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Crystal Bases and K-hives

SHOTA NARISAWA

ABSTRACT. In this thesis, we study the theory of A,,_;-crystal bases and K-hives. This
thesis has three themes. The first theme is a combinatorial realization of crystal bases
of highest weight modules over the quantized enveloping algebra of type A by K-hives.
This contains the determination of a crystal structure on a set of K-hives using two
approaches. One approach is obtained by considering an embedding of a set of K-hives
determined by a dominant weight into a tensor product of sets of K-hives determined
by fundamental weights. The other approach is obtained by considering a combinatorial
description of the crystal structure. The second theme is a combinatorial tensor product
decomposition map of crystal bases in terms of K-hives. This map is described using the
notion of path operators on K-hives, and then the decomposition map can be computed
graphically. The third theme is a set of algorithms for computing the crystal structure
on a set of K-hives and their implementation as a Python package. Additionally, we
show some examples of performing this package.
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1. INTRODUCTION

Let g be a symmetrizable Kac-Moody algebra and let U(g) be the universal enveloping
algebra of g. The quantized enveloping algebra U,(g) is the g-analogue of U(g), which
is introduced in the study of the quantum Yang-Baxter equation in [2, 4] When ¢ = 1,
U,(g) is the same as U(g). When ¢ = 0, the representation of U,(g) can be studied from
combinatorics by crystal bases.

Crystal bases are special bases of modules over U,(g) at ¢ = 0 developed in [6, 7,
5]. These bases have nice properties and give a combinatorial tool for studying the
representation theory of U,(g). For example, computing the action of U,(g) on the tensor
product of the modules is laborious. However, it can be simply computed at ¢ = 0 using
the crystal basis. Moreover, some crystal bases have combinatorial realizations: let g be
a simple Lie algebra of type A,_;. For a dominant weight A of A,,_1, let V()) be the
highest weight module of the highest weight A over U,(g). Let Y be the Young tableau
corresponding to A. Let B(Y') be the set of semistandard tableaux of shape Y. Then,
B(Y) is isomorphic to B(\). This means that the crystal base of the highest weight
module of the highest weight A of type A, _; is realized by semistandard tableaux of
shape Y [8]. Furthermore, the decomposition of a tensor product of crystal bases of
highest weight modules of type A,,_; is given using the realization by Young tableaux.
This decomposition rule is obtained by determining that an element of a tensor product
is a highest weight element in terms of Young tableaux [14].

In this thesis, we study the theory of A, _;-crystal bases and K-hives. This thesis has
three themes.

The first theme is a combinatorial realization of crystal bases of highest weight mod-
ules of type A by K-hives [19, 17, 18]. A K-hive is the labeling of the vertices of an
equilateral triangular graph introduced in [12, 13]. K-hives have correspondence with
semistandard Young tableaux or Gelfand-Tsetlin patterns and have applications, for ex-
ample, to (Stretched) Kostka coefficients [16, 10] (also, see [11, 24]). Then, the crystal
structure on K-hives introduced in this thesis is based on the construction of the crystal
structure on B(Y') [8]: For a dominant weight A of type A,_1, let H(\) be the set of K-
hives determined by A. Let Ay (k =1,2,...,n — 1) be the fundamental weights of A,_;.
First, we consider the crystal structure on H(Ay). Then, we construct the embedding
H(A) to ®; H(Ag). Then the crystal structure on H(\) is defined so that the embedding
is a crystal morphism. Further, we can show that H(\) is isomorphic to B()\). Also, we
give a direct combinatorial description of the crystal structure, which enables us to define
the crystal structure on H(\) directly.

The second theme is the combinatorial tensor product decomposition map of crystal
bases by K-hives [20, 21]. This is an application of the realization by K-hives. We first
define maps from H(\) to H(u) and then define a map from H(A) @ H(u) to H(v) @ H()
by combining these maps. Then, the decomposition map is constructed as a sequence of
the maps. We introduce the notion of path operators which can be graphically computed.
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From the fact that the maps from H(\) to H(u) are path operators, the decomposition
map can be graphically computed.

The third theme is a set of algorithms for computing the crystal structure on K-
hives, and the implementation of these algorithms [15]. We also give some examples of
executing these algorithms. The implementation is provided as a Python package named
khive-crystal. The source code is available in [22].

