H(2B)	108.8
C(4)-N(3)-Ag(1)	106.3(5)	C(1)-C(2)-H(2B)	108.8
C(23)-N(3)-Ag(1)	118.4(5)	H(2A)-C(2)-H(2B)	107.7
C(5)-N(3)-Ag(1)	103 0(5)	N(2)-C(3)-C(4)	113.6(7)
C(7) - N(4) - C(30)	109.8(7)	N(2)-C(3)-H(3A)	108.8
C(7)-N(4)-C(6)	100.0(1) 111 4(7)	C(4)-C(3)-H(3A)	108.8
C(30)-N(4)-C(6)	108 7(6)	N(2)-C(3)-H(3B)	108.8
C(7) - N(4) - Ag(1)	102.7(5)	C(4) - C(3) - H(3B)	108.8
$C(20) N(4) A_{\alpha}(1)$	102.7(3) 120.2(5)	U(2A) C(2) U(2B)	100.0
C(50) - N(4) - Ag(1)	120.3(3) 102.7(E)	N(2) C(4) C(2)	107.7 114.2(7)
C(0) - N(4) - Ag(1)	103.7(3) 112.2(7)	N(3) - C(4) - C(3) N(2) - C(4) - U(4A)	114.2(7)
C(51)-N(5)-C(44)	112.3(7)	$N(3)-C(4)-\Pi(4A)$	108.7
C(51)-N(5)-C(43)	108.6(7)	C(3)-C(4)-H(4A)	108.7
C(44)-N(5)- $C(43)$	108.3(7)	N(3)-C(4)-H(4B)	108.7
C(51)-N(5)-Ag(2)	100.9(5)	C(3)-C(4)-H(4B)	108.7
C(44)-N(5)-Ag(2)	106.4(5)	H(4A)-C(4)-H(4B)	107.6
C(43)-N(5)-Ag(2)	120.3(5)	N(3)-C(5)-C(6)	112.1(7)
C(45)-N(6)-C(52)	112.3(7)	N(3)-C(5)-H(5A)	109.2
C(45)-N(6)-C(46)	111.1(7)	C(6)-C(5)-H(5A)	109.2
C(52)-N(6)-C(46)	109.4(7)	N(3)-C(5)-H(5B)	109.2
C(45)-N(6)-Ag(2)	108.2(5)	C(6)-C(5)-H(5B)	109.2
C(52)-N(6)-Ag(2)	110.9(5)	H(5A)-C(5)-H(5B)	107.9
C(46)-N(6)-Ag(2)	104.7(5)	N(4)-C(6)-C(5)	115.1(7)
C(48)-N(7)-C(68)	108.1(7)	N(4)-C(6)-H(6A)	108.5
C(48)-N(7)-C(47)	111.9(7)	C(5)-C(6)-H(6A)	108.5
C(68)-N(7)-C(47)	108 5(7)	N(4)-C(6)-H(6R)	108.5
$C(48)-N(7)-A_{g}(2)$	106.6(5)	C(5)-C(6)-H(6R)	108.5
$C(68) - N(7) - A_{\sigma}(2)$	121 4(5)	$H(6A)_C(6)_H(6B)$	107.5
$C(47) - N(7) - A_{\alpha}(2)$	121.4(3) 100 2(5)	N(A) - C(7) - C(9)	107.0
C(40) N(8) C(50)	100.2(3) 111 1(7)	N(4) - O(7) - U(0) N(4) - O(7) - U(7A)	112.7(1)
C(49) = N(6) - C(30) C(40) = N(8) - C(40)	111.1(1) 111.6(7)	$\Gamma(4) = \mathcal{O}(1) = \Pi(1A)$ $\Gamma(4) = \mathcal{O}(2) = \mathcal{O}(2A)$	109.1
U(47/-IN(0/-U(00/	111.0(7)	$U(0) - U(1) - \Pi(1A)$	109.1

N(4)-C(7)-H(7B)	109.1	C(26)-C(25)-H(25A)	120.5
C(8)-C(7)-H(7B)	109.1	C(24)-C(25)-H(25A)	120.5
H(7A)-C(7)-H(7B)	107.8	F(5)-C(26)-C(27)	118.2(8)
N(1)-C(8)-C(7)	113.4(7)	F(5)-C(26)-C(25)	118.0(8)
N(1)-C(8)-H(8A)	108.9	C(27)-C(26)-C(25)	123.7(8)
C(7)-C(8)-H(8A)	108.9	C(26)-C(27)-C(28)	115.6(8)
N(1)-C(8)-H(8B)	108.9	C(26)-C(27)-H(27A)	122.2
C(7)-C(8)-H(8B)	108.9	C(28)-C(27)-H(27A)	122.2
H(8A)-C(8)-H(8B)	107.7	F(6)-C(28)-C(29)	118.5(8)
N(1)-C(9)-C(10)	112.0(7)	F(6)-C(28)-C(27)	117.4(8)
N(1)-C(9)-H(9A)	109.2	C(29)-C(28)-C(27)	124.1(8)
C(10)-C(9)-H(9A)	109.2	C(28)-C(29)-C(24)	118.8(8)
N(1)-C(9)-H(9B)	109.2	C(28)-C(29)-H(29A)	120.6
C(10)-C(9)-H(9B)	109.2	C(24)-C(29)-H(29A)	120.6
H(9A)-C(9)-H(9B)	107.9	N(4)-C(30)-C(31)	112.7(7)
C(15)-C(10)-C(11)	119.6(9)	N(4)-C(30)-H(30A)	109.1
C(15)-C(10)-C(9)	120.2(8)	C(31)-C(30)-H(30A)	109.1
C(11)-C(10)-C(9)	120.2(9)	N(4)-C(30)-H(30B)	109.1
C(12)-C(11)-C(10)	117.0(10)	C(31)-C(30)-H(30B)	109.1
C(12)-C(11)-H(11A)	121.5	H(30A)-C(30)-H(30B)	107.8
C(10)-C(11)-H(11A)	121.5	C(36)-C(31)-C(32)	119.2(8)
F(1)-C(12)-C(11)	116.2(11)	C(36)-C(31)-C(30)	121.5(8)
F(1)-C(12)-C(13)	118.1(10)	C(32)-C(31)-C(30)	119.2(8)
C(11)-C(12)-C(13)	125 7(9)	C(33)-C(32)-C(31)	1204(8)
C(14)-C(13)-C(12)	114 4(9)	C(33)-C(32)-H(32A)	119.8
C(14)-C(13)-H(13A)	122.8	C(31)-C(32)-H(32A)	119.8
C(12)-C(13)-H(13A)	122.8	C(32)-C(33)-C(34)	121.3(8)
F(2)-C(14)-C(15)	1182(10)	C(32) - C(33) - H(33A)	119.3
F(2) - C(14) - C(13)	117 3(9)	C(34)-C(33)-H(33A)	119.3
C(15)-C(14)-C(13)	1244(10)	C(35)-C(34)-C(33)	117.3(8)
C(14)-C(15)-C(10)	118 8(9)	C(35) - C(34) - C(37)	121.0(8)
C(14)-C(15)-H(15A)	120.6	C(33) - C(34) - C(37)	121.0(0) 121.7(7)
C(10) - C(15) - H(15A)	120.6	C(34) - C(35) - C(36)	121.7(1) 122.0(8)
C(17) - C(16) - N(2)	103.8(5)	C(34) - C(35) - H(35A)	119.0
C(17) - C(16) - H(16A)	111.0	C(36) - C(35) - H(35A)	119.0
N(2)-C(16)-H(16A)	111.0	C(31)-C(36)-C(35)	119.0 119.7(8)
C(17) - C(16) - H(16B)	111.0	C(31) - C(36) - H(36A)	120.1
N(2)-C(16)-H(16B)	111.0	C(35)-C(36)-H(36A)	120.1
H(16A) - C(16) - H(16B)	109.0	C(38) - C(37) - C(42)	120.1 116.6(8)
C(18) - C(17) - C(22)	120.2(8)	C(38) - C(37) - C(34)	1222(8)
C(18) - C(17) - C(16)	120.2(0) 123 1(7)	C(30) = C(37) = C(34) C(42) = C(37) = C(34)	122.2(0) 121.2(8)
C(10) - C(17) - C(10) C(22) - C(17) - C(16)	123.1(7) 116 1(7)	C(32) - C(31) - C(34) C(30) - C(38) - C(37)	121.3(0) 121.3(8)
C(22) - C(17) - C(10) C(19) - C(18) - C(17)	110.1(7) 118.8(0)	C(39)-C(38)-C(37) C(39)-C(38)-H(384)	121.3(0)
C(19) - C(10) - C(17) C(10) - C(18) - U(18A)	110.0(9)	C(37) - C(38) - H(38A)	119.4
$C(17) - C(10) - \Pi(10A)$	120.0	$C(37) - C(30) - \Pi(30A)$	119.4
$C(17) - C(10) - \Pi(10A)$ $C(18) - C(10) - \Pi(2)$	120.0 110.0(0)	C(40) - C(39) - C(30)	120.2(0)
C(18) - C(19) - F(3) C(18) - C(10) - C(20)	119.0(9) 122.7(0)	$C(40) - C(39) - \Pi(39A)$ $C(28) - C(20) - \Pi(20A)$	119.9
C(18) - C(19) - C(20)	123.7(9) 117.2(0)	$C(38) - C(39) - \Pi(39A)$ C(20) - C(40) - C(41)	119.9
F(3)-C(19)-C(20)	117.2(9) 116.2(9)	C(39) - C(40) - C(41) C(20) - C(40) - C(42)	119.2(8) 121.2(8)
C(21) - C(20) - C(19)	110.2(0)	C(39)- $C(40)$ - $C(43)$	121.2(0) 110.4(0)
C(21)- $C(20)$ - $H(20A)$	121.9	C(41) - C(40) - C(43)	$119.4(\delta)$
C(19)-C(20)-H(20A)	121.9	C(42) - C(41) - C(40)	120.6(8)
F(4) - C(21) - C(20)	118.2(8)	C(42)- $C(41)$ - $H(41A)$	119.7
F(4)-C(21)-C(22)	118.7(8)	C(40)- $C(41)$ - $H(41A)$	119.7
C(20) - C(21) - C(22)	123.0(9)	C(41) - C(42) - C(37)	122.0(8)
C(17) - C(22) - C(21)	118.0(8)	C(41)-C(42)-H(42A)	119.0
C(17)-C(22)-H(22A)	121.0	C(37)-C(42)-H(42A)	119.0
C(21)- $C(22)$ - $H(22A)$	121.0	N(5)-C(43)-C(40)	113.5(7)
N(3)-C(23)-C(24)	112.0(6)	N(5)-C(43)-H(43A)	108.9
N(3)-C(23)-H(23A)	109.2	U(40) - U(43) - H(43A)	108.9
C(24)-C(23)-H(23A)	109.2	N(5)-C(43)-H(43B)	108.9
N(3)-C(23)-H(23B)	109.2	C(40)-C(43)-H(43B)	108.9
C(24)-C(23)-H(23B)	109.2	H(43A)-C(43)-H(43B)	107.7
H(23A)-C(23)-H(23B)	107.9	N(5)-C(44)-C(45)	113.8(7)
C(25)-C(24)-C(29)	118.7(8)	N(5)-C(44)-H(44A)	108.8
C(25)-C(24)-C(23)	121.6(8)	C(45)-C(44)-H(44A)	108.8
C(29)-C(24)-C(23)	119.6(8)	N(5)-C(44)-H(44B)	108.8
C(26)-C(25)-C(24)	119.0(8)	C(45)-C(44)-H(44B)	108.8

H(44A)-C(44)-H(44B)	107.7	O(1)-C(59)-H(59A)
N(6)-C(45)-C(44)	113.0(7)	O(1)-C(59)-H(59B)
N(6)-C(45)-H(45A)	109.0	H(59A)-C(59)-H(59B)
C(44)-C(45)-H(45A)	109.0	O(1)-C(59)-H(59C)
N(6)-C(45)-H(45B)	109.0	H(59A)-C(59)-H(59C)
C(44)-C(45)-H(45B)	109.0	H(59B)-C(59)-H(59C)
H(45A)-C(45)-H(45B)	107.8	C(61)-C(60)-N(8)
N(6)-C(46)-C(47)	113.6(8)	C(61)-C(60)-H(60A)
N(6)-C(46)-H(46A)	108.8	N(8)-C(60)-H(60A)
C(47)-C(46)-H(46A)	108.8	C(61)-C(60)-H(60B)
N(6)-C(46)-H(46B)	108.8	N(8)-C(60)-H(60B)
C(47)-C(46)-H(46B)	108.8	H(60A)-C(60)-H(60B)
H(46A)-C(46)-H(46B)	107.7	C(62)-C(61)-C(66)
N(7)-C(47)-C(46)	112.8(8)	C(62)-C(61)-C(60)
N(7)-C(47)-H(47A)	109.0	C(66)-C(61)-C(60)
C(46)-C(47)-H(47A)	109.0	C(61)-C(62)-C(63)
N(7)-C(47)-H(47B)	109.0	C(61)-C(62)-H(62A)
C(46)-C(47)-H(47B)	109.0	C(63)-C(62)-H(62A)
H(47A)-C(47)-H(47B)	107.8	C(64)-C(63)-C(62)
N(7)-C(48)-C(49)	113.5(8)	C(64)-C(63)-H(63A)
N(7)-C(48)-H(48A)	108.9	C(62)- $C(63)$ - $H(63A)$
C(49)-C(48)-H(48A)	108.9	O(2)-C(64)-C(63)
N(7)-C(48)-H(48B)	108.9	O(2)- $C(64)$ - $C(65)$
C(49)- $C(48)$ - $H(48B)$	108.9	C(63)- $C(64)$ - $C(65)$
H(48A)-C(48)-H(48B)	107.7	C(66) - C(65) - C(64)
N(8)-C(49)-C(48)	112 9(8)	C(66) - C(65) - H(65A)
N(8) - C(49) - H(49A)	109.0	C(64)-C(65)-H(65A)
C(48) - C(49) - H(49A)	109.0	C(61) - C(66) - C(65)
N(8)-C(49)-H(49B)	109.0	C(61) - C(66) - H(66A)
C(48) - C(49) - H(49B)	109.0	C(65)-C(66)-H(66A)
H(49A) - C(49) - H(49B)	107.8	O(2)-C(67)-H(67A)
N(8)-C(50)-C(51)	113 2(8)	O(2) - C(67) - H(67B)
N(8) - C(50) - H(50A)	108.9	H(67A) - C(67) - H(67B)
C(51) - C(50) - H(50A)	108.9	O(2)-C(67)-H(67C)
N(8) - C(50) - H(50R)	108.9	H(67A) - C(67) - H(67C)
C(51)- $C(50)$ - $H(50B)$	108.9	H(67R)-C(67)-H(67C)
H(50A) - C(50) - H(50B)	107.8	N(7) - C(68) - C(69)
N(5) - C(51) - C(50)	113.0(8)	N(7) - C(68) - H(684)
N(5)-C(51)-H(51A)	109.0	C(60) = C(68) = H(68A)
C(50) C(51) H(51A)	109.0	N(7) C(68) H(68P)
N(5) C(51) H(51R)	109.0	C(60) C(68) H(68P)
$N(3)-C(31)-\Pi(31D)$ C(50) C(51) H(51D)	109.0	$U(09) - U(00) - \Pi(00D)$ U(69A) C(69) U(69D)
$U(50) - U(51) - \Pi(51B)$ H(51A) = C(51) + H(51B)	109.0	$\Pi(00A) - C(00) - \Pi(00B)$ C(74) C(60) C(70)
$\Pi(31A) - C(31) - \Pi(31D)$	107.0	C(74) - C(69) - C(70)
N(6) - C(52) - C(53)	113.3(7)	C(74) - C(69) - C(68)
N(6)-C(52)-H(52A)	108.9	C(70)- $C(69)$ - $C(68)$
U(53)-U(52)-H(52A)	108.9	C(71) - C(70) - C(69)
N(6)-C(52)-H(52B)	108.9	C(71)- $C(70)$ - $H(70A)$
U(53)-U(52)-H(52B)	108.9	C(69)-C(70)-H(70A)
H(52A) - C(52) - H(52B)	107.7	C(70) - C(71) - C(72)
C(58) - C(53) - C(54)	117.6(9)	C(70) - C(71) - H(71A)
C(58) - C(53) - C(52)	120.1(9)	C(72)- $C(71)$ - $H(71A)$
C(54)- $C(53)$ - $C(52)$	122.3(8)	C(71)- $C(72)$ - $C(73)$
C(53)- $C(54)$ - $C(55)$	120.5(8)	C(71)- $C(72)$ - $C(75)$
C(53)-C(54)-H(54A)	119.8	C(73)- $C(72)$ - $C(75)$
C(55)-C(54)-H(54A)	119.8	C(72)- $C(73)$ - $C(74)$
C(56)-C(55)-C(54)	119.1(9)	C(72)- $C(73)$ - $H(73A)$
C(56)-C(55)-H(55A)	120.5	C(74)-C(73)-H(73A)
C(54)-C(55)-H(55A)	120.5	C(69)-C(74)-C(73)
O(1)-C(56)-C(55)	114.8(8)	C(69)-C(74)-H(74A)
O(1)-C(56)-C(57)	123.9(9)	C(73)-C(74)-H(74A)
C(55)-C(56)-C(57)	121.3(9)	C(76)-C(75)-C(80)
C(58)-C(57)-C(56)	118.2(9)	C(76)-C(75)-C(72)
C(58)-C(57)-H(57A)	120.9	C(80)-C(75)-C(72)
C(56)-C(57)-H(57A)	120.9	C(75)-C(76)-C(77)
C(57)-C(58)-C(53)	123.2(9)	C(75)-C(76)-H(76A)
C(57)-C(58)-H(58A)	118.4	C(77)-C(76)-H(76A)
C(53)-C(58)-H(58A)	118.4	C(76)-C(77)-C(78)

109.5 109.5 109.5 109.5 109.5 109.5 112.7(7)109.1 109.1 109.1 109.1 107.8 118.3(9) 120.6(9) 121.1(8) 121.3(9)119.3 119.3 121.2(9) 119.4 119.4 126.0(9) 116.3(9) 117.7(9) 121.5(9)119.2 119.2 120.0(9) 120.0 120.0 109.5 109.5 109.5 109.5 109.5 109.5 113.8(7)108.8 108.8 108.8 108.8 107.7 117.2(8)122.6(8)120.1(8)121.3(8)119.4 119.4 122.1(8) 118.9 118.9 116.7(8) 122.3(8) 120.9(8) 121.7(8)119.2 119.2 120.9(8) 119.5 119.5 117.1(8) 120.8(8) 122.1(8) 122.4(8)118.8 118.8 119.6(9)

C(76)-C(77)-H(77A)	120.2	C(91)-C(90)-H(90A)	109.4
C(78)-C(77)-H(77A)	120.2	N(10)-C(90)-H(90B)	109.4
C(79)-C(78)-C(77)	118.3(9)	C(91)-C(90)-H(90B)	109.4
C(79)-C(78)-C(81)	120.6(8)	H(90A)-C(90)-H(90B)	108.0
C(77)-C(78)-C(81)	121.0(9)	C(96)-C(91)-C(92)	119.0(8)
C(80)-C(79)-C(78)	121 0(8)	C(96)-C(91)-C(90)	121 8(9)
C(80) - C(79) - H(79A)	119.5	C(92)- $C(91)$ - $C(90)$	1192(8)
C(78) - C(79) - H(79A)	119.5	C(92) = C(92) = C(91)	119.2(0)
C(70) C(80) C(75)	121 5(9)	C(93) - C(92) - C(91) C(02) - C(02) - H(02A)	120.6
C(79) - C(80) - C(73)	121.3(0)	$C(93) - C(92) - \Pi(92A)$	120.0
C(79)- $C(80)$ - $H(80A)$	119.3	C(91)-C(92)-H(92A)	120.0
C(75)-C(80)-H(80A)	119.3	F(7) - C(93) - C(92)	118.7(8)
N(9)-C(81)-C(78)	113.4(8)	F(7)-C(93)-C(94)	117.2(8)
N(9)-C(81)-H(81A)	108.9	C(92)- $C(93)$ - $C(94)$	124.0(9)
C(78)-C(81)-H(81A)	108.9	C(95)-C(94)-C(93)	115.3(9)
N(9)-C(81)-H(81B)	108.9	C(95)-C(94)-H(94A)	122.3
C(78)-C(81)-H(81B)	108.9	C(93)-C(94)-H(94A)	122.3
H(81A)-C(81)-H(81B)	107.7	F(8)-C(95)-C(94)	117.8(9)
N(9)-C(82)-C(83)	112.4(7)	F(8)-C(95)-C(96)	118.4(10)
N(9)-C(82)-H(82A)	109.1	C(94)-C(95)-C(96)	123.7(9)
C(83)-C(82)-H(82A)	109.1	C(91)-C(96)-C(95)	119.1(10)
N(9)-C(82)-H(82B)	109.1	C(91)-C(96)-H(96A)	120.4
C(83)-C(82)-H(82B)	109.1	C(95)-C(96)-H(96A)	120.4
H(82A) - C(82) - H(82B)	107.9	N(11)-C(97)-C(98)	120.1 110.2(8)
N(10) - C(82) - C(82)	114 5(8)	N(11) - C(97) - H(974)	100.6
N(10) - C(03) - C(02) N(10) - C(02) - U(02A)	109 6	C(08) C(07) H(07A)	109.0
$N(10) - C(03) - \Pi(03A)$	100.0	$U(90) - U(97) - \Pi(97R)$	109.0
U(82) - U(83) - H(83A)	108.6	N(11)-C(97)-H(97B)	109.6
N(10)-C(83)-H(83B)	108.6	C(98)-C(97)-H(97B)	109.6
C(82)-C(83)-H(83B)	108.6	H(97A)-C(97)-H(97B)	108.1
H(83A)-C(83)-H(83B)	107.6	C(103)-C(98)-C(99)	119.2(8)
N(10)-C(84)-C(85)	112.5(7)	C(103)-C(98)-C(97)	122.2(8)
N(10)-C(84)-H(84A)	109.1	C(99)-C(98)-C(97)	118.5(8)
C(85)-C(84)-H(84A)	109.1	C(100)-C(99)-C(98)	118.5(8)
N(10)-C(84)-H(84B)	109.1	C(100)-C(99)-H(99A)	120.8
C(85)-C(84)-H(84B)	109.1	C(98)-C(99)-H(99A)	120.8
H(84A)-C(84)-H(84B)	107.8	F(9)-C(100)-C(99)	118.9(8)
N(11)-C(85)-C(84)	114.4(7)	F(9)-C(100)-C(101)	117.5(8)
N(11)-C(85)-H(85A)	108.7	C(99)-C(100)-C(101)	123.5(9)
C(84)-C(85)-H(85A)	108.7	C(102)-C(101)-C(100)	116.5(9)
N(11)-C(85)-H(85B)	108.7	C(102) - C(101) - H(10A)	121.8
C(84)-C(85)-H(85B)	108.7	C(102) = C(101) = H(101)	121.8
H(85A) - C(85) - H(85B)	107.6	$E(100) = C(101) = \Pi(1011)$ E(10) = C(102) = C(101)	121.0 118.6(0)
N(11) C(96) C(97)	107.0 112.0(7)	F(10) - C(102) - C(101) F(10) - C(102) - C(102)	118.0(9) 118.5(0)
N(11) - C(00) - C(01) N(11) - C(96) - H(96A)	112.0(7)	C(101) C(102) C(103)	110.3(9) 122.0(9)
$N(11)-C(00)-\Pi(00A)$	109.2	C(101) - C(102) - C(103)	122.9(0)
U(87) - U(86) - H(86A)	109.2	C(102) - C(103) - C(98)	119.4(8)
N(11)-C(86)-H(86B)	109.2	C(102) - C(103) - H(10B)	120.3
C(87)-C(86)-H(86B)	109.2	C(98)- $C(103)$ - $H(10B)$	120.3
H(86A)-C(86)-H(86B)	107.9	N(12)-C(104)-C(105)	112.7(7)
N(12)-C(87)-C(86)	114.7(8)	N(12)-C(104)-H(10C)	109.0
N(12)-C(87)-H(87A)	108.6	C(105)-C(104)-H(10C)	109.0
C(86)-C(87)-H(87A)	108.6	N(12)-C(104)-H(10D)	109.0
N(12)-C(87)-H(87B)	108.6	C(105)-C(104)-H(10D)	109.0
C(86)-C(87)-H(87B)	108.6	H(10C)-C(104)-H(10D)	107.8
H(87A)-C(87)-H(87B)	107.6	C(106)-C(105)-C(110)	118.8(9)
N(12)-C(88)-C(89)	113.5(7)	C(106)-C(105)-C(104)	119.1(9)
N(12)-C(88)-H(88A)	108.9	C(110)-C(105)-C(104)	122.0(9)
C(89)-C(88)-H(88A)	108.9	C(107) - C(106) - C(105)	118.7(9)
N(12)-C(88)-H(88B)	108.9	C(107) - C(106) - H(10E)	120.7
C(89)-C(88)-H(88B)	108.9	C(105) - C(106) - H(10E)	120.7
$H(88A)_{-}C(88)_{-}H(88B)$	107.7	C(108) - C(107) - F(11)	117.4(9)
$N(0)_{C(80)_{C(88)}}$	114.7(7)	C(108) - C(107) - C(106)	124 A(9)
N(0) - C(80) - H(80A)	108.6	E(100) = C(107) = C(100) E(11) = C(107) = C(106)	124.4(9) 118 2(8)
C(99) C(90) H(90A)	109.6	C(107) C(109) C(100)	110.2(0) 115.6(0)
$U(00) = U(07) = \Pi(07A)$	100.0	C(107) - C(100) - C(109)	113.0(7)
$N(y) - C(\delta y) - H(\delta y B)$	100.0	C(107) - C(108) - H(10F)	122.2
$U(\delta\delta) - U(\delta\gamma) - H(\delta\gamma B)$	105.0	U(109) - U(108) - H(10F)	122.2
H(89A)-C(89)-H(89B)	107.6	F(12)-C(109)-C(108)	118.2(10)
N(10)-C(90)-C(91)	111.4(7)	F(12)-C(109)-C(110)	117.9(9)
N(10)-C(90)-H(90A)	109.4	C(108)-C(109)-C(110)	123.9(10)

C(109)-C(110)-C(105)	118.6(9)	F(18)-C(112)-F(16)	107.0(6)
C(109)-C(110)-H(11B)	120.7	F(17)-C(112)-S(2)	109.9(6)
C(105)-C(110)-H(11B)	120.7	F(18)-C(112)-S(2)	110.0(6)
O(3)-S(1)-O(4)	114.7(5)	F(16)-C(112)-S(2)	109.0(5)
O(3)-S(1)-O(5)	115.1(6)	Cl(2)-C(113)-Cl(4)	111.3(6)
O(4)-S(1)-O(5)	114.2(5)	Cl(2)-C(113)-Cl(3)	110.9(7)
O(3)-S(1)-C(111)	102.8(5)	Cl(4)-C(113)-Cl(3)	110.4(8)
O(4)-S(1)-C(111)	103.3(6)	Cl(2)-C(113)-H(113)	108.1
O(5)-S(1)-C(111)	104.5(7)	Cl(4)-C(113)-H(113)	108.1
F(14)-C(111)-F(15)	105.4(9)	Cl(3)-C(113)-H(113)	108.1
F(14)-C(111)-F(13)	103.4(10)	Cl(5)-C(114)-Cl(7)	113.8(9)
F(15)-C(111)-F(13)	102.8(11)	Cl(5)-C(114)-Cl(6)	110.4(10)
F(14)-C(111)-S(1)	115.1(10)	Cl(7)-C(114)-Cl(6)	109.8(10)
F(15)-C(111)-S(1)	115.2(9)	Cl(5)-C(114)-H(114)	107.5
F(13)-C(111)-S(1)	113.4(7)	Cl(7)-C(114)-H(114)	107.5
O(7)-S(2)-O(8)	116.1(4)	Cl(6)-C(114)-H(114)	107.5
O(7)-S(2)-O(6)	114.3(4)		
O(8)-S(2)-O(6)	114.2(4)		
O(7)-S(2)-C(112)	103.1(4)	Symmetry transformations used t	o generate equivalent atoms:
O(8)-S(2)-C(112)	104.0(4)	Symmetry transformations used	to generate equivalent atoms.
O(6)-S(2)-C(112)	102.8(4)		
F(17)-C(112)-F(18)	110.8(7)		
F(17)-C(112)-F(16)	110.1(7)		

Table S14. Anisotropic displacement parameters (Å²x 10³) for [**3**_{FMF}·(Ag)₃](OTf)₃. The anisotropic displacement factor exponent takes the form: $-2p^2$ [$h^2 a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$].

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U^{12}
$\overline{Ag(1)}$	21(1)	15(1)	13(1)	6(1)	3(1)	4(1)
Ag(2)	18(1)	18(1)	16(1)	7(1)	3(1)	4(1)
Ag(3)	28(1)	16(1)	15(1)	6(1)	2(1)	4(1)
F(1)	40(4)	63(5)	62(5)	-6(4)	-11(3)	35(4)
F(2)	69(5)	27(3)	33(3)	17(3)	13(3)	10(3)
F(3)	46(4)	54(4)	16(3)	2(3)	-7(2)	19(3)
F(4)	47(4)	25(3)	43(3)	17(3)	-1(3)	8(3)
F(5)	28(3)	45(4)	43(3)	22(3)	19(3)	12(3)
F(6)	32(3)	36(3)	38(3)	23(3)	9(2)	17(3)
F(7)	51(4)	31(3)	30(3)	22(2)	11(3)	13(3)
F(8)	23(3)	85(6)	43(4)	13(4)	14(3)	12(3)
F(9)	45(4)	41(3)	30(3)	23(3)	8(3)	11(3)
O(1)	31(4)	27(3)	30(3)	14(3)	8(3)	1(3)
O(2)	39(4)	33(4)	30(4)	13(3)	1(3)	14(3)
F(10)	38(3)	30(3)	33(3)	-8(3)	0(3)	4(3)
F(11)	30(3)	42(3)	35(3)	24(3)	15(2)	14(3)
F(12)	36(3)	63(4)	53(4)	29(4)	16(3)	30(3)
N(1)	20(3)	21(3)	16(3)	4(3)	3(3)	6(3)
N(2)	20(3)	18(3)	12(3)	4(3)	3(3)	5(3)
N(3)	26(4)	17(3)	16(3)	10(3)	4(3)	2(3)
N(4)	26(4)	14(3)	15(3)	5(3)	1(3)	4(3)
N(5)	19(3)	28(4)	21(4)	11(3)	1(3)	8(3)
N(6)	18(3)	31(4)	19(3)	9(3)	1(3)	3(3)
N(7)	16(3)	20(3)	28(4)	8(3)	2(3)	2(3)
N(8)	17(3)	25(4)	25(4)	8(3)	4(3)	6(3)
N(9)	42(5)	18(4)	15(3)	3(3)	8(3)	4(3)
N(10)	25(4)	21(3)	14(3)	8(3)	3(3)	8(3)
N(11)	25(4)	16(3)	17(3)	6(3)	1(3)	7(3)
N(12)	31(4)	19(4)	16(3)	4(3)	2(3)	-1(3)

C(1)	25(4)	13(4)	20(4)	2(3)	8(3)	4(3)
C(2)	27(4)	21(4)	15(4)	5(3)	5(3)	1(3)
C(3)	19(4)	19(4)	21(4)	10(3)	7(3)	11(3)
C(4)	28(4)	22(4)	22(4)	13(3)	0(3)	9(4)
C(5)	28(4)	22(4)	13(4)	9(3)	3(3)	9(3)
C(6)	32(5)	24(4)	13(4)	9(3)	1(3)	7(4)
C(7)	33(5)	23(4)	20(4)	12(3)	8(4)	9(4)
C(8)	24(4)	19(4)	22(4)	3(3)	8(3)	2(3)
C(9)	22(4)	22(4)	22(4)	6(3)	5(3)	7(3)
C(10)	28(4)	20(4)	16(4)	0(3)	-5(3)	12(3)
C(11)	20(4)	46(6)	25(5)	1(4)	-4(4)	10(4)
C(12)	34(5)	44(6)	31(5)	-1(4)	-3(4)	28(5)
C(13)	57(7)	27(5)	26(5)	0(4)	-10(5)	28(5)
C(14)	49(6)	26(5)	19(4)	8(4)	-2(4)	12(4)
C(15)	34(5)	27(5)	19(4)	6(3)	5(4)	17(4)
C(16)	11(2)	6(1)	6(2)	4(1)	2(1)	3(1)
C(17)	16(4)	21(4)	17(4)	10(3)	7(3)	4(3)
C(18)	20(4) 21(5)	29(5)	13(4) 14(4)	3(3)	10(3)	9(4)
C(19)	31(3) 36(4)	33(3) 40(E)	14(4) 18(4)	2(4) 16(4)	4(3)	12(4) 11(4)
C(20)	20(4) 27(5)	40(3) 22(4)	10(4) 20(5)	10(4) 15(4)	0(3) 7(4)	5(4)
C(21)	27(3) 19(4)	23(4) 18(4)	$\frac{29(3)}{17(4)}$	13(4)	7(4) 3(3)	3(4)
C(22)	24(4)	10(4) 25(4)	11(4)	$\frac{4}{5}(3)$	-3(3)	4(3)
C(23)	24(4) 23(4)	18(4)	21(4)	7(3)	-3(3) 4(3)	5(3)
C(25)	19(4)	26(4)	21(4) 25(4)	9(4)	0(3)	4(3)
C(26)	19(4) 14(4)	30(5)	23(4) 28(4)	12(4)	11(3)	4(3)
C(27)	26(4)	19(4)	23(4)	9(3)	5(3)	-1(3)
C(28)	21(4)	19(4)	22(4)	9(3)	3(3)	7(3)
C(29)	20(4)	23(4)	22(4)	8(3)	5(3)	6(3)
C(30)	23(4)	23(4)	18(4)	7(3)	7(3)	7(3)
C(31)	27(4)	20(4)	20(4)	6(3)	11(3)	12(3)
C(32)	23(4)	19(4)	15(4)	6(3)	0(3)	6(3)
C(33)	22(4)	26(4)	14(4)	6(3)	1(3)	7(3)
C(34)	21(4)	21(4)	18(4)	11(3)	4(3)	9(3)
C(35)	34(5)	20(4)	7(3)	-4(3)	-1(3)	5(4)
C(36)	39(5)	26(4)	13(4)	9(3)	3(3)	14(4)
C(37)	19(4)	21(4)	18(4)	7(3)	5(3)	7(3)
C(38)	24(4)	21(4)	15(4)	5(3)	0(3)	7(3)
C(39)	19(4)	26(4)	20(4)	12(3)	-1(3)	5(3)
C(40)	20(4)	23(4)	18(4)	7(3)	8(3)	8(3)
C(41)	21(4)	26(4)	20(4)	7(3)	3(3)	7(3)
C(42)	21(4)	31(5)	17(4)	9(3)	-1(3)	10(4)
C(43)	23(4)	22(4)	28(4)	13(4)	8(3)	11(3)
C(44)	19(4)	34(5)	23(4)	19(4)	3(3)	5(4)
C(45)	21(4)	37(5)	20(4)	14(4)	3(3)	10(4)
C(46)	24(4)	37(5)	20(4)	9(4)	8(3)	5(4)
C(47)	18(4)	39(5)	29(5)	$\frac{21(4)}{7(4)}$	8(4)	4(4)
C(48)	24(4) 22(4)	24(4) 20(4)	32(5) 22(5)	7(4) 5(4)	3(4) 2(4)	7(4) 2(4)
C(49)	23(4) 21(4)	20(4) 26(5)	33(3) 26(5)	3(4)	2(4) 2(4)	3(4) 11(4)
C(50)	21(4) 24(5)	20(3) 21(5)	30(5)	16(4)	2(4) 5(4)	9(4)
C(51)	19(4)	33(5)	21(4)	5(4)	-3(3)	-3(4)
C(52)	17(4)	28(5)	16(4)	0(3)	1(3)	2(3)
C(54)	20(4)	30(5)	23(4)	8(4)	9(3)	2(3) 2(4)
C(55)	27(5)	26(4)	26(5)	9(4)	8(4)	6(4)
C(56)	21(4)	28(5)	26(4)	11(4)	2(3)	1(4)
C(57)	23(4)	31(5)	24(4)	3(4)	3(4)	1(4)
C(58)	21(4)	28(5)	26(5)	3(4)	6(4)	1(4)
C(59)	42(6)	32(5)	38(6)	19(5)	13(5)	7(5)
C(60)	23(4)	22(4)	26(4)	0(4)	-15(4)	6(4)
C(61)	26(4)	27(4)	17(4)	3(3)	-4(3)	8(4)
C(62)	32(5)	37(5)	25(5)	5(4)	4(4)	19(4)
C(63)	40(5)	30(5)	12(4)	2(3)	-1(4)	17(4)
C(64)	35(5)	27(5)	19(4)	4(4)	-10(4)	10(4)
C(65)	21(4)	31(5)	23(4)	11(4)	5(3)	10(4)
C(66)	32(5)	26(4)	22(4)	8(4)	5(4)	11(4)
C(67)	48(6)	32(5)	27(5)	7(4)	-3(4)	15(5)