This thesis is organized as follows. In Section 2, we review basic notions and notation
of quantized enveloping algebras, crystals, and K-hives. Sections 3, 4, and 5 concern the
first, second, and third themes explained above, respectively. Finally, Section 6 gives
some concluding remarks.

2. PRELIMINARIES

In this section, we review basic notions and notation. In 2.1, we review the definition
of quantized enveloping algebras and related notions. In 2.2, we review the definitions of
crystals, the tensor product of crystals, crystal graphs, and morphisms between crystals.
In 2.3, we review K-hives and define some notations.

2.1. Quantized Enveloping Algebras. In this subsection, we review the definition of
quantized enveloping algebras of type A, see [3] for more details.

Let sl,, be the Lie algebra of type A, _; over C with Cartan subalgebra § consisting of
traceless diagonal matrices. Let I = {1,2,...,n — 1} be an index set. Let A = (a;;)i jer
be the Cartan matrix of type A, 1. For m € Z+, let [m] = {1,2,...,m}. For i € [n],
define a linear map ¢;: h — C by €;(h) = ¢;, where h = diag(c; | j € [n]) € h. For i € I,
set a; = €; — €;11. Let IT = {a; }ier C b* be simple roots and 1TV = {h;},c; C b be simple
coroots. Let A be the root system of sl,,. Set AT = ANYc; Zsoa; and A~ = A — AT,
For all i € I, let A; = ¢+ e+ -+ ¢ € b* be an i-th fundamental weight. Set
P =@, ZN;, Pt = ®jc; Zsoli, and PY = @P;c; Zh;. We call P the weight lattice, Pt
the set of dominant integral weights, and PV the dual weight lattice, respectively. Using
this notation, the Cartan datum for sl,, is defined as (A, 1,11V, P, PV).

Let ¢ be an indeterminate. Let Uy,(sl,,) be the quantized enveloping algebra over Q(q)
associated with the Cartan datum (A, I, 11V, P, PY). Let V() be the irreducible highest
weight module of weight A € Pt with the highest weight vector vy over U,(sl,,).

2.2. Crystals. In this subsection, we review the notion of crystals, see [3, 6, 7] for more
details.

Definition 2.1. A crystal associated with Cartan datum (A, II, 11V, P, PY) is a set B
together with the maps wt: B — P, ¢;, fi: B — BU{0}, and ¢;,9;: B — Z U {—0o0}
(1 € I) satisfying the following properties.
(1) i(b) = &i(b) + wt(b)(h;) for i € I,
(2) wt(e;b) = wt(b) + o if e;b € B,
(3) wt(fib) = wt(b) — «; if €;b € B,
(4) €i(e;b) = €;(b) — 1, pi(e;b) = ¢i(b) + 1 if e;b € B,
(5) &i(fib) = €:(b) + 1, wi(fib) = ¢i(b) — 1 if f;b € B,
(6) fib="0"if and only if b = e;b/ for b,b’ € B, i € 1,
(7) if p;(b) = —o0, then e;b = f;b = 0.

7) if
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Since (A,IL IV, P, PV) is the Cartan datum of type A, 1, a crystal associated with
(A I IV, P, PY) is also called a U,(sl,)-crystal.

A U,(sl,)-crystal can be thought of as a colored and oriented graph in the following
manner.

Definition 2.2. Let B be a U,(sl,)-crystal. A crystal graph of B is an I-colored

oriented graph whose vertices are elements of B and the arrows are written as b Ly
when f;b =10 fori € I and b,V € B.

The tensor product of crystals is defined as follows.

Definition 2.3. Let B; and Bs be crystals. The tensor product By ® By of B; and By
is defined to be the set By x By whose crystal structure is defined by

(1) wt(by ® bg) = wt(by) + wt(by),

(2) €;(by ® by) = max(g;(by),e:(b2) — wt(b1)(h;)),
(3) ¢(b1 ® be) = max(p(bz), p(b1) + wt(ba)(h:)),
eibi @by @i(br) > &i(ba),
@ b1 @eiby  i(b1) < ei(b2),
fib1 ® by @i (b2)
b1 @ fibs (b (b2)

4 ez(bl X bz)

(5) fi(b1 ®by) = {

In general, we have the following proposition([8, Proposition 2.1.1]).