C(68)	21(4)	27(5)	23(4)	7(4)	7(3)	5(4)
C(69)	11(4)	26(4)	24(4)	7(3)	4(3)	6(3)
C(70)	19(4)	26(4)	22(4)	3(3)	2(3)	5(3)
C(71)	18(4)	19(4)	24(4)	4(3)	3(3)	1(3)
C(72)	20(4)	25(4)	17(4)	3(3)	9(3)	10(3)
C(73)	25(4)	23(4)	21(4)	5(3)	-1(3)	0(4)
C(74)	18(4)	19(4)	32(5)	6(4)	6(4)	-1(3)
C(75)	20(4)	27(4)	21(4)	7(3)	9(3)	9(3)
C(76)	20(3) 25(5)	30(3) 19(4)	21(4) 25(4)	2(4) 1(2)	3(3)	7(4)
C(78)	35(3) 25(4)	10(4) 28(5)	25(4)	7(4)	2(4) 8(4)	10(4)
C(79)	23(4) 31(5)	25(3) 25(4)	19(4)	1(3)	9(4)	10(4) 10(4)
C(80)	27(4)	19(4)	23(4)	8(3)	12(4)	3(3)
C(81)	50(6)	28(5)	21(4)	9(4)	7(4)	16(4)
C(82)	37(5)	24(4)	22(4)	6(4)	4(4)	15(4)
C(83)	38(5)	18(4)	17(4)	7(3)	5(4)	13(4)
C(84)	30(5)	23(4)	14(4)	10(3)	2(3)	9(4)
C(85)	38(5)	21(4)	13(4)	7(3)	2(3)	5(4)
C(86)	34(5)	20(4)	22(4)	9(3)	4(4)	2(4)
C(87)	28(5)	31(5)	24(5)	8(4)	3(4)	0(4)
C(88)	35(5)	16(4)	32(5)	9(4)	9(4)	-5(4)
C(89)	42(6)	8(4)	30(5)	2(3)	-1(4)	2(4)
C(90)	35(5)	21(4)	18(4)	12(3)	6(3)	10(4)
C(91)	27(4)	18(4)	14(4)	5(3)	0(3)	0(3)
C(92)	22(4)	20(4)	21(4)	8(3)	5(3)	3(3)
C(93)	32(5)	22(4)	25(4)	9(4)	8(4)	5(4)
C(94)	34(5)	31(5)	20(4)	7(4)	$\frac{8(4)}{7(2)}$	-8(4)
C(95)	10(4)	40(0)	21(4) 27(5)	0(4)	7(3)	-1(4)
C(90) C(97)	23(3) 77(8)	40(6) 13(4)	27(3) 19(4)	0(4) 8(3)	-3(4) 22(5)	9(4) 15(5)
C(97)	21(4)	24(4)	15(4)	8(3)	5(3)	13(3) 11(3)
C(90)	23(4)	24(4) 28(4)	15(4)	5(3)	3(3)	11(3) 11(4)
C(100)	27(5)	29(5)	22(4)	10(4)	2(4)	9(4)
C(101)	23(4)	19(4)	35(5)	10(4)	5(4)	5(3)
C(102)	22(4)	26(5)	29(5)	-1(4)	-2(4)	9(4)
C(103)	32(5)	26(4)	16(4)	3(3)	4(3)	15(4)
C(104)	30(5)	26(5)	14(4)	-2(3)	-7(3)	-7(4)
C(105)	25(5)	33(5)	14(4)	4(4)	-8(3)	1(4)
C(106)	27(4)	28(5)	16(4)	3(3)	4(3)	8(4)
C(107)	19(4)	37(5)	14(4)	11(4)	2(3)	2(4)
C(108)	27(5)	36(5)	19(4)	12(4)	-1(3)	13(4)
C(109)	25(5)	51(6)	30(5)	16(5)	3(4)	15(5)
C(110)	23(5)	44(6)	20(4)	9(4)	4(3)	8(4)
S(1)	53(2)	24(1)	23(1)	8(1)	2(1)	-5(1)
O(3)	75(6)	30(4)	33(4)	17(3)	9(4)	15(4)
O(4)	54(5)	25(4)	38(4) 21(4)	19(3)	2(4)	-7(3)
O(5) C(111)	108(9)	39(3) 21(5)	31(4) 25(5)	-1(4) 18(4)	20(5) 21(5)	-11(5) 18(5)
E(11) E(13)	69(6)	51(5) 64(5)	23(3) 53(5)	10(4) 30(4)	-21(3) 10(4)	-10(3) 14(4)
F(13) F(14)	75(6)	64(5)	44(4)	15(4)	3(4)	-38(4)
F(15)	57(5)	114(8)	69(6)	63(6)	-16(4)	-8(5)
S(2)	26(1)	19(1)	22(1)	9(1)	3(1)	2(1)
O(6)	33(3)	19(3)	31(3)	16(3)	11(3)	10(3)
O(7)	42(4)	27(3)	22(3)	18(3)	4(3)	1(3)
O(8)	20(3)	39(4)	34(4)	15(3)	-2(3)	-1(3)
C(112)	15(4)	9(3)	17(4)	4(3)	-3(3)	3(3)
F(16)	49(4)	35(3)	29(3)	14(3)	16(3)	17(3)
F(17)	21(3)	43(4)	55(4)	7(3)	-9(3)	10(3)
F(18)	55(4)	26(3)	43(4)	12(3)	2(3)	22(3)
Cl(1A)	70(5)	104(6)	168(8)	80(6)	53(5)	47(4)
Cl(1B)	114(7)	110(7)	127(7)	38(6)	25(6)	55(6)
C(113)	48(7)	56(7)	31(5)	11(5)	7(5)	28(6)
Cl(2)	56(2)	48(2)	35(1)	14(1)	14(1)	19(1)
CI(3)	54(2)	79(2)	40(2)	-10(2)	-1(1)	31(2)
CI(4)	130(4)	54(2)	65(2)	27(2)	48(3)	34(2)
C(114)	70(10) 91(2)	62(10)	(5(11))	(8)	6(8)	26(8)
CI(3)	01(3)	02(2)	09(2)	1Z(Z)	13(2)	23(2)

Cl(6)	75(3)	101(4)	67(3)	-2(2)	18(2)	16(3)
Cl(7)	168(6)	84(3)	112(4)	42(3)	67(4)	56(4)

Table S15. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å²x 10³) for $[3_{FMF} \cdot (Ag)_3](OTf)_3$.

	X	у	Z	U(eq)	
H(1A)	10029	8716	0120	= 24	
H(1R)	10025	9125	9657	24 24	
H(2A)	9758	8619	10164	27	
H(2R)	9303	9101	9902	27	
H(3A)	8387	8346	8907	22	
H(3B)	7561	8482	9266	22	
H(4A)	6630	7222	8927	28	
H(4B)	6720	7549	8455	28	
H(5A)	8352	7594	8104	24	
H(5B)	7466	6933	7673	24	
H(6A)	8464	6155	7693	28	
H(6B)	9020	6791	7490	28	
H(7A)	9980	7951	8332	29	
H(7B)	10794	7646	8040	29	
H(8A)	11603	7641	8879	28	
H(8B)	11641	8438	8910	28	
H(9A)	11217	8357	10172	27	
H(9B)	12104	8415	9832	27	
H(11A)	12910	7469	9636	41	
H(13A)	11621	5553	9895	45	
H(15A)	10067	7025	10049	31	
H(16A)	7676	8388	10181	9	
H(16B)	7051	7591	9769	9	
H(18A)	9025	8492	10982	28	
H(20A)	8991	6631	11267	32	
H(22A)	7564	6529	9815	23	
H(23A)	6924	5814	7909	26	
H(23B)	6089	6203	8060	26	
H(25A)	5229	6054	8814	29	
H(27A)	5965	4818	9649	29	
H(29A)	7710	5359	8590	26	
H(30A)	11012	6562	8265	25	
H(30B)	10405	6324	7668	25	
H(32A)	10265	5874	8868	23	
H(33A)	9462	4735	8917	25	
H(35A)	8370	3955	7310	28	
H(36A)	9162	5101	7256	30	
H(38A)	9217	3582	8849	25	
H(39A)	8579	2379	8820	26	
H(41A)	6574	1900	7449	27	
H(42A)	7246	3072	7454	27	
H(43A)	7048	907	7710	26	
H(43B)	7637	1113	8306	26	
H(44A)	6752	1804	8992	29	
H(44B)	6654	1016	9007	29	
H(45A)	4881	764	8997	30	

H(45B)	5505	1470	9495	30
$\Pi(45D)$ $\Pi(46A)$	2202	1912	9067	24
$\Pi(40\Lambda)$	3322	1015	0207	34
H(46B)	3619	1385	9335	34
H(47A)	3329	352	8537	33
H(47B)	2318	550	8648	33
H(48A)	2211	99	7219	33
H(48B)	1888	-278	7648	33
H(49A)	3533	-403	7803	33
$\mathbf{U}(\mathbf{A}\mathbf{O}\mathbf{P})$	2024	799	7003	22
$\Pi(49D)$	5054	-700	7102	33
H(50A)	5650	97	7241	34
H(50B)	4939	-617	7311	34
H(51A)	5117	55	8252	34
H(51B)	6172	-17	8096	34
H(52A)	5934	2615	9293	34
H(52B)	4943	2613	9549	34
H(52D)	2700	2015	0271	20
$\Pi(J + \Lambda)$	3790	3223	9271	30
H(55A)	3389	3906	8740	32
H(57A)	5575	3487	7874	35
H(58A)	5955	2826	8401	33
H(59A)	4431	4586	7396	55
H(59B)	5429	4559	7726	55
H(59C)	4651	3836	7294	55
H(60A)	/107	-357	6528	33
$\Pi(00A)$	2210	-331	0320	33
	3310	-0	0024	33
H(62A)	3835	1389	6947	37
H(63A)	4803	2423	6785	33
H(65A)	6707	1339	6150	29
H(66A)	5737	296	6308	32
H(67A)	6690	3583	6355	55
H(67B)	5515	3120	6252	55
$\Pi(07D)$	(107	2415	(0252	55
H(0/C)	6197	3415	0837	55
H(68A)	2120	1536	8299	30
H(68B)	1328	773	7932	30
H(70A)	3204	2324	7828	29
H(71A)	3076	2817	7154	27
H(73A)	594	1087	6307	31
H(7/A)	698	590	6991	30
H(76A)	020	2412	6722	20
$\Pi(70A)$	2300	3412	0723	33
H(7/A)	2159	3975	6093	34
H(79A)	661	1985	4969	31
H(80A)	888	1438	5606	28
H(81A)	475	3150	4837	38
H(81B)	1258	3903	5227	38
H(82A)	2055	3620	3980	33
U(92D)	1216	2886	4276	22
$\Pi(02D)$	1210	3000	4270	20
$\Pi(\delta 3A)$	79	2659	3959	28
H(83B)	353	2932	3474	28
H(84A)	2022	2783	3219	26
H(84B)	1114	2170	2769	26
H(85A)	1833	1275	2866	30
H(85B)	2611	1862	2691	30
H(86A)	3619	2989	3526	32
H(00H)	4264	2540	2204	22
11(00D) 11(07A)	4304	2549	3304	32
H(8/A)	4854	2520	4180	36
H(87B)	5143	3328	4178	36
H(88A)	3659	3815	4278	36
H(88B)	4450	4187	4834	36
H(89A)	3104	3871	5295	35
H(89B)	2904	4383	4978	35
H(90A)	2501	1110	2010	
11(20A) 11(00D)	232	1117	2017	20
П(90B)	-484	1603	3113	28
H(92A)	840	734	3811	26
H(94A)	-1267	330	4753	39
H(96A)	-1599	1483	3763	39
H(97A)	4216	1467	3594	41
H(97B)	3698	1189	2975	41
H(99A)	3279	945	4232	26
\///	5417	215	1202	20

H(10A)	1259	-1111	3582	31
H(10B)	2125	70	2614	29
H(10C)	4346	3396	5409	35
H(10D)	5319	3379	5139	35
H(10E)	3108	2232	5407	30
H(10F)	4176	521	5280	32
H(11B)	5816	2247	4894	36
H(113)	920	4679	7906	52
H(114)	9921	2863	6099	86

Identification code	[3 _{FMF} ·(Ag) ₃](BF ₄) ₃	
Empirical formula	C110.50 H121 Ag3 B3	Cl F24 N12 O2
	$[Ag_3(C_{110}H_{120}N_{12}O_2F_{12}$)]·3BF ₄ ·0.5(CH ₂ Cl ₂)
Formula weight	2496.68	
Temperature	120 K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	Fdd2	
Unit cell dimensions	a = 50.361(4) Å	$\alpha = 90^{\circ}$.
	b = 69.329(5) Å	β= 90°.
	c = 13.6423(9) Å	$\gamma = 90^{\circ}.$
Volume	47632(6) Å ³	
Ζ	16	
Density (calculated)	1.393 Mg/m ³	
Absorption coefficient	0.600 mm ⁻¹	
F(000)	20368	
Crystal size	0.443 x 0.287 x 0.075	mm ³
Theta range for data collection	0.999 to 28.008°.	
Index ranges	-66<=h<=53, -91<=k<	=86, - 17<=1<=17
Reflections collected	78025	
Independent reflections	28118 [R(int) = 0.1171]
Completeness to theta = 25.242°	100.0 %	
Absorption correction	Semi-empirical from e	quivalents
Max. and min. transmission	0.7456 and 0.5783	
Refinement method	Full-matrix least-squar	res on F ²
Data / restraints / parameters	28118 / 165 / 1459	
Goodness-of-fit on F ²	1.028	
Final R indices [I>2sigma(I)]	R1 = 0.0956, wR2 = 0.09566, wR2 = 0.	.2510
R indices (all data)	R1 = 0.1792, wR2 = 0.1792, w	.3120
Absolute structure parameter	0.853(13)	
Extinction coefficient	n/a	
Largest diff. peak and hole	2.835 and -1.627 e.Å ⁻³	

Table S16. Crystal data and structure refinement for [3_{FMF}•(Ag)₃](BF₄)₃.

	Х	у	Z	U(eq)
Ag(1)	3666(1)	9577(1)	2654(1)	38(1)
Ag(2)	4788(1)	8277(1)	4868(2)	35(1)
Ag(3)	5943(1)	9417(1)	7366(2)	38(1)
F(1)	3793(3)	8930(2)	3257(9)	65(3)
F(2)	3574(2)	9072(2)	6500(8)	53(3)
F(3)	3131(2)	8979(2)	3599(8)	51(3)
F(4)	2446(2)	9358(2)	2262(9)	59(3)
F(5)	3554(3)	9194(2)	-1522(8)	67(4)
F(0) F(7)	3373(2)	9027(1)	1/1/(8)	51(3)
F(7)	5986(2)	0090(2) 0002(2)	3330(8) (772(8)	52(3)
F(0)	5715(2) 7175(2)	8980(2)	7457(10)	79(4)
F(10)	6342(2)	8742(2)	6515(10)	61(3)
F(11)	6342(2) 6104(2)	8828(2)	8352(9)	61(3)
F(12)	5859(3)	9020(2)	11515(11)	79(4)
O(1)	5175(3)	9026(2)	3744(12)	60(4)
O(2)	4342(3)	8993(2)	6281(12)	63(4)
N(1)	3905(3)	9692(2)	4076(12)	44(4)
N(2)	3321(3)	9765(2)	3547(10)	38(3)
N(3)	3477(3)	9785(2)	1399(11)	38(3)
N(4)	4068(3)	9718(2)	1893(12)	41(3)
N(5)	4709(3)	8111(2)	3185(11)	36(3)
N(6)	5200(3)	8120(2)	4561(11)	37(3)
N(7)	4873(3)	8076(2)	6419(11)	39(3)
N(8)	4381(3)	8097(2)	5067(12)	40(3)
N(9)	5580(3)	9628(2)	7957(12)	50(4)
N(10)	5776(3)	9565(2)	5897(12)	48(4)
N(11)	6361(3)	9542(2)	6563(11)	49(4)
N(12)	6169(3)	9594(2)	8656(12)	43(3)
C(1)	3706(4) 2406(4)	9784(3)	4720(14) 4108(14)	48(4)
C(2)	3490(4) 2188(2)	9094(3) 0878(2)	4190(14) 2806(14)	43(4)
C(3)	3356(4)	9945(2)	1933(13)	42(4) 40(4)
C(5)	3699(3)	9856(3)	837(12)	37(4)
C(6)	3948(4)	9892(2)	1412(13)	39(4)
C(7)	4240(3)	9771(2)	2692(15)	45(4)
C(8)	4086(4)	9841(2)	3639(14)	45(4)
C(9)	4058(4)	9547(2)	4632(14)	44(4)
C(10)	3923(3)	9361(2)	4724(15)	43(4)
C(11)	3919(4)	9229(3)	3923(14)	44(4)
C(12)	3798(4)	9058(3)	4022(15)	48(5)
C(13)	3679(3)	8997(2)	4899(14)	42(4)
C(14)	3689(4)	9126(3)	5664(12)	40(4)
C(15)	3799(4)	9307(3)	5604(13)	40(4)
C(16)	3127(4)	9675(3)	4218(12)	41(4)
C(17)	3006(3)	9493(2)	3752(13)	38(4)
C(18)	3134(4)	9311(3)	3874(14)	46(4)
C(19)	3012(4)	9151(3)	3473(14)	46(4)
C(20)	2783(4)	9157(3)	2924(12)	49(5)
C(21)	2671(3)	9335(3)	2814(13)	45(4)
C(22) C(23)	2111(3) 2272(1)	9505(3) 0609(2)	3213(13) 742(14)	41(4) 41(4)
C(23)	3413(4) 2217(1)	9090(2) QAQA(2)	142(14) 107(11)	41(4) AA(A)
C(24)	3347(4) 2421(5)	9494(2) 9/36(3)	-466(14)	44(4) 52(5)
C(25) C(26)	3421(3) 2486(4)	99430(3) 9942(2)	-400(14) -625(14)	33(5) 70(5)
C(27)	3400(4) 3473(4)	9105(3)	78(14)	46(4)
C(28)	3393(4)	9161(3)	995(13)	42(4)
C(29)	3333(4)	9350(3)	1241(12)	44(4)
C(30)	4224(4)	9610(3)	1187(15)	48(5)
C(31)	4275(4)	9406(3)	1492(17)	50(5)

Table S17. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for [**3**_{FMF}·(Ag)₃](BF₄)₃. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(32)	4096(3)	9256(3)	1252(12)	36(4)
C(33)	4151(3)	9070(2)	1499(13)	38(4)
C(34)	4383(3)	9015(2)	1982(14)	38(4)
C(35)	4550(4)	9166(3)	2280(20)	63(6)
C(36)	4512(4)	9351(3)	2031(17)	60(6)
C(37)	4447(3)	8809(2)	2152(13)	40(4)
C(38)	4279(4)	8660(3)	1987(15)	51(5)
C(39)	4363(4)	8470(3)	2040(14)	46(4)
C(40)	4615(3)	8420(3)	2278(14)	42(4)
C(41)	4787(4)	8569(3)	2482(17)	54(5)
C(42)	4709(4)	8760(3)	2465(19)	61(6)
C(43)	4729(4)	8214(3)	2232(14)	43(4)
C(44) C(45)	4919(3)	7968(2)	3200(13)	39(4)
C(45)	5187(3) 5228(4)	$\frac{8034(2)}{7052(2)}$	3320(13) 5246(15)	35(4)
C(40) C(47)	5220(4) 5144(4)	7908(2)	5240(13) 6270(14)	40(4)
C(47) C(48)	4668(2)	7996(3)	6270(14) 6270(15)	42(4) 43(4)
C(40)	4000(3)	7925(3) 8012(2)	6034(14)	43(4)
C(49)	4397(3)	7950(2)	4295(15)	40(4)
C(50)	4445(3)	8025(2)	$\frac{42}{3259(15)}$	42(4)
C(51)	5431(3)	8256(3)	4717(15)	42(4) 44(4)
C(53)	5364(3)	8460(2)	4433(14)	38(4)
C(54)	5460(3)	8545(3)	3593(14)	46(4)
C(55)	5389(4)	8737(3)	3372(13)	45(4)
C(56)	5232(4)	8843(3)	3982(15)	49(5)
C(57)	5142(3)	8760(3)	4853(17)	50(4)
C(58)	5208(3)	8567(3)	5099(15)	45(4)
C(59)	5006(7)	9149(4)	4480(30)	115(13)
C(60)	4146(3)	8230(2)	5014(14)	39(4)
C(61)	4202(3)	8429(2)	5375(14)	42(4)
C(62)	4086(4)	8494(3)	6235(15)	47(4)
C(63)	4131(4)	8688(3)	6535(14)	44(4)
C(64)	4280(4)	8803(3)	6013(17)	52(5)
C(65)	4400(4)	8746(2)	5116(16)	47(4)
C(66)	4355(3)	8557(3)	4813(15)	43(4)
C(67)	4249(5)	9065(3)	7210(20)	81(8)
C(68)	4851(4)	8154(3)	7395(16)	49(4)
C(69)	4947(3)	8359(2)	7509(11)	36(4)
C(70)	4773(3)	8511(3)	7265(16)	50(5)
C(71)	4850(3)	8703(2)	7410(15)	42(4)
C(72)	5098(3)	8747(3)	7733(13)	40(4)
C(73)	5275(3)	8594(3)	7930(14)	43(4)
C(74)	5195(3)	8405(3)	7833(14)	43(4)
C(75)	5175(3)	8950(3)	7918(12)	36(4)
C(76)	5044(4)	9103(3)	7484(19)	61(6)
C(77)	5101(4)	9293(3)	7730(20)	66(7)
C(78)	5310(4)	9346(3)	8346(15)	47(5)
C(79)	5460(4)	9189(3)	8765(15) 8566(15)	51(5)
C(81)	5282(5)	9000(3) 0542(2)	8641(16)	47(4) 61(6)
C(01)	5382(5) 5440(4)	9343(3) 0700(2)	7080(16)	56(5)
C(02)	5618(6)	9709(3) 9737(3)	6262(18)	50(5) 70(9)
C(84)	6001(5)	9618(3)	5202(10)	65(6)
C(85)	6250(5)	9687(3)	5921(14)	53(5)
C(86)	6515(4)	9635(3)	7352(15)	53(5)
C(87)	6339(4)	9730(3)	8160(15)	52(5)
C(88)	5946(4)	9702(3)	9164(14)	50(5)
C(89)	5736(4)	9783(3)	8468(16)	51(5)
C(90)	5597(4)	9440(2)	5331(16)	51(5)
C(91)	5701(4)	9230(2)	5237(12)	42(4)
C(92)	5810(4)	9164(3)	4422(15)	45(4)
C(93)	5890(4)	8965(3)	4401(14)	46(4)
C(94)	5863(3)	8842(2)	5170(14)	38(4)
C(95)	5753(4)	8920(3)	6014(13)	41(4)
C(96)	5671(4)	9112(3)	6081(13)	43(4)
C(97)	6541(4)	9421(3)	5967(14)	52(5)
C(98)	6611(4)	9223(3)	6387(15)	50(5)

C(99)	6857(4)	9195(4)	6796(16)	59(5)
C(100)	6923(4)	9019(4)	7103(18)	69(7)
C(101)	6765(4)	8850(4)	7019(14)	63(6)
C(102)	6514(4)	8893(3)	6612(16)	53(5)
C(103)	6426(4)	9074(3)	6309(16)	52(5)
C(104)	6312(4)	9481(3)	9386(14)	45(4)
C(105)	6184(3)	9287(3)	9606(13)	41(4)
C(106)	6195(4)	9151(3)	8877(15)	46(4)
C(107)	6083(4)	8972(2)	9071(15)	51(5)
C(108)	5967(4)	8920(3)	9939(17)	59(6)
C(109)	5972(5)	9060(3)	10641(13)	56(5)
C(110)	6072(4)	9244(3)	10480(14)	47(4)
B(1)	6064(4)	9626(3)	2579(15)	49(5)
F(13)	6263(2)	9696(2)	3165(10)	61(3)
F(14)	6122(3)	9660(2)	1625(9)	76(4)
F(15)	5828(2)	9730(2)	2840(10)	67(3)
F(16)	6018(2)	9435(1)	2747(9)	56(3)
B(2)	2136(6)	9909(5)	3740(30)	112(11)
F(17)	2401(5)	9949(4)	3730(20)	166(9)
F(18)	2058(6)	9727(4)	3560(20)	181(10)
F(19)	2123(10)	9942(8)	4790(30)	390(20)
F(20)	2004(9)	10034(6)	3190(40)	360(30)
B(3A)	1543(7)	10185(5)	2220(20)	78(12)
F(21A)	1702(5)	10103(4)	1550(20)	85(8)
F(22A)	1632(6)	10168(4)	3149(19)	90(9)
F(23A)	1602(6)	10378(4)	1890(20)	94(9)
F(24A)	1285(5)	10137(5)	2120(30)	104(10)
B(3B)	1041(6)	10276(5)	2740(20)	61(10)
F(21B)	973(7)	10147(3)	2044(16)	89(10)
F(22B)	986(6)	10217(4)	3661(18)	86(8)
F(23B)	862(7)	10435(5)	2580(30)	126(12)
F(24B)	1292(6)	10342(7)	2620(30)	190(30)
C(111)	5190(30)	9679(6)	1660(40)	290(30)
Cl(1)	5105(6)	9661(5)	2900(20)	189(11)
Cl(2)	5242(7)	9442(5)	1280(30)	205(13)

Table S18.	Bond lengtl	ns [Å]	and	angles	[°]	for
[3 _{FMF[•](Ag)₃}](BF ₄) ₃ .					

	O(1) - C(56)
	O(1) - C(59)
2.419(15)	O(2) - C(64)
2.432(14)	O(2) C(04)
2.477(14)	O(2) - C(07)
2.492(15)	N(1) - C(9)
2.382(13)	N(1)- $C(1)$
2.415(13)	N(1)-C(8)
2.570(15)	N(2)-C(3)
2.601(14)	N(2)-C(16)
2.001(14) 2.404(16)	N(2)-C(2)
2.404(10) 2.409(15)	N(3)-C(5)
2.420(13)	N(3)-C(4)
2.482(15)	N(3)-C(23)
2.525(15)	N(4)-C(7)
1.37(2)	N(4) - C(30)
1.33(2)	N(4) - C(6)
1.35(2)	N(4) = C(0) N(5) = C(44)
1.37(2)	N(5) - C(44) N(5) - C(51)
1.32(2)	N(5) - C(51)
1.36(2)	N(5) - C(43)
1.36(2)	N(6)-C(45)
1.34(2)	N(6)-C(46)
	$\begin{array}{c} 2.419(15)\\ 2.432(14)\\ 2.477(14)\\ 2.492(15)\\ 2.382(13)\\ 2.415(13)\\ 2.570(15)\\ 2.601(14)\\ 2.404(16)\\ 2.428(15)\\ 2.428(15)\\ 2.525(15)\\ 1.37(2)\\ 1.33(2)\\ 1.35(2)\\ 1.37(2)\\ 1.32(2)\\ 1.36(2)\\ 1.36(2)\\ 1.34(2)\\ \end{array}$

1.38(3)
1.36(2)
1.40(2)
1.35(2)
1.34(2)
1.56(4)
1.40(2)
1.45(3)
1.47(2)
1.49(3)
1.50(2)
1.44(2)
1.48(2)
1.54(2)
1.44(2)
1.46(2)
1.49(2)
1.44(2)
1.45(2)
1.50(2)
1.45(2)
1.46(2)
1.49(2)
1.49(2)
1.50(2)

F(9)-C(100)

F(10)-C(102)F(11)-C(107)F(12)-C(109)

N(6)-C(52)	1.51(2)	C(55)-C(56)	1.36(3)
N(7)-C(68)	1.44(3)	C(56)-C(57)	1.40(3)
N(7)-C(48)	1.48(2)	C(57)-C(58)	1.42(3)
N(7)-C(47)	1.48(2)	C(60)-C(61)	1.49(2)
N(8) - C(49)	1.45(2)	C(61)- $C(62)$	1.39(3)
N(8) - C(50)	1.47(2)	C(61)- $C(66)$	1.40(3)
N(8) - C(60) N(0) - C(82)	1.504(19) 1.47(2)	C(62) - C(63)	1.42(3) 1.21(2)
N(9) - C(62) N(0) - C(81)	1.47(3) 1 40(3)	C(63)-C(64)	1.31(3) 1.42(3)
N(9) - C(81)	1.49(3) 1 50(2)	C(65)- $C(66)$	1.42(3) 1 39(2)
N(10)-C(84)	1.30(2) 1 43(3)	C(68)- $C(69)$	1.59(2) 1.50(2)
N(10) - C(90)	1.47(2)	C(69)- $C(74)$	1.30(2) 1.37(2)
N(10)-C(83)	1.51(3)	C(69)-C(70)	1.41(2)
N(11)-C(85)	1.44(3)	C(70)-C(71)	1.40(2)
N(11)-C(86)	1.47(2)	C(71)-C(72)	1.36(2)
N(11)-C(97)	1.48(3)	C(72)-C(73)	1.41(3)
N(12)-C(87)	1.44(3)	C(72)-C(75)	1.48(2)
N(12)-C(104)	1.46(2)	C(73)-C(74)	1.38(2)
N(12)-C(88)	1.52(3)	C(75)-C(76)	1.38(3)
C(1)-C(2)	1.49(3)	C(75)-C(80)	1.41(2)
C(3) - C(4)	1.53(3)	C(76) - C(77)	1.39(3)
C(5) - C(6)	1.50(2)	C(77)- $C(78)$	1.40(3)
C(1) - C(8)	1.38(3) 1.46(2)	C(78) - C(79)	1.44(3) 1.47(2)
C(10)- $C(15)$	1.40(2) 1.40(3)	C(79)- $C(80)$	1.47(3) 1.40(3)
C(10)-C(11)	1.40(3) 1.43(3)	C(82)-C(83)	1.40(3) 1.42(3)
C(11) - C(12)	1.34(3)	C(82) - C(85)	1.57(3)
C(12)-C(13)	1.40(3)	C(86)-C(87)	1.56(3)
C(13)-C(14)	1.38(3)	C(88)-C(89)	1.53(3)
C(14)-C(15)	1.37(3)	C(90)-C(91)	1.55(2)
C(16)-C(17)	1.54(2)	C(91)-C(92)	1.32(3)
C(17)-C(22)	1.37(2)	C(91)-C(96)	1.42(2)
C(17)-C(18)	1.42(3)	C(92)-C(93)	1.44(3)
C(18)-C(19)	1.38(3)	C(93)-C(94)	1.36(3)
C(19)- $C(20)$	1.38(3)	C(94)- $C(95)$	1.39(2)
C(20) - C(21)	1.36(3)	C(95)- $C(96)$	1.40(3)
C(21) - C(22)	1.41(3) 1.50(2)	C(97) - C(98)	1.33(3) 1.27(2)
C(23) - C(24)	1.30(2) 1.42(2)	C(98)- $C(103)$	1.37(3) 1.39(3)
C(24) - C(25)	1.42(2) 1 42(3)	C(99)- $C(100)$	1.37(3) 1.33(3)
C(25)-C(26)	1.39(3)	C(100) - C(101)	1.42(3)
C(26)-C(27)	1.36(3)	C(101) - C(102)	1.41(3)
C(27)-C(28)	1.37(3)	C(102)-C(103)	1.39(3)
C(28)-C(29)	1.38(3)	C(104)-C(105)	1.52(3)
C(30)-C(31)	1.49(3)	C(105)-C(110)	1.35(3)
C(31)-C(32)	1.42(2)	C(105)-C(106)	1.37(2)
C(31)-C(36)	1.45(3)	C(106)-C(107)	1.39(3)
C(32)- $C(33)$	1.36(2)	C(107)- $C(108)$	1.37(3)
C(33)-C(34)	1.39(2)	C(108) - C(109)	1.36(3) 1.20(2)
C(34) - C(35)	1.41(3) 1.48(2)	C(109) - C(110) P(1) = E(14)	1.39(3) 1.25(2)
C(34)-C(37) C(35)-C(36)	1.48(2) 1.25(2)	B(1)-F(14) B(1)-F(16)	1.33(2) 1.36(2)
C(37)-C(38)	1.35(3)	B(1)-F(13)	1.30(2) 1.37(2)
C(37) - C(42)	1.33(2) 1 43(2)	B(1) - F(15)	1.37(2) 1 44(2)
C(38)-C(39)	1.39(3)	B(2)-F(20)	1.33(3)
C(39)-C(40)	1.36(2)	B(2)-F(18)	1.34(3)
C(40)-C(41)	1.38(3)	B(2)-F(17)	1.36(3)
C(40)-C(43)	1.54(2)	B(2)-F(19)	1.46(3)
C(41)-C(42)	1.38(3)	B(3A)-F(21A)	1.34(3)
C(44)-C(45)	1.52(2)	B(3A)-F(24A)	1.34(3)
C(46)-C(47)	1.49(3)	B(3A)-F(22A)	1.36(3)
C(48)-C(49)	1.53(2)	B(3A)-F(23A)	1.44(3)
C(50)-C(51)	1.55(3)	B(3B)-F(21B) P(2D)-F(24D)	1.35(3)
C(52) - C(53)	1.3U(<i>2</i>) 1.29(2)	D(3B)-F(24B) D(2D) E(22D)	1.35(3) 1.25(2)
C(53)-C(54)	1.30(3) 1.41(3)	D(3D) - F(22D) B(3B) - F(23B)	1.33(3) 1.44(2)
C(53) - C(50) C(54) - C(55)	1.41(3) 1 42(3)	C(111)-C(2)	1.44(3) 1 750(4)
	1.12(0)		1.1.50(4)

C(111)-Cl(1)	1.751(4)	C(50)-N(8)-Ag(2)	107.3(10)
N(1)-Ag(1)-N(3)	124.4(5)	C(60)-N(8)-Ag(2)	110.3(9)
N(1)-Ag(1)-N(4)	78.4(5)	C(82)-N(9)-C(81)	111.3(16)
N(3)-Ag(1)-N(4)	77.9(5)	C(82)-N(9)-C(89)	109.9(15)
N(1)-Ag(1)-N(2)	77.4(5)	C(81) - N(9) - C(89)	110.1(16)
N(3)-Ag(1)-N(2) N(4) A (1) N(2)	(6.1(5))	C(82)-N(9)-Ag(3) C(81) N(0) A ₂ (2)	106.7(12)
N(4) - Ag(1) - N(2) N(4) - Ag(2) - N(9)	124.3(4) 121 5(4)	C(81) - N(9) - Ag(3)	117.4(12) 100 8(11)
N(6) - Ag(2) - N(6) N(6) - Ag(2) - N(7)	75 6(5)	C(89)-N(9)-Ag(5) C(84)-N(10)-C(90)	100.0(11) 110.2(17)
N(0) - Ag(2) - N(7) N(8) - Ag(2) - N(7)	75.0(5)	C(84)-N(10)-C(83)	110.2(17) 113.2(18)
N(6) - Ag(2) - N(5)	76.9(5)	C(90)-N(10)-C(83)	108.6(17)
N(8)-Ag(2)-N(5)	74.9(5)	C(84)-N(10)-Ag(3)	107.0(12)
N(7)-Ag(2)-N(5)	120.7(4)	C(90)-N(10)-Ag(3)	113.7(11)
N(10)-Ag(3)-N(12)	123.6(5)	C(83)-N(10)-Ag(3)	104.2(11)
N(10)-Ag(3)-N(9)	76.1(6)	C(85)-N(11)-C(86)	110.2(15)
N(12)-Ag(3)-N(9)	79.1(5)	C(85)-N(11)-C(97)	107.3(15)
N(10)-Ag(3)-N(11)	77.6(6)	C(86)-N(11)-C(97)	109.0(15)
N(12)-Ag(3)-N(11)	75.6(5)	C(85)-N(11)-Ag(3)	100.2(12)
N(9)-Ag(3)-N(11)	123.5(6)	C(86)-N(11)-Ag(3)	105.7(11)
C(56)-O(1)-C(59)	118.6(19)	C(97)-N(11)-Ag(3)	123.7(11)
C(64) - O(2) - C(67)	118.7(18)	C(87) - N(12) - C(104)	112.2(15)
C(9) - N(1) - C(1) C(0) N(1) C(8)	109.9(15) 110 0(14)	C(07)-N(12)-C(00) C(104) N(12) $C(88)$	109.3(15) 108.6(15)
C(9) - N(1) - C(8)	110.9(14) 110.4(14)	C(104)-IN(12)-C(00) C(87)-IN(12)-Ag(3)	106.0(15) 105.6(11)
C(9)-N(1)-C(0)	116.4(14) 116.7(10)	C(104) - N(12) - Ag(3)	103.0(11) 117.0(11)
C(1) - N(1) - Ag(1)	106.4(10)	C(88)-N(12)-Ag(3)	103.6(10)
C(8)-N(1)-Ag(1)	102.1(11)	N(1)-C(1)-C(2)	114.4(15)
C(3)-N(2)-C(16)	110.9(14)	C(1)-C(2)-N(2)	112.9(15)
C(3)-N(2)-C(2)	110.8(14)	N(2)-C(3)-C(4)	116.8(14)
C(16)-N(2)-C(2)	105.4(13)	N(3)-C(4)-C(3)	112.8(13)
C(3)-N(2)-Ag(1)	105.4(10)	N(3)-C(5)-C(6)	115.3(14)
C(16)-N(2)-Ag(1)	122.8(10)	C(5)-C(6)-N(4)	115.6(14)
C(2)-N(2)-Ag(1)	100.8(10)	N(4)-C(7)-C(8)	113.7(14)
C(5)-N(3)-C(4)	109.2(13)	N(1)-C(8)-C(7)	114.1(14)
C(5)-N(3)-C(23)	110.7(14) 108.7(14)	C(10)-C(9)-N(1) C(15)-C(10)-C(11)	113.6(14)
C(4) - N(3) - C(23) C(5) N(2) A = (1)	108.7(14) 105.8(10)	C(15) - C(10) - C(11) C(15) - C(10) - C(0)	118.0(16) 121.0(17)
C(3)-N(3)-Ag(1) C(4)-N(3)-Ag(1)	105.0(10) 105.2(10)	C(13)-C(10)-C(9) C(11)-C(10)-C(9)	121.0(17) 120.4(18)
C(23)-N(3)-Ag(1)	116.8(10)	C(12)-C(10)-C(10)	120.4(10) 119.9(18)
C(7)-N(4)-C(30)	108.0(15)	C(12) - C(12) - F(1)	120.3(19)
C(7)-N(4)-C(6)	111.6(13)	C(11) - C(12) - C(13)	123.0(18)
C(30)-N(4)-C(6)	110.1(14)	F(1)-C(12)-C(13)	116.7(16)
C(7)-N(4)-Ag(1)	106.0(11)	C(14)-C(13)-C(12)	115.9(15)
C(30)-N(4)-Ag(1)	121.0(11)	F(2)-C(14)-C(15)	119.0(16)
C(6)-N(4)-Ag(1)	99.9(10)	F(2)-C(14)-C(13)	116.7(16)
C(44)-N(5)-C(51)	112.6(13)	C(15)-C(14)-C(13)	124.3(16)
C(44)-N(5)-C(43)	109.8(14)	C(14)-C(15)-C(10)	118.2(17)
C(51)-N(5)-C(43)	108.5(14)	N(2)-C(16)-C(17)	110.7(14)
C(44)-N(5)-Ag(2) C(51) N(5) Ag(2)	97.4(10)	C(22) - C(17) - C(18) C(22) - C(17) - C(16)	119.8(16) 120.2(15)
C(31)-N(3)-Ag(2) C(42) N(5) Ag(2)	105.0(11) 122.2(10)	C(22)- $C(17)$ - $C(16)$	120.2(15) 120.0(15)
C(45)-N(5)-Ag(2) C(45)-N(6)- $C(46)$	123.3(10) 111.0(13)	C(18)-C(17)-C(16) C(19)-C(18)-C(17)	120.0(13) 117.8(17)
C(45)-N(6)-C(52)	111.0(13)	F(3)-C(10)-C(20)	117.0(17) 118.0(16)
C(46)-N(6)-C(52)	1087(13)	F(3) - C(19) - C(18)	117.8(17)
C(45)-N(6)-Ag(2)	105.7(9)	C(20)-C(19)-C(18)	124.1(19)
C(46)-N(6)-Ag(2)	109.1(10)	C(21)-C(20)-C(19)	115.9(17)
C(52)-N(6)-Ag(2)	111.1(10)	C(20)-C(21)-F(4)	120.6(17)
C(68)-N(7)-C(48)	109.8(14)	C(20)-C(21)-C(22)	123.9(17)
C(68)-N(7)-C(47)	109.6(15)	F(4)-C(21)-C(22)	115.4(17)
C(48)-N(7)-C(47)	111.3(14)	C(17)-C(22)-C(21)	118.4(16)
C(68)-N(7)-Ag(2)	122.9(11)	N(3)-C(23)-C(24)	110.2(14)
C(48)-N(7)-Ag(2)	98.9(10)	C(29)-C(24)-C(25)	118.3(16)
C(47) - N(7) - Ag(2)	103.8(10)	U(29)-U(24)-U(23)	119.3(17)
C(49) - N(8) - C(50)	$111.\delta(13)$ 100 $\zeta(14)$	C(25) - C(24) - C(23)	122.4(16) 119 $4(17)$
$C(47)^{-1N}(0)^{-}C(00)$ $C(50)^{-}N(8)^{-}C(60)$	109.0(14) 112 0(14)	C(20) - C(23) - C(24) F(5) - C(26) - C(27)	110.4(17) 118.0(17)
$C(49)-N(8)-A\sigma(2)$	105.6(10)	F(5)-C(26)-C(25)	117.2(18)
··· / ··· / ···	/	- (-) - (-) - (-)	(. 0)