Proposition 2.4. For j € {1,...,N}, let B; be a U,(sl,)-crystal. Fix ¢ € I. Take
bje Bj(j=1,...,N), and we set
ar = Y (pilb;) —ei(bjs1)) 1<k<N.
1<j<k
In particular, we set a; = 0. Then we have
(1) &by ® -+ ® by) = max {S1<jep 2i(b;) — Licjan pilby) | 1 <k < N},
(2) @ilby @ -+ @ by) = max {i(by) + Shejen (pi(by) = eilbyan)) |1 < b < N,
(3) If k is the largest element such that a; = min{a; | 1 < j < N} then, we have
fihi® - @by) =b1 @ @1 ® fiby @ bpy1 @ -+ @ by,
(4) If k is the smallest element such that a; = min{a; | 1 < j < N} then, we have
el @ @by) =b1 ® - @bp_1 @ ey @ b1 @+ @ by.

Isomorphism of crystals is defined to be a bijection preserving the crystal structure.
Later we will also construct a crystal embedding as defined in the following.

Definition 2.5. Let By, By be U,(sl,)-crystals. A crystal morphism V: B; — Bs is
amap V: By U{0} — By U {0} satisfying

(1) wt(¥(b)) = wt(b),&;(¥(b)) = £i(b), pi(¥(b)) = @i(b) if b € By, ¥(b) € By,

(2) f;9(b) = U(f;b),e;¥(b) = W(e;b) if U(b), U(eb), W(f:b) € By for b € By,

(3) ‘I’(O) = 0.
A morphism V: B; — By is called an embedding if ¥ induces an injection By U {0} —
By U {0}. A morphism V: B; — B, is called an isomorphism if ¥ induces a bijection
By U{0} — By U{0}. We write By = B, if there exists an isomorphism ¥: B; — Bs.
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The irreducible highest weight module V() of weight A € P* with the highest weight
vector vy has the crystal basis (L(\), B(\)). In particular, B(\) is a U,(sl,)-crystal with
a highest weight element by of weight .

2.3. K-hives. Hives are introduced by T. Tao and A. Knutson [12, 13] as the labeling
of the vertices of an equilateral triangular graph. There are three forms of hives, one
of which, the upright gradient representation, is used in this paper. See [24] for more
details. In this paper, we use K-hives, which are a special kind of hives introduced in [9].

Let m,n € Zxo and i = (fi1, fiz, ..., fin) € Z%y. fi is called a composition of m if
fi1+ -+ ft, = m. A composition \ is called a partition of m if AN >-o> 0, >0, IF )
is a partition of m such that 5\1- =kfor1 <i<j<nand S\i =0 for j < i < n, then we
write A as (k7). In particular, we simply write (0") as 0 if there is no fear of confusion.
Also, £(\) denotes the length of .

For A € PT, there exists a partition )\ such that 5\161 + 5\262 4.4 Xnen = A. Similarly,
for 4 € P, there exists a composition ji such that ji€, + figes + - - - + i€, = . Note that
a composition (fi; + k, ..., i, + k) also represents yu € P since €; + -+ + ¢, = 0.

Let £ € P be a weight of V(). Then ¢ is written as A — > ;c; ki, € P (k; € Z). For &,
there exists a composition é such that 5161 —|—5262 + - -+§nen =¢and Y}, ék =30 5\;c

Let A\, ;€ PT. Let X (resp. fi) be a partition which represents A\ (resp. p). Suppose
V(AN @ V(u) =2 @,V(v). Then, for each v € Pt appearing on the right-hand side
above, we can take a partition  such that the; + hea + -+ + Upe, = v and Y)_ U =
S Mo+ S i ~

In the following, a partition (resp. composition) A representing a dominant weight
(resp. an integral weight) A is also denoted by A by abuse of notation.

Definition 2.6. Let o = (aq,...,ay), 8= (B1,.--,00), ¥ = (M1,---,7n) € Z™. Let
(Uij)icicjn € ZM™=Y/2. An integer hive of size n in upright gradient representation
([24]) is a tuple («, 8,7, (Uij)1<i<j<n) that satisfies

k—1 n
(2.1) Be = (e + D Un) + (s — D Usj).
i1 G=k+1

Remark 2.7. In [12, 13, 24|, the term hive refers to a hive with additional inequality
conditions called the rhombus inequalities. We rather follow the terminology of [9, 10,
11].

An integer hive in upright gradient representation is illustrated as the labeling of an
equilateral triangular graph with boundary edge labels (a;);, (5:):, (7:)i, and upright
gradients (U;;)i<; as shown in FIGURE 1.

In the following, for i € [n], set

i—1
(2.2) Ui =8 =Y Uni
k=1
and U;; =0if i > j or j > n or i < 1. Also, for simplicity, we will write (U;;)1<i<j<n as

(Uij)i<s-
In this paper, we consider a kind of integer hive called a K-hive.
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FIGURE 1. integer hive of size 4

Definition 2.8. Let m,n € Z>o. Let o,8,7 € Z%,. For 1 <1 < j < n, set L;; =
Zi_ll ik — Zk 1 Uit1,. Then an integer hive in upright gradient representation H =
(o, 8,7, (Uij)ic;) is called a K-hive if the following conditions are satisfied

(1) « is a partition of m,
2) [ is a composition of m,

(2) B
(3) v = (07),

(4) U > 0for 1 <i<j<n,
(5) L”>Ofor1<z<]<n
(6) B; > 4! Uy for i € [n)].

For a partition o of m and a composition of 3, let
H™(a, 3,0) = {H = (a, 3,0, (Uy;)i<;) | H is a K-hive}.
Set

= U’H(")(a
B

where the union runs through all compositions of m. We sometimes call an element of
H(o) an a-K-hive.

Remark 2.9. For H = (a, 3,0, (Uy)i<;) € H™(a, 8,0), we have

n n k—1
> B=> 0 U+ oy — Z Ukj)
k=1 k=1 i=1 =1

= Zak.
Thus, if X1, oy # S, B, we have H(™ (a, 5,0) = @.

Remark 2.10. Let a = (a1, a9,...,a,) be a partition of m € Z>q. Let | € Z>(. Set
o' = (a;+1);. We know that o and o represent the same dominant weight. We also have
that H(«) = H(') as a set. The bijection from H(«) to H(«') is given by the map which

maps (a, B, 0, (Uij)i<;) to (o', 8,0, (U};)i<;j), where 8" = (8; + 1); and (Vij)i<j = (Uij)i<;-
Note that Vj; = U;; + [ holds for ¢ = 1, 2,...,n— 1.

Remark 2.11. Let H € H™ (o, 3,0) C H(a). In this case, we have Uy; = o —> i Ui
by Definition 2.6 (2.1)(2.2). Also, we have U;; = 0 for j € [n] if o = 0 since Uy; > 0 for
1<k<l<n.
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Example 2.12. Let n =4, A = (3,2,1,0) and g = (2,3,1,0). We have an example of
H € HW(X, 1,0) € H()) as shown in FIGURE 2.

FIGURE 2. An example of a K-hive

Remark 2.13. Let A € P* and let H = (A, 11,0, (Uyj)i<;) € H(A). Let T be a Young
tableau of shape A and weight 1, and let U;; be the number of j in the i-th row of T
Then the map that sends H to 7T is a bijection from H(A) to the set of semistandard
tableaux of shape A\ (cf. [10]).

Remark 2.14. Let \ = (A1, Ag, ..., Ay) be a partition of m € Zsq. Let N =Nz A)
be a partition of m € Zx,.

3. CRYSTAL STRUCTURE ON K-HIVES

In this section, we introduce a crystal structure on the set of K-hives and show that
the crystal structure is isomorphic to the crystal basis of a highest weight module. In
3.1, the crystal structure on H(Ay) is given. In 3.2, for an arbitrary dominant weight
A an embedding of H(\) into a tensor product of crystals of the form H(Ay) is defined.
Then, the crystal structure on H(\) is introduced such that the embedding is a crystal
morphism. In 3.3, a direct combinatorial description of the crystal structure on H(\) is
given. The main reference is [19].