C(27)-C(26)-C(25)	123.8(18)	C(74)-C(73)-C(72)	121.1(16)
C(26)-C(27)-C(28)	117.3(17)	C(69)-C(74)-C(73)	121.3(17)
F(6)-C(28)-C(27)	119.4(16)	C(76)-C(75)-C(80)	115.9(17)
F(6)-C(28)-C(29)	117.1(16)	C(76)-C(75)-C(72)	122.0(15)
C(27)-C(28)-C(29)	123.5(17)	C(80)-C(75)-C(72)	122.1(16)
C(28)-C(29)-C(24)	118.6(17)	C(75)-C(76)-C(77)	121.4(19)
N(4)-C(30)-C(31)	113.3(17)	C(76)-C(77)-C(78)	123.7(19)
C(32)-C(31)-C(36)	116.4(17)	C(77)-C(78)-C(79)	115.6(18)
C(32)-C(31)-C(30)	121.6(17)	C(77)-C(78)-C(81)	126.7(18)
C(36)-C(31)-C(30)	122.0(17)	C(79)-C(78)-C(81)	117.6(18)
C(33)-C(32)-C(31)	120.9(16)	C(80)-C(79)-C(78)	118.8(19)
C(32)-C(33)-C(34)	123.2(15)	C(79)-C(80)-C(75)	124.2(19)
C(33)-C(34)-C(35)	115.8(15)	C(78)-C(81)-N(9)	111.3(18)
C(33)-C(34)-C(37)	121.5(14)	C(83)-C(82)-N(9)	115.0(18)
C(35)-C(34)-C(37)	122.6(15)	C(82)-C(83)-N(10)	117.8(18)
C(36)-C(35)-C(34)	123.4(18)	N(10)-C(84)-C(85)	114.6(17)
C(35)-C(36)-C(31)	119.9(19)	N(11)-C(85)-C(84)	114.7(15)
C(38)-C(37)-C(42)	116.7(16)	N(11)-C(86)-C(87)	113.8(16)
C(38)-C(37)-C(34)	124.6(16)	N(12)-C(87)-C(86)	112.9(16)
C(42)-C(37)-C(34)	118.6(15)	N(12)-C(88)-C(89)	114.2(16)
C(37)-C(38)-C(39)	121.6(18)	N(9)-C(89)-C(88)	112.9(14)
C(40)-C(39)-C(38)	122.9(17)	N(10)-C(90)-C(91)	113.1(14)
C(39)- $C(40)$ - $C(41)$	116 1(17)	C(92)- $C(91)$ - $C(96)$	$122\ 2(17)$
C(39)-C(40)-C(43)	125.4(16)	C(92)- $C(91)$ - $C(90)$	122.0(16)
C(41)- $C(40)$ - $C(43)$	118 1(16)	C(96) - C(91) - C(90)	115.7(17)
C(40)- $C(41)$ - $C(42)$	122.8(17)	C(91)- $C(92)$ - $C(93)$	1175(18)
C(41)- $C(42)$ - $C(37)$	119 6(17)	C(94)- $C(93)$ - $F(7)$	119.6(17)
N(5)-C(43)-C(40)	112.6(15)	C(94)- $C(93)$ - $C(92)$	123.9(18)
N(5) - C(44) - C(45)	113.6(14)	F(7)-C(93)-C(92)	116.4(16)
N(6) - C(45) - C(44)	112.8(14)	C(93)-C(94)-C(95)	116.1(16)
C(47)- $C(46)$ - $N(6)$	113 3(15)	F(8)-C(95)-C(94)	117.5(15)
N(7)-C(47)-C(46)	117 9(15)	F(8) - C(95) - C(96)	119.5(16)
N(7) - C(48) - C(49)	111.9(13) 111.9(14)	C(94)- $C(95)$ - $C(96)$	122.9(17)
N(8)-C(49)-C(48)	113.6(14)	C(95)- $C(96)$ - $C(91)$	1174(18)
N(8)-C(50)-C(51)	113.0(14) 114.4(14)	N(11) - C(97) - C(98)	117.4(10) 116.4(15)
N(5) - C(51) - C(50)	114.4(14) 114.2(15)	C(99) - C(98) - C(103)	122(2)
C(53)- $C(52)$ - $N(6)$	112.2(13) 112.0(13)	C(99) - C(98) - C(97)	122(2) 1190(18)
C(54) - C(52) - C(58)	112.0(13) 120 $4(16)$	C(103)-C(98)-C(97)	119.0(10) 110(2)
C(54)-C(53)-C(52)	120.4(10) 122.5(17)	C(100)-C(99)-C(98)	119(2) 119(2)
C(58) - C(53) - C(52)	117.0(16)	C(99) - C(100) - E(90)	117(2) 121(2)
C(53)-C(53)-C(52)	117.0(10) 119.5(17)	$C(99)-C(100)-\Gamma(9)$ C(99)-C(100)-C(101)	121(2) 126(2)
C(56) - C(55) - C(54)	119.3(17) 121 7(17)	E(9)-C(100)-C(101)	120(2) 112(2)
O(1) - C(56) - C(55)	121.7(17) 119 1(19)	C(102)-C(101)-C(100)	112(2) 111(2)
O(1) - C(56) - C(57)	119.1(19) 122(2)	E(102) - E(101) - E(100) E(10) - C(102) - C(103)	117.2(18)
C(55) - C(56) - C(57)	122(2) 110 0(18)	F(10)-C(102)-C(103) F(10)-C(102)-C(101)	117.3(10) 117(2)
C(56) - C(57) - C(58)	119.0(18) 121 1(10)	C(102)-C(102)-C(101)	117(2) 126 2(10)
C(52) C(57) - C(58)	121.1(19) 119.2(19)	C(103) - C(102) - C(101) C(102) - C(102) - C(101)	120.2(19) 116(2)
C(53) - C(50) - C(57)	110.3(10) 112.5(12)	N(12) = C(103) + C(96) N(12) = C(104) = C(105)	110(2) 112.8(15)
C(62) = C(61) = C(66)	113.3(13) 110.0(17)	C(110) = C(105) = C(106)	120.2(13)
C(62) - C(61) - C(60)	119.0(17) 120.0(16)	C(110) - C(105) - C(106) C(110) - C(105) - C(104)	120.2(10) 122.1(16)
C(62) - C(61) - C(60)	120.0(10) 120.8(17)	C(106) - C(105) - C(104)	123.1(10) 116.7(17)
C(60)- $C(61)$ - $C(60)$	120.0(17) 110.0(18)	C(106) - C(105) - C(104) C(105) - C(106) - C(107)	110.7(17) 117(2)
C(61) - C(62) - C(63)	119.0(16)	C(103) - C(106) - C(107)	117(2) 125 1(19)
C(64) - C(63) - C(62)	120.8(19)	C(108) - C(107) - C(106)	125.1(18)
C(63) - C(64) - O(2)	124(2) 122 7(18)	C(106) - C(107) - F(11) C(106) - C(107) - F(11)	110.0(10) 119(2)
C(63)- $C(64)$ - $C(65)$	122.7(18) 112.2(10)	C(100) - C(107) - F(11) C(100) - C(102) - C(107)	110(2) 114.2(10)
O(2)-C(64)-C(65)	113.2(19)	C(109) - C(108) - C(107)	114.3(18)
C(66) - C(65) - C(64)	116.8(18)	F(12)-C(109)-C(108)	118(2)
U(00) - U(00) - U(01)	121.0(19)	F(12)-C(109)-C(110)	110.7(17)
N(7) - U(68) - U(69)	115.1(16)	C(108) - C(109) - C(110)	123.4(19)
C(74) - C(69) - C(70)	117.9(16)	C(105)-C(110)-C(109)	119.5(17)
C(74)- $C(69)$ - $C(68)$	123.3(16)	F(14)-B(1)-F(16)	111.7(16)
C(70)- $C(69)$ - $C(68)$	118.8(15)	F(14)-B(1)-F(13)	110.0(16)
C(71)- $C(70)$ - $C(69)$	120.4(16)	F(16)-B(1)-F(13)	111.7(15)
C(72)- $C(71)$ - $C(70)$	121.1(16)	F(14)-B(1)-F(15)	109.1(16)
C(71)- $C(72)$ - $C(73)$	118.0(16)	F(16) - B(1) - F(15)	107.8(14)
C(71)-C(72)-C(75)	120.7(15)	F(13)-B(1)-F(15)	106.3(15)
C(73)-C(72)-C(75)	121.2(15)	F(20)-B(2)-F(18)	111(3)

111(3)	F(21B)-B(3B)-F(22B)	114(3)
119(3)	F(24B)-B(3B)-F(22B)	114(3)
116(3)	F(21B)-B(3B)-F(23B)	104(3)
108(3)	F(24B)-B(3B)-F(23B)	108(3)
91(3)	F(22B)-B(3B)-F(23B)	104(3)
114(3)	Cl(2)-C(111)-Cl(1)	105(3)
114(3)		
112(3)		
93(2)	Symmetry transformations used t	o generate equivalent atoms:
113(3)	Symmetry transformations used t	to generate equivalent atoms.
108(3)		
112(3)		
	$111(3) \\119(3) \\116(3) \\108(3) \\91(3) \\114(3) \\114(3) \\112(3) \\93(2) \\113(3) \\108(3) \\112(3)$	$\begin{array}{cccccccc} 111(3) & F(21B)-B(3B)-F(22B) \\ 119(3) & F(24B)-B(3B)-F(22B) \\ 116(3) & F(21B)-B(3B)-F(23B) \\ 108(3) & F(24B)-B(3B)-F(23B) \\ 91(3) & F(22B)-B(3B)-F(23B) \\ 114(3) & Cl(2)-C(111)-Cl(1) \\ 114(3) & & \\ 112(3) & & \\ 93(2) & & \\ 113(3) & & \\ 108(3) \\ 112(3) & & \\ \end{array}$

Table S19. Anisotropic displacement parameters (Å²x 10³) for [**3**_{FMF}·(Ag)₃](BF₄)₃. The anisotropic displacement factor exponent takes the form: $-2p^2$ [$h^2 a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$].

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
$\overline{Ag(1)}$	48(1)	28(1)	39(1)	2(1)	-5(1)	-3(1)	
Ag(2)	31(1)	33(1)	42(1)	-2(1)	2(1)	-2(1)	
Ag(3)	49(1)	29(1)	35(1)	0(1)	-7(1)	-2(1)	
F(1)	91(9)	46(6)	60(8)	-14(6)	13(7)	-16(6)	
F(2)	72(7)	47(6)	39(6)	4(5)	6(5)	-7(5)	
F(3)	70(7)	35(5)	48(6)	2(5)	-1(5)	-5(5)	
F(4)	50(6)	75(7)	52(7)	-6(6)	-10(5)	-11(5)	
F(5)	123(11)	43(6)	36(6)	-6(5)	15(7)	11(7)	
F(6)	71(7)	29(5)	52(6)	8(5)	3(5)	0(5)	
F(7)	54(6)	57(7)	44(6)	-16(5)	12(5)	-14(5)	
F(8)	59(6)	48(6)	41(6)	8(5)	1(5)	7(5)	
F(9)	52(7)	126(12)	60(8)	24(8)	-18(6)	-18(7)	
F(10)	55(7)	42(6)	87(9)	-4(6)	-7(6)	-12(5)	
F(11)	82(8)	33(6)	69(8)	-22(6)	-9(6)	7(5)	
F(12)	84(4)	77(4)	77(4)	2(3)	0(3)	-3(3)	
O(1)	64(9)	46(8)	72(10)	-9(7)	-10(7)	-7(7)	
O(2)	85(10)	27(6)	76(10)	-14(7)	-21(8)	1(6)	
N(1)	50(9)	32(7)	52(9)	1(7)	-15(7)	-1(6)	
N(2)	50(8)	33(7)	30(7)	-2(6)	-4(6)	-4(6)	
N(3)	57(9)	21(6)	37(8)	5(6)	-2(7)	4(6)	
N(4)	43(8)	22(6)	58(9)	-3(6)	8(7)	-1(6)	
N(5)	34(7)	30(7)	42(8)	2(6)	0(6)	-5(6)	
N(6)	30(7)	27(7)	54(9)	3(6)	1(6)	-1(5)	
N(7)	38(7)	32(7)	47(9)	5(7)	11(7)	0(6)	
N(8)	34(7)	34(7)	52(9)	-12(7)	0(6)	-2(5)	
N(9)	67(10)	32(8)	52(10)	-14(7)	-17(8)	16(7)	
N(10)	66(10)	34(8)	42(9)	-3(7)	-12(8)	-2(7)	
N(11)	57(9)	54(10)	35(8)	-5(7)	6(7)	-20(8)	
N(12)	47(8)	38(8)	43(9)	-6(7)	-7(7)	1(7)	
C(1)	63(11)	46(10)	35(10)	3(8)	-8(9)	-3(9)	
C(2)	53(11)	36(9)	46(11)	-8(8)	-3(8)	0(8)	
C(3)	41(9)	39(9)	46(10)	8(8)	-7(8)	3(7)	
C(4)	52(10)	24(8)	45(10)	5(7)	-1(8)	6(7)	
C(5)	49(10)	38(9)	24(8)	0(7)	2(7)	5(7)	
C(6)	50(10)	31(8)	36(9)	10(7)	3(8)	-2(7)	
C(7)	41(9)	35(9)	59(11)	15(9)	-9(9)	-8(7)	
C(8)	59(11)	31(9)	45(10)	9(8)	-6(9)	-18(8)	
C(9)	50(10)	29(8)	53(11)	6(8)	-17(8)	-1(7)	
C(10)	32(8)	37(9)	59(12)	-3(9)	-11(8)	-3(7)	
C(11)	51(11)	51(11)	31(9)	6(8)	-1(8)	5(8)	
C(12)	52(11)	39(10)	52(12)	-13(9)	-6(9)	-1(8)	
C(13)	42(9)	35(8)	49(10)	8(8)	17(9)	-4(6)	