3.1. Crystal Structure on H(A,). We will start with the case where a weight is a
fundamental weight. Since the v-th fundamental can be viewed as the partition (1), the
upper right boundary edge labels of H € H(A,) are 1 or 0.

Lemma 3.1. Let v € I and H = (A,, 11,0, (U;j)i<;) € H(A,).

(1) For all i € {1,2,...,v}, there exists a unique j € {i,i + 1,...,n} such that
Uij =1.

(2) Fix j € 1. If there exists 4,7’ € {1,2,...,j} such that U;;,Uy; > 0, then i = ¢
holds.
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Proof. (1) Set A = A,. Let i € {1,...,v}. By Definition 2.6 (2.1), we have

1—1 n
S>Ui+N— > Ui=np
=1

l=i+1

( ZUh> Y U

l=i+1
Z Uy = 1.
I=i

Thus there exists a unique j € {i,i+1,...,n} such that U;; = 1 since H € H(\).
(2) Set A = A,. Fix j € I. Suppose that there exists 7,7’ € {1,2,...,7} such that
Uij, Uyj > 0. Assume i # ¢'. From Definition 2.6 (2.1) and 4,7’ € {1,2,..., 7}, we have

ZU,WJF)\ — Z Ujk

k=j+1
= Z Ukj > 2.
k=1
On the other hand, it follows from Definition 2.6 (2.1) and Lemma 3.1 that pu; € {0,1}.
This is a contradiction, and hence we have i = 7'. U

Definition 3.2. Let v € I. The maps wt: H(A,) — P, e;, f;: H(A,) — H(A,) U
{0} and e;,p;: H(A,) — Zs (i € I) are defined in the following manner. Let H =

(1) wt(H) == 342 1(Mk fr41) N € P,

(2) &i(H) = max(pit1 — i, 0),

(8) pi( H) := max(p = pis1, 0),

(4) Set p' = Yjy pier € P, where p; = pi; + 1, priyq = pipr — 1, and g, = gy, for k #
i,i+1. Set Uy, ; = Ukyi+1, Uj, ;11 = Upgip1—11if there exists kg € {1,2,...,i+1}
such that Uy, ;11 > 0. Set Uy, = U if k # ko and [ # 4,4+ 1. Then, for i € I,
e;: H(A,) — H(A,) U {0} is defined as follows:

{(Alnﬂ’lv()? (Urr<t)  ei(H) >0,

€iH =
€Z(H> = O,

(5) Set p' = Y4y pmpex € P, where pi = p; — 1, piy = piga + 1, and g, = gy
for k # d,i+ 1. Set Uy, ; = Ukyi — 1, Up 141 = Ugpip1 + 1 if there exists ko €
{1,2,...,i} such that Ug,; > 0. Set U, = Uy if k& # ko and | # i,i + 1.
fi H(A,) — H(A,) U{0}(i € I) is defined as follows:

fH _ (All?,u/? 07 (Ulizl)k<l) QOZ(H) > 07
' 0 ©i(H) = 0.
Proposition 3.3. Let H € H(A,). Suppose f;H, e;H # 0. Then we have f;H,e;H €
H(A,).

Proof. Let v € I. Set A = A,. Let H = (A p,0, (Upi)k<t) € H(A). We show that
fiH,e;H € H(\) if f;H,e;H # 0. Assume that f;H # 0 and f;H = (\, 1/, 0, (UL k<i)-
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First, we show that f;H is an integer hive. By Definition 3.2, we have u, = p; — 1,
Wiy = pip1+1and py, = pi for k # i,i4+1. Since f;H # 0, there exists a kg € {1,2,...,4}
such that Uy,; > 0. Then we have Uy ; = Ui — 1, U, 141 = Ugpipr + 1 and Uy = Uy
for k # kg and [ # 7,7 + 1. Thus, by Lemma 3.1, we have

j—1 n j
kZ Uy + ()‘j - U;k) = kZ Uy
=1 =1

k=j+1
Satro Uni + (Upgi — 1) Jj =1,
= Zktko Ukit1 + (Urgivr +1)  j =i +1,
>t—1 Uk; else

St Uu—1  j=i,
=01 Upipn +1 j =141,

J
=1 Ukj else

Thus Definition 2.6 (2.1) holds. Then we have that f;H is an integer hive.
Next, we show that f;H is a K-hive. It then suffices to show that f;H satisfies the
conditions from (1) to (6) in Definition 2.8. By Definition 3.2, (1), (2), (3) and (4) hold.
Set Ly =>0 2 Ul — St Uiy m- Ik # kg and [ # i + 1, then Lj; > 0 is obvious.
By Lemma 3.1, kg is the unique element in {1,2,...,:} such that Ug,; > 0, then the
following holds.

7
ko 7 Z Uk() m Z UI/£0+1,m
m=1
A
= Z Uko,m - Z Uk0+1,m
m=1 m=1

= - Z Uk0+1,m 2 0.

m=1
Then Uky41,m = 0 holds for m = 1,2,...,4. Also, we have Uy 11,41 = 0 since ;41 = 0.
Thus, the following holds.
i+1
k() i+1 Z Uk() m Z U’::()-i-l,m
m=1
i+1
- Uko 7 Z Uk‘o+1 m
= Ui —1>0.

Therefore we have (5).
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If k #4,5+ 1, then ), > S7=! Uj, is obvious since H € H(A,). For k =i 4 1, we have
the following.

Higr — > Uliyr = (pir + 1) — (Z Uiv1 + (Ukgit1 + 1))
=1 Iko

= pis1 — Y _ Uiz > 0.

=1

For k =i, there are two cases: ky < 7 and ky = 1. If kg < 7, then we have
i—1 i—1
W= U= (= 1) = (U~ 1)
=1 =1

i—1
= —» Uy >0.
1=1
If kg = i, then we have
i—1 i—1
= U = (= 1)~ S U
=1 =1

Note that we have u; > 0 since f;H # 0. Thus, (6) holds. Therefore, f;H € H(\) holds.
e;H € H(\) is proved in a similar manner. O

Remark 3.4. It follows from Definition 2.6 (2.1) that p; € {0,1} for all i € [n] since A,
corresponds to (1%). Thus, we have @;(H),e;(H) € {0,1}. Moreover, the following holds.

ouH) = {1 fH #0,

1 e;H #0,
si(H) = {0 ZH i 0

Proposition 3.5. Let v € I. Then H(A,) is a U,(sl,,)-crystal together with the maps
wt, e;, fi, ©i, €; in Definition 3.2.

Proof. 1t suffices to show that the maps satisfy the conditions from (1) to (7) in Defini-
tion 2.1. By Definition 3.2, the condition (7) is obvious. Let H = (A,, 1,0, (Uij)i<;) €
H(A,).
(1) By Definition 3.2, we have
wt(H)(hi) = pi = pia
= pi(H) —&i(H).
(3) Suppose f;H € H(A,). By the definition of f;, we have

wt(fiH) = Y prer+ (i — 1) + (fisr + L)€

ki id1
=H— (61; - €i+1)
=wt(H) — .

We can then prove (2) in a similar manner to (3).
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(5) Suppose fiH € H(A,). In this case, ¢;(H) = 1 and &;(H) = 0 hold. Then we have
wi(fiH) = vi(H) — 1 since

wi(fil) = maz{(p; — 1) — (piy1 +1),0} = 0.

We also have &;(f;H) = ¢;(H) + 1 since

ei( i) = maz{(pis1 +1) — (i —1),0} = 1.

We can then prove (4) in a similar manner to (5).

(6) Suppose f;H € H(A,). Assume f;H = (Ay,u(l),O,(Ui(;))Kj). Since f;H € H(A,),
we have p; — p;+1 > 0, and hence ul(-fl — ugl) > 0 holds by the definition of f;. Then we
have ¢;(f;H) € H(A,). Assume e;(f;H) = (A, @0, (U?);.;). By Definition 3.2, we
have

1 1 1
i = 3 e+ () 1)+ (- 1)
kit 1

Since f;H € H(A,), there exists a unique ky € {1,2,...,4} such that Uy, ;, U,gi?i+1 > 0.
Then the following holds.

UP+1 k=kyl=i,

UG =30 =1 k=kol=i+1,
U,i,” else

U —1)+1 k=kol=1i
U +1) =1 k=kyl=i+1,
Ui else

= U.

Then we have e;(f;H) = H.