C(14)	52(10)	47(10)	22(8)	3(7)	-3(7)	12(8)
C(15)	51(10)	42(10)	29(8)	10(7)	-4(7)	-5(8)
C(16)	47(10)	43(10)	31(9)	4(7)	-6(7)	0(8)
C(17)	39(9)	28(8)	45(10)	5(7)	0(7)	1(7)
C(18)	47(10)	41(10)	50(11)	9(9)	-8(8)	-13(8)
C(19)	62(12)	34(9)	42(10)	1(8)	-1(9)	-6(8)
C(20)	69(13)	50(11)	27(9)	-4(8)	-2(8)	-14(10)
C(21)	38(9)	70(13)	27(9)	8(9)	-6(7)	-6(9)
C(22)	36(9)	36(9)	50(11)	2(8)	22(8)	1(7)
C(23)	54(10)	22(8)	46(10)	-5(7)	-4(8)	2(7)
C(24)	55(11)	27(8)	51(11)	4(8)	-6(9)	-18(8)
C(25)	93(16)	30(9)	36(10)	-1(7)	-4(10)	-7(9)
C(26)	62(12)	48(11)	37(10)	-9(9)	-10(9)	-1(9)
C(27)	57(11)	33(8)	48(12)	-3(8)	-2(9)	-6(7)
C(28)	53(11)	35(9)	37(10)	3(8)	-8(8)	-12(8)
C(29)	73(13)	39(9)	21(8)	2(7)	-6(8)	-8(9)
C(30)	51(11)	34(9)	60(12)	4(9)	5(9)	9(8)
C(31)	49(11)	35(9)	66(13)	-4(9)	-9(10)	-3(8)
C(32)	35(8)	43(10)	31(9)	-4(7)	0(7)	1(7)
C(33)	33(8)	30(8)	50(10)	-8(8)	-8(7)	-3(6)
C(34)	26(8)	31(8)	57(11)	-10(8)	-8(7)	-2(6)
C(35)	42(10)	60(12)	89(16)	5(13)	-32(11)	9(9)
C(36)	68(13)	38(10)	73(15)	-7(10)	-18(11)	11(9)
C(37)	42(9)	33(8)	46(11)	-4(8)	-3(7)	-4(7)
C(38)	55(11)	39(10)	59(12)	-10(9)	-17(9)	4(8)
C(39)	43(10)	51(11)	45(10)	-6(9)	-8(8)	-4(8)
C(40)	42(9)	47(10)	36(9)	-9(8)	13(8)	-1(7)
C(41)	46(10)	53(11)	63(13)	-4(11)	-15(10)	1(8)
C(42)	48(10)	44(10)	90(17)	12(12)	-28(12)	3(8)
C(43)	49(10)	40(9)	41(10)	5(8)	-7(8)	-1(7)
C(44)	48(10)	30(8)	39(9)	-7(7)	1(8)	11(7)
C(45)	29(8)	35(9)	41(9)	3(7)	5(7)	7(7)
C(46)	43(9)	39(9)	55(11)	3(9)	-11(9)	1(7)
C(47)	46(10)	36(9)	44(10)	-2(8)	-5(8)	2(8)
C(48)	34(9)	41(10)	53(11)	15(9)	-5(8)	-9(7)
C(49)	37(9)	27(8)	57(11)	0(8)	16(8)	-14(7)
C(50)	38(9)	32(9)	62(12)	-9(8)	5(8)	-11(7)
C(51)	39(9)	22(8)	65(12)	-1(8)	-9(8)	-4(7)
C(52)	22(7)	53(10)	57(12)	0(9)	2(8)	-3(7)
C(53)	28(8)	30(8)	55(10)	3(8)	-5(7)	-5(6)
C(54)	32(9)	56(12)	50(11)	-12(9)	5(8)	-11(8)
C(55)	43(10)	59(12)	33(9)	4(9)	-5(8)	-17(9)
C(56)	47(11)	45(11)	56(12)	12(9)	-27(9)	-6(8)
C(57)	42(9)	49(10)	58(11)	-2(10)	-5(10)	-3(7)
C(58)	33(8)	44(9)	59(12)	-4(9)	-10(8)	-4(7)
C(59)	100(20)	73(18)	170(40)	20(20)	-40(20)	-19(17)
C(60)	26(7)	39(8)	51(11)	-5(8)	-3(7)	7(6)
C(61)	26(8)	39(9)	60(12)	-6(8)	3(8)	2(7)
C(62)	39(9)	44(10)	56(12)	-1(9)	0(8)	10(8)
C(63)	41(10)	50(11)	42(10)	-10(9)	-5(8)	9(8)
C(64)	47(11)	43(11)	68(13)	-9(10)	-16(10)	6(9)
C(65)	47(10)	35(9)	60(12)	-1(9)	-14(9)	-7(7)
C(66)	31(8)	51(10)	46(10)	2(9)	-8(8)	-6(7)
C(67)	96(18)	50(13)	100(20)	-18(14)	-14(16)	-3(12)
C(68)	45(9)	50(10)	52(11)	-3(10)	4(9)	-13(8)
C(69)	47(9)	37(8)	24(8)	0(7)	-4(7)	-4(7)
C(70)	33(9)	55(11)	63(13)	-18(10)	-9(9)	-2(7)
C(71)	44(9)	33(8)	47(10)	-4(8)	-4(8)	3(7)
C(72)	34(8)	54(10)	32(8)	0(8)	11(7)	0(7)
C(73)	38(9)	39(9)	53(11)	3(8)	-17(8)	-9(7)
C(74)	38(9)	51(10)	41(10)	-3(8)	-4(8)	2(8)
C(75)	21(7)	49(10)	38(9)	1(8)	-6(6)	0(7)
C(76)	50(10)	38(9)	94(17)	-27(12)	-24(12)	10(8)
C(77)	49(11)	45(11)	103(19)	-21(12)	-25(12)	14(9)
C(78)	37(9)	42(10)	61(12)	-15(9)	-2(8)	9(8)
C(79)	64(13)	43(11)	47(11)	-7(9)	3(9)	-2(9)
C(80)	45(10)	41(10)	54(11)	-13(9)	-13(9)	-1(8)
C(81)	69(14)	60(13)	52(13)	-11(11)	-19(11)	-1(11)
--------	---------	---------	---------	----------	---------	---------
C(82)	65(13)	40(10)	63(14)	-14(10)	-10(10)	14(9)
C(83)	150(30)	24(10)	59(15)	6(9)	-44(16)	25(12)
C(84)	114(19)	42(11)	40(11)	8(9)	-19(12)	7(12)
C(85)	94(16)	34(9)	32(10)	-5(8)	1(10)	-29(10)
C(86)	62(11)	56(11)	41(10)	-8(10)	-6(10)	-21(9)
C(87)	55(12)	57(12)	45(11)	-2(10)	-10(9)	-4(9)
C(88)	80(14)	27(9)	41(11)	-7(8)	-14(9)	-2(9)
C(89)	60(12)	29(9)	63(13)	-12(9)	-14(10)	3(8)
C(90)	66(12)	22(8)	64(13)	1(8)	-30(10)	5(8)
C(91)	58(11)	41(9)	25(8)	9(7)	-23(8)	-8(8)
C(92)	46(10)	42(10)	47(11)	-2(9)	-2(8)	-12(8)
C(93)	55(11)	43(10)	40(10)	-2(8)	3(8)	-19(8)
C(94)	41(8)	23(7)	51(10)	-2(7)	-1(8)	-2(6)
C(95)	48(10)	43(10)	33(9)	1(8)	-2(8)	-1(8)
C(96)	64(12)	36(9)	30(9)	-1(7)	-12(8)	-6(8)
C(97)	67(13)	57(12)	34(9)	0(9)	6(9)	-39(10)
C(98)	57(12)	53(11)	41(10)	-12(9)	14(9)	-13(9)
C(99)	61(13)	67(14)	48(12)	1(11)	2(10)	-18(11)
C(100)	49(12)	89(18)	69(16)	-13(14)	4(10)	-25(12)
C(101)	60(13)	93(17)	35(10)	-13(11)	14(9)	-20(12)
C(102)	44(11)	57(12)	58(12)	-14(10)	19(9)	-15(9)
C(103)	43(10)	51(12)	63(13)	-22(10)	18(9)	-16(9)
C(104)	65(12)	35(9)	36(9)	-6(8)	-16(9)	8(8)
C(105)	44(9)	41(9)	37(10)	-7(8)	-15(7)	11(7)
C(106)	55(11)	34(9)	49(11)	-7(8)	-16(9)	8(8)
C(107)	78(14)	25(8)	49(12)	-5(8)	-36(10)	9(8)
C(108)	91(15)	26(8)	60(14)	-4(9)	-46(13)	11(9)
C(109)	104(17)	41(11)	23(9)	2(8)	1(10)	4(11)
C(110)	73(13)	35(9)	33(9)	-7(8)	-4(9)	3(9)
B(1)	53(12)	39(11)	54(14)	10(10)	4(11)	0(9)
F(13)	48(6)	50(7)	85(9)	-7(6)	6(6)	-7(5)
F(14)	141(13)	36(6)	53(7)	0(6)	21(8)	-6(7)
F(15)	58(7)	50(6)	92(9)	-1(7)	-5(6)	7(5)
F(16)	74(7)	34(5)	60(7)	9(5)	8(6)	-2(5)
B(2)	112(11)	112(11)	112(11)	0(1)	0(1)	0(1)
F(17)	166(9)	166(9)	166(9)	0(1)	0(1)	0(1)
F(18)	181(11)	180(11)	181(11)	0(3)	-1(3)	-1(3)
F(19)	390(20)	390(20)	390(20)	0(1)	0(1)	0(1)
F(20)	360(30)	360(30)	360(30)	0(3)	0(3)	-1(3)
B(3A)	79(12)	78(12)	78(12)	0(1)	0(1)	0(1)
F(21A)	85(8)	85(8)	85(8)	0(1)	0(1)	0(1)
F(22A)	90(9)	89(9)	89(9)	0(1)	0(1)	0(1)
F(23A)	94(9)	94(9)	94(9)	0(1)	0(1)	0(1)
F(24A)	104(10)	104(10)	104(10)	0(1)	0(1)	0(1)
B(3B)	61(10)	61(10)	61(10)	0(1)	0(1)	0(1)
F(21B)	190(30)	31(12)	50(15)	4(11)	-14(17)	-25(16)
F(22B)	87(8)	86(8)	86(8)	0(1)	0(1)	0(1)
F(23B)	125(12)	125(12)	126(12)	0(1)	0(1)	0(1)
F(24B)	110(30)	250(60)	220(60)	-140(50)	-20(30)	-70(30)
C(111)	290(30)	290(30)	290(30)	0(1)	0(1)	0(1)
Cl(1)	189(12)	189(12)	189(12)	1(3)	0(3)	-2(3)
Cl(2)	205(13)	205(13)	205(13)	0(3)	1(3)	-1(3)

Table S20. Hydrogen coordinates (x 10⁴) and isotropic displacement parameters (Å²x 10³) for $[\mathbf{3}_{FMF} \cdot (Ag)_3](BF_4)_3$.

H(1B)	3621	9685	5119	58
H(2A)	3579	9992	3793	54
H(2R)	3384	9959	4673	54
H(2A)	2114	9939	2120	54
$\Pi(3A)$	3114 2041	9992	3120	50
$\Pi(3B)$	3041	9803	2000	50
H(4A)	3245	10019	1488	48
H(4B)	3495	10030	2168	48
H(5A)	3647	9976	521	45
H(5B)	3739	9764	324	45
H(6A)	3909	9987	1915	47
H(6B)	4079	9948	976	47
H(7A)	4357	9874	2475	54
H(7B)	4349	9661	2863	54
H(8A)	4215	9880	4130	54
H(8B)	3982	9954	3471	54
H(0D)	4228	9527	/309	53
H(0R)	4094	9507	5282	53
H(3D) H(11A)	2000	2027	3282	55
$\Pi(\Pi A)$	3999	9202	3332	55
H(13A)	3599	8877	4960	50
H(15A)	3792	9392	6133	48
H(16A)	2987	9767	4368	49
H(16B)	3215	9641	4827	49
H(18A)	3293	9300	4213	55
H(20A)	2709	9047	2646	58
H(22A)	2693	9623	3118	49
H(23A)	3259	9773	144	49
H(23B)	3101	9700	1065	49
H(25A)	3425	9525	-977	63
H(27A)	3517	8978	-56	55
H(29A)	3286	9383	1878	53
$H(20\Lambda)$	4202	9505	1002	55
$\Pi(30R)$	4122	9075	10 <i>92</i>	50
П(30D)	4152	9010	000	30
$\Pi(32A)$	3940	9280	921	44
H(33A)	4028	8975	1338	46
H(35A)	4696	9136	2672	76
H(36A)	4636	9444	2204	72
H(38A)	4103	8687	1833	61
H(39A)	4241	8373	1906	55
H(41A)	4962	8540	2637	65
H(42A)	4827	8856	2657	73
H(43A)	4634	8141	1736	52
H(43B)	4914	8220	2037	52
H(44A)	4935	7901	2638	47
H(44B)	4870	7874	3753	47
H(45A)	5324	7958	3417	42
H(45R)	5224	8162	3096	42
H(45D) H(46A)	51224	7846	5002	-12
H(40A)	5125	7040	5003	55
$\Pi(40D)$ $\Pi(47A)$	5415	7912	3234	55
$\Pi(47A)$	5159	/001	0004	50
H(47B)	5269	8090	6539	50
H(48A)	4655	7847	6858	51
H(48B)	4723	7842	5737	51
H(49A)	4263	7912	6087	48
H(49B)	4356	8110	6518	48
H(50A)	4199	7893	4275	52
H(50B)	4499	7848	4467	52
H(51A)	4433	7919	2798	50
H(51B)	4315	8121	3070	50
H(52A)	5483	8253	5402	53
H(52B)	5582	8212	4331	53
H(54A)	5571	8476	217/	55
$H(55\Lambda)$	5371	0470	2705	50
11(53A) 11(77A)	5450	0173	2193	54
П(Э/А)	5038	8832	5278	60
H(58A)	5150	8512	5683	54
H(59A)	4980	9276	4211	173
H(59B)	4837	9089	4573	173
H(59C)	5098	9158	5091	173

H(60A)	4086	8237	4340	47
H(60B)	4002	8175	5400	47
H(62A)	3979	8413	6608	56
H(63A)	4053	8733	7109	53
H(65A)	4503	8830	4750	57
H(66A)	4427	8516	4223	51
H(67A)	4306	9196	7299	122
H(67B)	4058	9060	7231	122
H(67C)	4320	8987	7734	122
H(68A)	4950	8073	7840	58
H(68B)	4666	81/19	7594	58
H(70A)	4607	8/8/	7006	61
H(70A)	4730	8802	7000	50
H(71A) H(72A)	5447	8621	7202 8128	50
$\Pi(73A)$ $\Pi(74A)$	5447	0021	0120	52
$\Pi(74A)$	3314 4015	0079	7990	32
H(76A)	4915	9078	7013	73
H(77A)	4993	9390	7478	79
H(79A)	5607	9213	9160	62
H(80A)	5470	8900	8883	56
H(81A)	5456	9540	9298	73
H(81B)	5224	9623	8653	73
H(82A)	5306	9623	6889	67
H(82B)	5370	9832	7252	67
H(83A)	5743	9838	6426	95
H(83B)	5511	9783	5723	95
H(84A)	5949	9720	4872	78
H(84B)	6053	9508	4918	78
H(85A)	6386	9728	5467	64
H(85B)	6199	9797	6312	64
H(86A)	6629	9732	7067	64
H(86B)	6628	9539	7657	64
H(87A)	6454	9792	8639	63
H(87B)	6231	9830	7862	63
H(88A)	6022	9808	9536	59
H(88B)	5860	9616	9625	59
H(89A)	5615	9864	8837	61
H(89B)	5822	9863	7980	61
H(90A)	5575	9494	4680	61
H(90B)	5425	9438	5645	61
H(92A)	5834	9244	3881	54
H(94A)	5914	8714	5132	46
H(96A)	5599	9161	6658	52
H(97A)	6705	9/92	5868	63
H(07R)	6460	0403	5320	63
H(00A)	6076	9403	2050	70
H(101)	6970	9297	0000	70
$\Pi(101)$	6820	0727	7206	13
H(103)	6256	9094	6070	03
$\Pi(10E)$	6322	9555	9988	54
H(10F)	6492	9459	9156	54
H(10G)	6275	9177	8277	55
H(10H)	5891	8799	10041	71
H(11B)	6062	9337	10970	56
H(11C)	5046	9739	1293	352
H(11D)	5349	9756	1580	352

Table S21. Optimization and cartesian coordinates. The $[\mathbf{3}_{MFM} \cdot (Ag)_2]^{2+}$ and $[\mathbf{4}_{MFM} \cdot (Ag)_2]^{2+}$ complexes were optimized using $\omega B97X$ -D/6-31G*. The initial structure was constructed using the X-ray structure of each part, and the ligand sites forming the silver complex were constrained using the free center option.

Method: RWB97X-D Basis set: 6-311G(D)<KR Number of basis functions: 2936 Number of electrons: 1024 Parallel Job: 8 threads

SCF model:

A restricted hybrid HF-DFT SCF calculation will be performed using Pulay DIIS + Geometric Direct Minimization

Optimization:

Step	Energy	Max Grad.	Max Dist.
1	-6226.870735	0.019692	0.083236
2	-6226.877737	0.008714	0.103111
3	-6226.88004	0.002753	0.067142
4	-6226.881207	0.001642	0.068839
5	-6226.882052	0.000836	0.054946
6	-6226.88261	0.000865	0.06056
7	-6226 882999	0.000931	0.064613
8	-6226.883283	0.000963	0.066059
9	-6226.883522	0.000900	0.068307
10	-6226.883710	0.000000	0.000307
11	6226.003717	0.000755	0.07110
10	-0220.003091	0.000701	0.072199
12	-0220.004037	0.000646	0.074747
13	-0220.004210	0.000601	0.078730
14	-0220.004504	0.000655	0.073352
15	-6226.884525	0.000468	0.090231
16	-6226.88467	0.000562	0.082042
17	-6226.884806	0.000506	0.088604
18	-6226.884944	0.000719	0.08568
19	-6226.885076	0.000766	0.090073
20	-6226.885206	0.000886	0.090627
21	-6226.885327	0.000892	0.087103
22	-6226.885446	0.00096	0.093594
23	-6226.885558	0.000987	0.088499
24	-6226.885667	0.001032	0.092876
25	-6226.885776	0.001027	0.09264
26	-6226.885885	0.000995	0.095123
27	-6226.885992	0.00091	0.095314
28	-6226.886097	0.000779	0.102476
29	-6226.886212	0.000862	0.103416
30	-6226.886326	0.000504	0.110108
31	-6226.88644	0.000658	0.109006
32	-6226.886563	0.000645	0.115631
33	-6226.886692	0.000677	0.120713
34	-6226.886829	0.000653	0.12079
35	-6226.886963	0.000715	0.119099
36	-6226.887103	0.001037	0.122637
37	-6226 887246	0.001291	0 131132
38	-6226 887392	0.001382	0 12113
39	-6226.887542	0.001576	0.120056
40	-6226.887696	0.001897	0.095862
10	-6226.887851	0.001057	0.093002
41 42	-6226.888018	0.002015	0.092972
42	-6226.888173	0.001643	0.007705
43	6220.000173	0.001033	0.000007
44	-0220.000330	0.001079	0.094030
45	-0220.000400	0.001273	0.078780
40	-0220.000023	0.001196	0.090309
47	-0220.000743	0.001185	0.073123
48	-6226.888851	0.001357	0.083396
49	-6226.888949	0.000794	0.072038
50	-6226.889031	0.001135	0.066913
51	-6226.889106	0.000878	0.068373
52	-6226.889166	0.000782	0.045936
53	-6226.889213	0.000895	0.062489
54	-6226.889263	0.00082	0.049298
55	-6226.889303	0.000706	0.052477
56	-6226.889344	0.000596	0.065056

57	-6226	5.889383	0.00	0815	0.076	338	
58	-6226	5.889419	0.00	0644	0.09	552	
59	-6226	6.889461	0.00	0814	0.096	192	
60	-6226	5.889505	0.00	0715	0.103	277	
61	-6226	5.889547	0.00	0788	0.094	096	
62	-6226	6.889588	0.00	0724	0.094	667	
63	-6226	5.889624	0.00	0538	0.089	812	
64	-6226	6.889649	0.00	0626	0.070	053	
65	-6226	6.889663	0.00	0619	0.048	394	
Cartes	ian coori	inates					
	Atom	Х		Y		Ζ	
1	N1	-0.795	3271	1.6	986971	0.	.5235437
2	N2	-0.798	4517	-0.8	749309	2.	.4569893
3	C1	-0.229	5009	1.4	742325	1.	.8542747
4	H1A	-0.082	4621	2.4	400168	2.	.3695494
5	H1B	0.763	1665	1.0	362493		1.745204
6	C4	0.265	9095	1.8	945242	-0	.4591551
7	H4A	1.059	5905	2.5	448592	-0	.0511028
8	H4B	-0.157	4557	2.4	276218	-1.	.3125104
9	C2	-1.029	4559	0.5	383113		2.75243
10	H2A	-0.704	8362	0.7	265198	3.	.7793483
11	H2B	-2.104	8475	0.7	804252	2.	.7226892
12	C5	-1.719	9123	2.8	259958	0.	.5586537
13	H5A	-1.192	7111	3.7	641548	0.	.8142625
14	H5B	-2.433	0434	2.6	482817	1.	.3705931
15	C3	-1.698	9594	-1.	405154	1.	.4444493
16	НЗА	-1.793	9367	-0.6	409752	0.	.6690302
17	H3B	-2.711	7847	-1.5	772634	1.	.8562958
18	C13	0.55	1142	-1.4	477705	4	.4302525
19	C12	-0.740	0353	-1.6	672748	3.	.6704372
20	H12A	-0.795	4634	-2.7	279832	3.	.4147204
21	H12B	-1.597	9955	-1.4	710604	4	.3384004
22	C6	-2.484	6867	3.0	201709	-0.	.7274461
23	H5	-4.45	0267	1.3	086394		-2.89044
24	C11	-3.201	4381	1.9	695974	-1.	.2950725
25	H11	-3.172	4416	0.9	930821	-0.	.8233919
26	F3	1.873	6573	-1.7	420557	7.	.7792787
27	C9	-3.943	8709	3.3	908121	-3	.1135784
28	C14	0.61	4845	-1.6	976309	5.	.7989381
29	H14	-0.253	0316	-2.0	331459	6	.3563446
30	C15	1.810	9863	-1.4	950673	6	.4639133
31	C10	-3.925	2632	2.1	540236	-2	.4605593
32	C7	-2.500	8456	4.2	529041	-1.	.3728092
33	H7	-1.946	9291	5.0	862976	-0.	.9507674
34	H4	-3.206	1206	5.4	164236	-3	.0199959
35	C16	2.947	6749	-1.0	289209	5.	.8268199
36	H16	3.869	2655	-0.8	608337	6	.3678397
37	C18	1.683	7337	-1.	005509	3.	.7544502
38	H18	1.648	5276	-0.8	353817	2	.6869875
39	F4	3.932	0154	-0.3	375201	3	.8126583
40	C8	-3.215	9214	4.4	388343	-2	.5484003
41	C17	2.842	9643	-0.7	904719	4	.4695418
42	N1	-0.079	2237	-2.5	170345	-0	.1008859
43	N2	0.175	8929	0.0	636893	-2	.1275119
44	C1	-0.577	6981	-2.2	120857	-1	.4436159
45	H1A	-0.838	9296	-3.1	475865	-1	.9709325
46	H1B	-1.505	0683	-1.6	436151	-1	.3423964
47	C4	-1.194	1792	-2.7	031503	0	.8240748
48	H4A	-2.032	8245	-3.2	160706	0	.3223019
49	H4B	-0.874	7445	-3.	379849		1.615981
50	C2	0.350	8927	-1.3	721134	-2	.3222318