Suppose e;H € H(A,). Assume e;H = (A, u™,0, (Ui(jl))Kj). Since e;H € H(A,), we
have ;1 — p; > 0, and hence ,ugl) — ugi)l > 0 holds. Thus, we have f;(e;H) € H(A,).
Assume fi(e; H) = (A, u,0, (U-(~2))i<j). By Definition 3.2, we have

1,

1 1 1
u? = 3 e+ () = 1)+ (uih + 1)
kiyit1
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Since e;H € H(A,), there exists a ky € I{1,2,...,i+1} such that Uy, ;41, U,g(l))l > (0. Then
the following holds.

U =1 k=kol=i,
US =D 41 k=kyl=i+1,
U,S) else,

Un+1) =1 k=kol=1
(U =1)+1 k=kol=i+]1,
U else,

= Un.

Then we have f;(e;H) = H. O

Example 3.6. The action of f; on the U,(sly)-crystal H(Aj3) is computed as follows. Let
H = (A3, As, (Up)k<1) € H(A3), where Uy, =0 for 1 <k <1< 4.

It follows that fiH = foH = 0 from ¢1(H) = po(H) = 0 since g — pig = pz — pz = 0.
Since p3(H) = 3 — g = 1 and Usz = 1, f3H is as shown in FIGURE 3.

FIGURE 3. Action of f3 on the U,(sly)-crystal H(As3)

In the following, we investigate the crystal structure on H(A, ) defined by Definition 3.2.
We will show that H(A,) is isomorphic to B(A,) with these results, see Proposition 3.34.

Lemma 3.7. Let H = (A,, 11,0, (Uij)i<;) € H(A,). Suppose that there exists i, jo, i1, j1 €
[n] such that U; Uil,jl > (0. Then 7; > 19 if and only if jl > jo.

0,707

Proof. Let H = (A, 11,0, (Usj)i<j) € H(A,). Suppose that there exists i, jo,%1,j1 € [n]
such that U, j,, U;, ;, > 0.
Assume i; > iy and iy = ig + [ for some [ € Z. By Lemma 3.1 and H € H(A,),

-1 Jo—1 Jo+i—1
Z Lio-l—k,jo-i-k = Z UioJﬂ - Z Uio+l7k
k=0 k=1 k=1
Jo+i—1
=— Y Uz > 0.
k=1

Then, we have U;, =0 for k =1,2,...,j0+ 1 — 1, especially U;,, = 0 if k < jo. Thus,
J1 > Jo holds.
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Assume j; > jg. Suppose that iy > ¢ and iy = i; + [ for some | € Z. By Lemma 3.1
and H € H(A,),

-1 j1—1 J1+l—1
Y Livvkgirk = 2 Uk — > Ui
k=0 k=1 k=1
J1+i—1
=— Y Upup >0
k=1

Then, we have U, =0 for k =1,2,...,751 +1—1, especially U, = 0 if k£ < j;, however,
this is a contradiction for j; > jo. Thus, 7; > 7y holds. |

Proposition 3.8. Let H, H' € H(A,). If wt(H) = wt(H’), then H = H' holds.

Proof. Let H = (A, 11,0, (Uij)icj) € H(A,). Set A = A,. For s = 1,2,...,v, there
exists a unique j; € [n| such that U;, = 1 by Lemma 3.1. By Lemma 3.1 and (2.2),
e = 1ift k = j5 for some s = 1,2,...,v, otherwise yupy = 0. By Lemma 3.7, we have
J1 < Jo < -+ < j,. Thus, (s,7s) is uniquely determined by A and p. Therefore, if
wt(H) = wt(H'), then H = H' holds for H, H' € H(A,). O

By the proof of Proposition 3.8, we have the following.

Corollary 3.9. Let H = (A, 11,0, (Uij)i<j) € H(A,). For s = 1,2,...,v, let js € [n]
such that p;, = 1. Assume j; < jo < --- < j,. Then,

U, - {1 i (i,5) = (5,2,

0 otherwise.

Lemma 3.10. For H = (A,,, 1, O, (Uij)i<j) S H(Ay)’ set Q(H) = (Am 5, O7 (‘/;j)i<j)) where
§i = pnt1-i (i € [n]) and Vi = Upp1-int1-; (1 <0 < j <n). Then, Q(H) € H(A,).