51	H2A	0.1106976	-1.5973897	-3.3648601	113	C30	-6.2676924	10.4484748	-3.8782401
52	H2B	1.4044103	-1.6730383	-2.180952	114	H22	-5.8765174	9.8329502	-3.0832848
53	C5	0.7948329	-3.6901443	-0.12131	115	C31	-5.6180653	11.598547	-4.3085248
54	H5A	0.20579	-4.619606	-0.2284412	116	C32	-6.1718066	12.32386	-5.3587897
55	H5B	1.4233661	-3.625164	-1.013486	117	H23	-5.6822079	13.2210449	-5.7014543
56	C3	0.8584436	0.5672573	-0.9380839	118	C33	-7.3419345	11.8975188	-5.9873913
57	H3A	0.7564273	-0.1838927	-0.1514661	119	H24	-7.7406772	12.4937613	-6.7949513
58	H3B	1.9412954	0.682853	-1.1303307	120	C34	-3.8806574	11.3841219	-2.715686
59	C13	-0.648881	1.087407	-4.2591524	121	H16A	-4.5154761	11.4558413	-1.8260938
60	C12	0.512335	0.8310857	-3 3175092	122	H16B	-2 9211749	11 8493588	-2 4895943
61	H12A	0.9152974	1 8013002	-3 016948	123	H16C	-3 6903228	10 3381146	-2.9655814
62	H12R	1 3247544	0.3489832	-3 8873861	123	C35	-5 9293341	8 768703	-9 0934509
63	C6	1.3247344	-3 7965611	1.0846509	124	H17A	-5 5211416	8 7638024	-10 1163244
64	С0 H2	1.7044554	-2 677749	2 1359612	125	H17B	-6 1180682	9.8346144	-8 9179076
65	C11	2 0003166	-3.0058016	1 1087405	120	C36	-4 8057459	8 3000/03	-8.1536744
66	U11	2.2023100	-3.0950910	0.2672550	127	C30	4.0037439	0.3909493	-0.1330744
60		3.172787	-2.4010281	0.2673559	128	U37	-4.8821011	0.775701	-0.8140628
07	F3	-1.4710212	3.3230667	-0.9871008	129	П23 С28	-5.7174057	9.3802687	-0.4844378
68	014	3.4725854	-4.0017757	3.2860122	130	C38	-3.9411257	8.3569975	-5.8825524
69	C14	-0.528276	2.0928356	-5.2209443	131	H26	-4.0886872	8.5887613	-4.8322683
70	H14	0.366822	2.7016949	-5.2897971	132	C39	-2.8306527	7.633806	-6.2960009
71	C15	-1.5748721	2.3225038	-6.0914396	133	C40	-2.6943048	7.3030838	-7.6464047
72	C10	3.7849205	-3.2084127	2.1754688	134	H27	-1.8531682	6.7225068	-8.0069665
73	C7	1.4041787	-4.6067243	2.178409	135	C41	-3.6811307	7.6753023	-8.570494
74	H7	0.4845468	-5.1854725	2.182399	136	H28	-3.5679675	7.3929198	-9.6137353
75	C16	-2.7449796	1.5857833	-6.0703762	137	C42	-0.7994256	6.5989964	-5.6629302
76	H16	-3.5637484	1.7943517	-6.7469891	138	H24A	-1.0380706	5.6006649	-6.0417016
77	C18	-1.8207737	0.345081	-4.1961956	139	H24B	-0.1818777	6.4889417	-4.7686774
78	H18	-1.9712956	-0.3986455	-3.4256268	140	H24C	-0.2259919	7.1676699	-6.3989424
79	F4	-3.974434	-0.1006059	-5.0128041	141	C43	-6.8132193	4.2570526	-8.1126747
80	C8	2.2633618	-4.6971966	3.2687422	142	H25A	-6.0208035	4.5222865	-8.8240831
81	C17	-2.8314505	0.6030442	-5.1050388	143	H25B	-7.1287085	3.2758211	-8.5001994
82	Ag1	-7.6813633	7.2684082	-6.8619782	144	C44	-6.1299122	3.9800467	-6.8046435
83	C19	-8.7684854	9.7572195	-8.4943215	145	C45	-4.9881592	4.7074141	-6.5244102
84	H1	-7.9643976	10.4721878	-8.3061555	146	H29	-4.6246234	5.4416062	-7.2299613
85	H6	-9.5643234	10.3563051	-8.9598834	147	C46	-4.295568	4.503695	-5.3453563
86	C20	-8.2920521	8.745513	-9.5155915	148	H30	-3.4089793	5.107325	-5.2137691
87	H8	-9.1353936	8.1128595	-9.7956767	149	C47	-4.7007073	3.576629	-4.3721159
88	H10	-8.0344643	9.2774495	-10.4434265	150	C48	-5.8474156	2.8247583	-4.6700723
89	C21	-7.0087724	6.7661767	-9.8269079	151	H31	-6.2280383	2.0848257	-3.9709913
90	H12	-6 0076384	6 3530565	-9 669322	152	C49	-6 5368707	3 0043066	-5 8850832
91	H13	-7 051375	6 9845668	-10 9025633	153	H32	-7 3976819	2 3757441	-6.0976739
92	C22	-8.0652318	5 7042375	-9 5238511	154	C51	-9 7641113	5 7618275	-4 9272141
92	H15	-9.0650619	6 1032845	-9.6952885	154	H334	-9.51/7382	4 700816	-5.0331089
9/	H17	-7 9519454	4 8974054	-10 262264	155	H33B	-10 7720364	5 7321564	-4 4826662
05	C22	0 121/08/	4.6974034	7 6806764	150	C52	-10.7720304 8 8166022	6 2072156	2 8726175
95	U10	9.1214904	2 0280525	-7.0000704	157	C52	7 4507215	6.0176150	-3.8730173
90	П19 1120	-0.0044000	3.9200323	-0.0207907	150	000	-7.4307213	0.0170139	-3.9013407
97	П20 С24	-9.3240142	5.0334124	-0.4230101	139	П33 СГ4	-7.0692296	0.0007000	-4.7390701
98	C24	-10.2182206	5.513287	-7.2783323	160	C54	-6.5259304	6.6153211	-3.1128557
99	H6A	-10.5644817	6.029938	-8.1749888	161	H36	-5.4635279	6.4769959	-3.2948052
100	H6B	-11.0821304	4.9145774	-6.9569144	162	C55	-6.9638802	7.4165657	-2.0674167
101	C25	-10.7165427	7.565444	-6.1873432	163	C56	-8.334474	7.6255965	-1.8975818
102	H7A	-10.6230774	8.0825977	-5.2275882	164	H38	-8.7178868	8.250907	-1.1000078
103	H7B	-11.7651712	7.2366777	-6.219945	165	C57	-9.2554268	7.0786933	-2.8034283
104	C26	-10.4963208	8.5421114	-7.3380045	166	H39	-10.3141253	7.2894027	-2.6789318
105	H8A	-10.5981242	8.0376662	-8.2960175	167	C58	-6.3531181	8.757503	-0.213038
106	H8B	-11.3086971	9.2814098	-7.3254242	168	H40A	-6.8772857	9.6570022	-0.5458534
107	C27	-9.2476117	10.2207227	-6.212301	169	H40B	-5.4425121	9.0699977	0.3010852
108	H9A	-9.9175446	9.9634696	-5.3845465	170	H40C	-6.958978	8.1829691	0.4927084
109	H9B	-9.748756	11.109146	-6.6340026	171	N3	-9.2452005	9.2187119	-7.2579402
110	C28	-7.9774249	10.7219057	-5.5807257	172	N4	-7.1581449	7.9849271	-9.0941339
111	C29	-7.4405751	10.0270651	-4.5021664	173	N5	-7.9416982	5.1548237	-8.2093761
112	H21	-7.9392781	9.1337526	-4.1595728	174	N6	-9.8653142	6.4170564	-6.225052

175	O1	-4.4509103	12.0981901	-3.8047355	237	C84	7.3852157	-5.5733227	2.9918856
176	O2	-1.9783419	7.2918384	-5.284575	238	H73	7.1722252	-4.8314936	3.7513601
177	O4	-5.9598451	7.9624563	-1.3197517	239	C85	6.356837	-6.0464902	2.1789223
178	Ag2	8.1919359	-7.1201044	6.3787456	240	H74	5.3611429	-5.670072	2.3567091
179	C50	8.6201619	-6.6255591	9.4682866	241	C86	6.6071014	-7.003653	1.2033607
180	H33	7.6189522	-6.2733683	9.7359289	242	C87	7.9155834	-7.4481821	1.0214395
181	H34	9.1205622	-6.7994187	10.4324267	243	H75	8.1260737	-8.1914734	0.2574954
182	C59	9.3443884	-5.5048876	8.7482763	244	C88	8.953119	-6.9619338	1.8287309
183	H37	10.3836401	-5.8124247	8.603677	245	H76	9.9644094	-7.3198372	1.6551961
184	H40	9.4115526	-4.6500847	9.4359732	246	C89	4.3305561	-7.0974927	0.5494777
185	C60	9.6617741	-4.422655	6.6458453	247	H32A	4.2755664	-6.0198515	0.3627045
186	H41	9.1226643	-3.8588317	5.8795162	248	H32B	3.7048607	-7.5930788	-0.1976365
187	H42	10.2137887	-3.6621867	7.2167002	249	H32C	3.9293428	-7.3507028	1.5371085
188	C61	10.6886496	-5.3493487	5.9828153	250	C90	9.1615299	-9.9294256	5.172906
189	H43	11.2369902	-5.9058573	6.7442834	251	H77	9.5734801	-9.7247132	4.1765092
190	H44	11 4462338	-4 722421	5 4916671	252	H78	9 5410077	-10 9410567	5 3865712
191	C62	10.8724604	-7 3976369	4 7070678	252	C91	7 6606928	-10.0305814	4 9815838
192	H45	10.4912514	-7 886692	3 8075205	255	C92	7.0005136	-9 0293099	4 2652461
103	H46	11 89/3617	-7 0908919	4 4419202	254	U72 H79	7 5815535	-8 2277/3	3 8322285
104	C62	10.0576857	-7.0900919 8 4278552	5 7070665	255	C02	5 6162157	9.0799221	<i>A</i> 1667042
194	C03	11.9570857	8 0005112	5.7970005	250	U93	5.0103137	-0.9700331	4.1007042
195	1147	11.4040001	-0.0005115	0.0470022 E 4478E06	207	C04	J.1390519	-0.1213023	4 6782070
190	П40 С(4	0.7425025	-9.2393103	5.4476390	200	C94	4.0340301	-10.0157224	4.0762079
197	C64	9.7435925	-9.5939483	7.476906	259	C95	5.4951143	-11.0758578	5.3251539
198	П49 ЦБО	8.9107215	-10.2914616	7.6075908	260		4.9331844	-11.8962452	5.7576272
199	H50	10.6416452	-10.2237224	7.5560578	261	C96	6.8916363	-11.0776512	5.4895132
200	C65	9.7793789	-8.5778888	8.6202637	262	H82	7.3650321	-11.8933634	6.0298379
201	H51	10.6185644	-7.8942106	8.4882484	263	C97	2.7064017	-10.966834	4.8295879
202	H52	10.0010611	-9.1190279	9.5508432	264	H83	2.6857471	-11.1284275	5.9117773
203	C66	7.5039275	-8.7215474	9.3141539	265	H84	1.6853092	-10.7551927	4.502855
204	H53	7.5953725	-9.766231	8.9959341	266	H85	3.0491493	-11.8517034	4.2845899
205	H54	7.6991508	-8.802016	10.3991496	267	N7	8.5446693	-7.8708815	8.7699726
206	C67	6.0453612	-8.3724191	9.1739201	268	N8	8.7350924	-5.0771995	7.5194318
207	C68	5.4019349	-8.6538303	7.9747101	269	N9	10.1103315	-6.2285985	5.0092653
208	H55	5.9715435	-9.0995944	7.1722499	270	N10	9.701836	-9.0115686	6.1720944
209	C69	4.0538922	-8.3620611	7.7841879	271	O3	1.9910331	-7.4504842	8.7340193
210	H56	3.6268328	-8.567188	6.8116067	272	O6	5.6631167	-7.5775179	0.3973771
211	C70	3.3088666	-7.8043096	8.8146646	273	07	3.5082041	-9.8406567	4.5162597
212	C71	3.9243132	-7.5749558	10.0457639	274	H93	1.9769131	-5.3072238	4.1194571
213	H57	3.3417184	-7.1661349	10.8670372					
214	C72	5.2840056	-7.8553193	10.2279798					
215	H58	5.7362042	-7.6731685	11.1999828	F .				
216	C73	1.3945409	-7.5449558	7.4444938		(Ag) ₂]+			(****
217	H59	1.3122842	-8.5908533	7.1292149	SPART	'AN'20	Quantum Mec	hanics Driver:	(W1n/64b)
218	H60	0.3836023	-7.1344378	7.5119834	Release	e 1.0.0			
219	H61	1.9420535	-6.9529733	6.7024709	Job typ	e: Geome	etry optimization	•	
220	C74	7.4943147	-4.3162574	7.7052399	Metho	d: RWB9	$(\Lambda - D)$		
221	H62	7.7980188	-3.2796008	7.9384025	Dasis s	et: 0-311	G(D) <kr< td=""><td></td><td></td></kr<>		
222	H63	6.9764574	-4.6192658	8.6245093	Numbe	or of place	rons: 1024		
223	C75	6.4272464	-4.2346072	6.5998194	Parallo	l Job 8 th	10115. 1024		
224	C76	5.4829924	-5.2430878	6.3775585	SCE m	odel·	liteaus		
225	H64	5 4894173	-6.0988789	7 0483021	A rest	ricted hvl	rid HF-DFT SC	F calculation will be	nerformed
226	C77	4 5286215	-5 1988932	5 304838	using F	Pulay DII	S + Geometric D	irect Minimization	periormed
227	H65	3 9070197	-6.0855413	5 1952812	Optimi	ization:	S + Geometric D	neet minimization	
228	C78	4 4095805	-4 0934677	4 4264024	°P				
220	C79	5 227044	-3.0610617	4 73183/2	Step	Energy	Max G	rad. Max Dist.	
220	U19 Н66	5 2261004	-2 1/70169	1/1/25166	1	-6225	844024 0.02	0.068982	
200 221	C80	6 2004014	-2.14/0100	5 7722026	2	-6225	849975 0.00	0.100461	
∠ວ1 ງງງ	U60 U67	6 0502522	-3.1414147 2 2667472	5.0172030	3	-6225	851059 0.00	0.099861	
232 222		0.7303523	-2.200/4/3	J.71/003	4	-6225	851621 0.00	1974 0.090872	
∠33 224	U71	9.7424324	-3.3219102	3.1934839	5	-6225	851989 0.00)1254 0.081156	
234	H/1	9.4993191	-4.4693133	3.9849245	6	-6225	852445 0.00	1523 0.001130	
235	H72	10.6585453	-5.4239728	3.1850045	7	-0223. _6225	852385 0.00	1256 0.057000	
236	C83	8.6862331	-6.0486825	2.8579589	1	-0223.	052505 0.00	0.034979	

8	-6225.85258	0.001482	0.065538		4		H1A	-1.8264904	-1.5488391	4.0030187
9	-6225.852744	0.000816	0.062963		5	,	H1B	-0.2487789	-0.9526092	3.4834982
10	-6225.852922	0.001146	0.085207		6	,	C4	0.4947498	-1.1304628	5.9141339
11	-6225 852711	0.001157	0.065964		7	,	H4A	0 7909201	-1 9214223	5 2143609
12	-6225.852823	0.001345	0.066219			2	H/R	0.2876216	-1 6511922	6 8558758
12	6225.052025	0.001345	0.050021		0	, ,	C2	1 800244	0.4071264	2 2785502
15	-0223.032033	0.001476	0.050921		9			-1.600244	0.4971304	5.5765505
14	-6225.85297	0.001293	0.062834		10)	HZA	-2.3814594	0.0947971	2.5459278
15	-6225.853045	0.000678	0.049633		11		H2B	-2.5315272	0.9819849	4.0516656
16	-6225.852748	0.000608	0.070872		12		C5	-1.7506822	-0.2666492	6.4190515
17	-6225.853139	0.000686	0.045485		13	;	H5A	-2.3619948	0.5947088	6.1298486
18	-6225.853105	0.000949	0.043923		14	ł	H5B	-1.2852382	0.0331658	7.3612668
19	-6225.853145	0.000856	0.052011		15	;	C3	-0.0931325	2.1465049	3.864217
20	-6225.853213	0.000802	0.05434		16	,	H3A	0.0842054	1.4436045	4.6739516
21	-6225 853176	0.000741	0.051685		17	,	H3B	-0.6935179	2 9679888	4 2971622
22	-6225 853223	0.00077	0.051361		18	2	C13	-2 3153862	1 8980247	0.8350887
22	-6225 853260	0.000632	0.036356		10	ý	C12	-1 5120016	2 4543016	1 0838/3/
23	(0223.03320)	0.000032	0.030330		19		U12	0.7220010	2.4343010	1.9030434
24	-0223.033103	0.000398	0.03732		20	,	HI2A	-0.7529551	3.1132203	1.3033004
25	-0225.853247	0.000422	0.046471		21		ПІДВ	-2.17593	3.0985101	2.5917863
26	-6225.8532	0.00072	0.028755		22		C6	-2.6851396	-1.4363217	6.7042753
27	-6225.853084	0.000474	0.049525		23	5	F2	-5.8771042	-1.986065	8.3078421
28	-6225.853402	0.000416	0.051145		24		C11	-3.8868961	-1.1837191	7.3649641
29	-6225.853294	0.000402	0.046147		25	,	H11	-4.1715291	-0.1767071	7.6509379
30	-6225.85342	0.000411	0.052935		26)	C9	-4.4301545	-3.5485685	7.337844
31	-6225.8533	0.000394	0.048276		27	'	H9	-5.1004621	-4.3616194	7.5841933
32	-6225.853444	0.00059	0.04377		28	3	C14	-3.6940532	2.0720836	0.8089843
33	-6225.853346	0.001004	0.035428		29)	H14	-4.1881682	2.5711805	1.636993
34	-6225.853433	0.000369	0.037752		30)	C15	-4.4469406	1.6456776	-0.2725972
35	-6225 853334	0.000562	0.059206		31		C10	-4 7269058	-2 2375005	7 6703906
36	-6225 853478	0.000728	0.053654		32	,	C7	-2 3586415	-2 743753	6 3581333
37	-6225 853378	0.000720	0.035034		33		U7	-1 4376566	-2 0845433	5.8421033
20	-0223.033370 600E 0E0440	0.000602	0.040111		33)	ГГ ГГ1	2 012104	= 2.904J4JJ	6 2240002
30	-0223.035440	0.000626	0.101303		34	t		-2.915100	-3.0203140	0.3340002
39	-6225.85346	0.001284	0.060493		35)	C16	-3.8485601	1.0302002	-1.3/1/325
40	-6225.853483	0.000467	0.056665		36)	C18	-1.7148542	1.2420754	-0.2397366
41	-6225.853581	0.000662	0.052465		37		HI8	-0.643616	1.0706359	-0.2213789
42	-6225.853533	0.000454	0.045932		38	5	C8	-3.235647	-3.7661089	6.6791709
43	-6225.853583	0.000407	0.05772		39)	C17	-2.4670426	0.8195229	-1.3288654
44	-6225.853536	0.000472	0.056714		40)	N1	2.3152095	2.3894685	4.3253746
45	-6225.853522	0.000786	0.062447		41		N2	1.4580581	0.9491947	6.9387187
46	-6225.853537	0.00074	0.07915		42	2	C1	2.1299966	2.9884825	5.6409039
47	-6225.853489	0.001238	0.059834		43	;	H1A	2.7466525	3.8942986	5.7573725
48	-6225.853541	0.000999	0.047444		44	ł	H1B	1.0939941	3.3122022	5.7530201
49	-6225.853592	0.000531	0.077579		45	;	C4	1.2612132	2.6603611	3.3630266
50	-6225.853559	0.000634	0.087725		46	,	H4A	1.2227171	3.7341666	3.0993675
51	-6225 853618	0.001446	0.074929		47	,	H4B	1 4981843	2 1112147	2 4470837
52	-6225.853709	0.000921	0.056323		/18	2	C^2	2 /379962	2.024671	6 78/3106
52	-6225.853556	0.000521	0.050525		40	, ,	U2 H24	2.4379902	2.024071	7 7072481
55	-022J.0JJJJ0	0.000034	0.000071		49 50		112A 119D	2.4409002	2.0110774	6.6764077
54	-0223.033002	0.00064	0.069269		50	,		3.4390692	1.0170497	0.0704977
55	-6225.853675	0.000941	0.060476		51		C5	3.647973	2.5690621	3.7756263
56	-6225.853882	0.000804	0.071804		52		H5A	3.7138856	3.4801457	3.155016
57	-6225.853878	0.000854	0.043183		53	5	H5B	4.3461477	2.7098362	4.6052847
58	-6225.853775	0.000746	0.040785		54	ł	C3	1.7020061	-0.1968388	6.0738613
59	-6225.853763	0.000735	0.046902		55	,	H3A	1.9737047	0.1942534	5.0936276
60	-6225.85377	0.000576	0.045854		56)	H3B	2.5607001	-0.8011164	6.4306043
					57	'	C13	0.4754407	1.6199574	9.1020234
Quan	tum Calculation CF	'U Time : 906	:13:52.24		58	3	C12	1.28893	0.597489	8.3356019
Quan	tum Calculation Wa	ull Time: 391:5	52:12.64		59)	H12A	0.7656022	-0.3600767	8.4017954
					60)	H12B	2.2567184	0.4414961	8.8438469
Cartes	ian Coordinates				61		C6	4.084973	1.3591396	2,984484
	Atom X	Y	Z		62	2	C11	4.0927746	1.3406286	1.5951823
1	N1 -0.709	91692 -0.40	664057	5.4453652	63		H11	3 8113542	2 2348831	1 0464246
2	N2 -0.856	52186 1.40	603506	2.8247105	64	L	F3	-0.0460362	2 7170479	12 5009338
3	C1 -1.132	25001 -0.69	954764	4.0729117	65		C9	4 850225	-0.9524/02	1 5827944
					05	,	0)	4.032333	-0.7544475	1.5021944

66	C14	0.6104301	1.7198182	10.4839836	128	C75	10.9953455	-4.4071602	0.5266464
67	H14	1.3185304	1.1068808	11.0305167	129	C76	10.8522105	-3.0119485	0.4703857
68	C15	-0.1791633	2.6233548	11.1732383	130	H64	11.1917127	-2.5391021	-0.2790673
69	C10	4.4712035	0.1970983	0.8988035	131	C77	10.2310673	-2.3156755	1.4810051
70	C7	4.465896	0.2036979	3.6664941	132	H65	10.1380125	-1.3728477	1.4190761
71	H7	4.4554422	0.1998795	4.752104	133	C78	9.7363203	-2.9951786	2.6009203
72	C16	-1.0993856	3.4431485	10.542613	134	C79	9.8699203	-4.3735493	2.6766883
73	H16	-1.702141	4.1490323	11.0996427	135	H66	9.5266333	-4.8457703	3.426998
74	C18	-0.4392897	2.4315459	8.4359815	136	C80	10.5098604	-5.0660946	1.6519009
75	H18	-0.5460021	2.3694761	7.3604094	137	H67	10.6176665	-6.0068293	1.7220978
76	F4	-2.0837485	4.0992204	8.5209683	138	C81	8.6190051	-2.9026096	4.6888979
77	C8	4 852487	-0.9325921	2 9802237	139	H68	7 9040979	-3 513678	4 4156142
 78	C17	-1 2034075	3 3205823	9 1692684	140	H69	8 2618489	-2 2466756	5 325635
79	H1	5 1412628	-1 8234758	3 5298549	141	H70	9 3383341	-3 4112373	5 1157275
80	H2	4 5006559	0.2105153	-0.1865332	142	C82	6 9063836	-5 5237297	-1 3056439
81	H3	-1 9733647	0.3188593	-2 1565469	143	H71	7 3901103	-6.0953065	-0.65921
82	H4	-5 5118959	1 8398927	-0.2763637	143	H72	6 16/6027	-6.0597737	-1 6854947
83	Δσ2	9 5067199	-3 268599	-2 2079405	144	C83	6 3258326	-4.3527356	-0.5725505
84	C58	12 3707027	-4.0554927	-2.2019405	145	C84	7 0072634	-3 838657	0.5247718
04 95	U22	12.3797927	2 7118600	2 7102618	140	U72	7.0072034	-3.030037	0.3247710
86	H34	12.9520504	-3.7110009	-4.2243024	147	C85	6 5262074	-4.2422003	1 2407305
00 07	C50	11 722082	-4.2403903 E 2616247	-4.2243924	140	U74	7 0091542	-2.7525491	1.2407303
01	C39	11.752962	-3.3010347	-2.9092372	149		7.0001342	-2.4210307	1.9070000
00	П37 1140	11.1970055		-3.7331428	150		2.3321742	-2.1530012	0.8521396
89	H40	12.4467277	-6.0138855	-2.7786831	151	087	4.6232136	-2.672808	-0.2234947
90	C60	9.9140108	-6.3364177	-1.686195	152	H/5	3.7942374	-2.2810857	-0.4767131
91	H41	9.5458031	-6.3470426	-0.767687	153	C88	5.1148685	-3.7537815	-0.9270493
92	H4Z	10.4055988	-7.1854141	-1.8237564	154	H76	4.6219736	-4.0953484	-1.6648564
93	C61	8.7585724	-6.2686746	-2.6762671	155	C89	7.4136258	-1.7628274	-4.2349523
94	H43	9.1234931	-6.1753972	-3.5908995	156	H77	6.5285058	-2.1470669	-4.0162838
95	H44	8.251308	-7.1185327	-2.6384935	157	H78	7.3404858	-1.3021664	-5.1097771
96	C62	7.0247225	-4.8122009	-3.5964574	158	C90	7.7959703	-0.7612544	-3.1754389
97	H45	6.2857128	-4.2188339	-3.3121774	159	C91	7.672608	-1.1200521	-1.8157894
98	H46	6.6197588	-5.6461016	-3.9446817	160	H79	7.3641425	-1.9899937	-1.5920132
99	C63	7.7776073	-4.1328037	-4.7310443	161	C92	7.9872218	-0.2467219	-0.8148469
100	H47	8.4753719	-4.7510676	-5.0667087	162	H80	7.894834	-0.5148512	0.092509
101	H48	7.1477824	-3.9574651	-5.4738493	163	C93	8.4464736	1.0387045	-1.1171849
102	C64	9.4759289	-2.5004946	-5.2982088	164	C94	8.5764582	1.4268283	-2.4512608
103	H49	9.6879903	-1.5395371	-5.1958442	165	H81	8.8812093	2.2996877	-2.6704175
104	H50	9.1388821	-2.6398687	-6.2194704	166	C95	8.2505059	0.5148434	-3.4670459
105	C65	10.7501362	-3.3140529	-5.1069697	167	H82	8.3428885	0.7786577	-4.3752327
106	H51	10.5269184	-4.2781176	-5.1320736	168	C96	9.271732	3.1293311	-0.2808339
107	H52	11.3701034	-3.1279621	-5.8571961	169	H83	10.1075346	3.0465405	-0.7847148
108	C66	12.1789374	-1.725019	-3.9875581	170	H84	9.448907	3.5741692	0.5734869
109	H53	11.6361374	-1.1017216	-4.5341199	171	H85	8.6286932	3.657974	-0.7965506
110	H54	13.0196442	-1.9038434	-4.4798968	172	N7	11.4293092	-3.0071133	-3.8333246
111	C67	12.5159812	-1.0594782	-2.6777494	173	N8	10.8645153	-5.2096236	-1.8081974
112	C68	11.5150302	-0.4382617	-1.9416091	174	N9	7.8408686	-5.1487412	-2.4088702
113	H55	10.6180276	-0.476597	-2.2511766	175	N10	8.4164069	-2.8639922	-4.3406766
114	C69	11.7992818	0.2428238	-0.755139	176	O3	13.5084097	0.9215833	0.8468561
115	H56	11.1050393	0.6611496	-0.2597234	177	O5	9.1327341	-2.2210699	3.5388783
116	C70	13.1147871	0.2994521	-0.3093054	178	O6	8.728101	1.8206768	-0.0355418
117	C71	14.1227021	-0.3107306	-1.0479457	179	Ag1	-9.7485366	1.9228733	-4.0631116
118	H57	15.0223991	-0.2603189	-0.7449654	180	C19	-7.8436394	2.4118075	-6.6220083
119	C72	13.8315504	-0.9891939	-2.2152082	181	H5	-7.0083671	2.635707	-6.1405639
120	H58	14.5279405	-1,4091304	-2,7048859	182	H6	-7.6084787	2,2528249	-7.5712673
121	C73	12 4876751	1.4914796	1.6531407	183	C20	-8 7870389	3.6121062	-6.5469615
122	H59	12 0795319	2 2451284	1 1787336	184	H8	-9 6039041	3 4078873	-7 0679896
123	H60	12.8782506	1 8068196	2 4976213	185	H10	-8 346572	4 3906744	-6 9700762
124	H61	11 8053871	0.8152520	1 8422025	186	C21	-10 4125210	4 7884197	-5 1572708
125	C74	11 6801200	-5 1206140	-0 57/00/6	100	H12	-10/1020159	5 9292819	-4 2766070
125	U14 H62	11 0182524	-6 03/5/21	-0.2727621	107	H12	-10.4230130	5.4964042	-5.8/6019
120	H62	12 52//070	-1 648679	-0.2727021	100	C22	-10.3377724	3.4904042	-5.0402101
141	1100	12.0044079	-1.010072	0.1011313	109	C_{22}	-11.0772143	5.7770100	-0.4100200

190	H15	-11.5670943	3.4698018	-6.2560032	234	C42	-12.6602161	3.7824741	-3.2113425
191	H17	-12.4384663	4.6015822	-5.5369972	235	H25A	-12.274252	4.6916364	-3.1556159
192	C23	-12.9066205	1.96931	-4.7669206	236	H25B	-13.6229164	3.8765971	-3.4263244
193	H19	-13.2575665	1.5050333	-3.9667213	237	C43	-12.5298013	3.1210892	-1.8729649
194	H20	-13.6761391	2.3857104	-5.230879	238	C44	-11.434267	3.426585	-1.0735215
195	C24	-12.2905058	0.9312509	-5.693571	239	H29	-10.7924989	4.0521262	-1.387845
196	H6A	-11.9993711	1.3802541	-6.5275091	240	C45	-11.2526135	2.843311	0.1716383
197	H6B	-12.9823637	0.266378	-5.9349828	241	H30	-10.4978716	3.0696206	0.700177
198	C25	-10.3222634	-0.4012566	-6.1630371	242	C46	-12.1864347	1.9229234	0.6369732
199	H7A	-9.7417481	-1.0912857	-5.7557075	243	C47	-13.3024556	1.6285109	-0.1356901
200	H7B	-10.9231121	-0.8533795	-6.8082473	244	H31	-13.955386	1.0182833	0.189996
201	C26	-9.4526274	0.6009864	-6.9122469	245	C48	-13.4692648	2.2162723	-1.3734011
202	H8A	-10.0231554	1.3337303	-7.2549732	246	H32	-14.2351351	2.0011539	-1.8942738
203	H8B	-9.037236	0.1518308	-7.6917432	247	C49	-10.9552078	1.5657659	2.6532852
204	C27	-7.2816491	0.1773987	-5.9494329	248	H32A	-11.0097296	2.4914356	2.9732718
205	H9A	-7.6732249	-0.7301163	-5.8783708	249	H32B	-10.939778	0.9565776	3.4201221
206	H9B	-6.7397685	0.2079345	-6.7779854	250	H32C	-10.13476	1.4512324	2.1292918
207	C28	-6.3753977	0.4123891	-4.7680652	251	C50	-11.577218	-0.7993305	-4.1150619
208	C29	-6.8248294	0.1247206	-3.4855	252	H33A	-12.4466376	-0.5278597	-3.7286603
209	H21	-7.7166143	-0.1775746	-3.3619984	253	H33B	-11.7041674	-1.6677119	-4.5762276
210	C30	-5.9928144	0.2698518	-2.3723623	254	C51	-10.5711184	-0.9674644	-3.0053778
211	H22	-6.3134092	0.0722744	-1.5002454	255	C52	-10.4477196	0.0470974	-2.0317053
212	C31	-4.6870968	0.7084481	-2.5597605	256	H35	-10.9903574	0.8235772	-2.0998831
213	C32	-4.2279167	0.9869474	-3.8425152	257	C53	-9.5661334	-0.0607544	-0.9950052
214	H23	-3.3309472	1.2762682	-3.9671444	258	H36	-9.5036585	0.6379598	-0.3533559
215	C33	-5.0598269	0.8489239	-4.9363426	259	C54	-8.7535884	-1.1919523	-0.8733351
216	H24	-4.7363884	1.05135	-5.8055382	260	C55	-8.8530504	-2.2152561	-1.8168661
217	C34	-8.079171	4.7290871	-4.5111855	261	H38	-8.3114112	-2.9922064	-1.7421568
218	H17A	-8.1419086	5.682288	-4.7680103	262	C56	-9.7633777	-2.0860341	-2.8772372
219	H17B	-7.2085832	4.3846724	-4.8336639	263	H39	-9.8277979	-2.7816157	-3.5214049
220	C35	-8.1229317	4.6217884	-3.0318215	264	C57	-7.0025309	-2.2905677	0.3424347
221	C36	-7.7346254	3.4253479	-2.4089114	265	H40A	-6.4315519	-2.3457402	-0.4514514
222	H25	-7.4580253	2.6911562	-2.9427466	266	H40B	-6.4450753	-2.1538753	1.1359676
223	C37	-7.7452684	3.2960529	-1.0395934	267	H40C	-7.5102123	-3.1222451	0.439893
224	H26	-7.4860456	2.4751974	-0.6391187	268	N3	-8.389953	1.1716064	-6.0622499
225	C38	-8.1371868	4.3733519	-0.2355187	269	N4	-9.1769064	3.9753785	-5.1728145
226	C39	-8.5221724	5.5650341	-0.8315291	270	N5	-11.9906063	3.0434888	-4.3233272
227	H27	-8.8016497	6.2984912	-0.2951184	271	N6	-11.1375262	0.2256577	-5.1077258
228	C40	-8.4973955	5.6869067	-2.2185637	272	O2	-8.1223151	4.1440659	1.1026234
229	H28	-8.7405352	6.5132776	-2.6179186	273	O1	-12.0864135	1.2770619	1.8354081
230	C41	-8.523689	5.2359648	1.937757	274	O4	-7.9140571	-1.1871293	0.2017045
231	H24A	-9.462162	5.4546653	1.7630686					
232	H24B	-8.4175068	4.9834418	2.8802358					
233	H24C	-7.9650489	6.0166132	1.7458479					

第6章. 謝辞

指導教官である幅田揚一教授には研究だけでなくあらゆる面からサポートをしていた だき、博士号取得に向けて多大なるご支援やご指摘を賜りました。心から感謝申し上げ ます. 同研究室において研究内容や測定などに関する助言をいただき, また, 分離精製 に必要な装置を快く提供していただいた桑原俊介教授に感謝いたします. X線結晶構造 解析では韓国の慶尚大学校の朴基民教授、および、元東邦大学の外国人特別研究員であ り、現江陵原州大学校の李恩智博士、そして、現韓国基礎科学支援研究院の朱喜英博士 にご尽力いただき、数々の錯体の構造を明らかにすることができました.加えて、発表 会やシンポジウムなどで活発な議論をしていただいた、慶尚大学校の李心星教授、東邦 大学の渡邊総一郎教授、齋藤良太教授、平山直紀教授、加知千裕教授、佐々木要准教授 に感謝申し上げます.また,元同研究室の博士課程卒業生であり,現千葉工業大学の池 田茉莉教授には研究だけでなく発表方法についても助言いただくだけでなく、博士課程 を乗り越えるため、また、今後アカデミアで仕事をしていくことに向けた励ましの言葉 を多くいただきました.最後に、給与型奨学金を支援していただいた長谷川財団(3年 間)、および、リサーチアシスタント(2年間)と非常勤講師(2年間)を務めることを 許可してくださった東邦大学に感謝申し上げます。経済的支援があることで研究生活に 余裕が生まれ、無事に博士号取得に繋がったと考えております.