Proof. Set A\ = A,. For s = 1,2,...,v, we can take js € [n] such that p; = 1 since
H € H(A,). We may assume j; < jp, < .-+ < j, by retaking js if necessary. By
Corollary 3.9,

1 if (4,7) = (s,7s) for some s € {1,2,...,v},
Uij = .
0 otherwise.

By the definition of €2, { =1 if k = n + 1 — j,, otherwise & = 0. Also, we have

‘/ij = Ul/+1—i,n+1—j

_ 1 lf(Z,j):(V+1—S,n+1—js),
0 otherwise.

Since £ € P and Y1 & = v, we can take H' € H(A,) such that wt(H') = £&. By
Corollary 3.9, Q(H) = H' holds, and hence Q(H) € H(A,) holds. O

Definition 3.11. The map Q: H(A,) U {0} — H(A,) U {0} is defined by H maps to
Q(H) for H € H(A,) and 2(0) = 0.

Proposition 3.12. The map Q: H(A,) U {0} — H(A,) U {0} is an involution.
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Proof. Let H € H(A,). By Definition 3.11, we have Q(Q(H)) = H. Also, we have
(0) = 0. Then, Q is a surjection. Let H, K € H(A,) U {0}. Assume Q(H) = Q(K). By
Definition 3.11, we have H = Q(Q(H)) = Q(Q2(K)) = K. Then Q is an injection. Thus,
() is a bijection, especially €2 is an involution. O

Proposition 3.13. Q: H(A,) — H(A,) has the following properties. For H € H(A,)
and 7 € I,

(1) wt(Q(H)) = wowt(H),
(2) wi(QUH)) = en—i(H),
(3) &:(QH)) = pni(H),
(4) fi(QH)) = Q(en—i(H)),
(5) ei(QUH)) = Q(fu-i(H)),

where wy denotes the longest element in the Weyl group of type A,,_;.

Proof. Let H = (A, 11,0, (Uij)i<j) € H(A,). Let wy be the longest element in the Weyl
group of type A,,_;. By Definition 3.11, we have

n

WHQUH)) =D fnr1—k€k = D Hk€nti—k
k P

=1

3

prwo(€r) = wowt(H),

£
Il
—

hence (1) holds.
By Definition 3.11, we have
wi(QH)) = max{ 41 — pni,0}
= €n,1(H).
Then (2) holds. Also, we have
gi(UH)) = max{pn—i — pn+1-i,0}
= (pn—l(H>'
Then (3) holds.

2), (4) is obvious if f;Q2(H) = 0. Suppose f;Q2(H) # 0. Set £ = wt(f;Q2(H)) and
(en—i(H))). By Definitions 3.2 and 3.11, for k =1,2,...,n

From (
o= wt(Q
Pngi—p — 1 if k=1,
Sk = fnp1—k +1 fk=i+1,
Lt 1—k otherwise
= Of.
By Proposition 3.8, (4) holds.
From (3), (5) is obvious if €;Q2(H) = 0. Suppose €;Q(H) # 0. Set £ = wt(e;2(H)) and
0 =wt(Qfn—i(H))). By Definitions 3.2 and 3.11, for k =1,2,... n,
Pngi—p + 1 if k=1,
&= np1r— 1 ifk=1i+1,
L1k otherwise

= Of.
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By Proposition 3.8, (5) holds. O

3.2. Crystal Structure on H(\). In this subsection, we determine a crystal structure
on H(A) for A = > ,c;m;A; € PT. This structure is induced by an embedding of H(\)
into a tensor product of crystals of the form H(A,) with v € I. We will then prove that
H(\) = B()).

We start with constructing an embedding such that H()) is split into a tensor product
of sets of K-hives.

Definition 3.14. Let A = Y ,c;m;A; € P, Set N = > ;c;m;. Let [y = max{i € I |
m; # 0}. For H = (\, 11,0, (Uyj)ic;) € H(N), Hy = (Agy, ™, 0, (U'('N))i<j) is defined by

v

g _ )1 i =min{j € [n] | Uy > 0},
Y 0 otherwise,

UM 1 if there exists j € [n] such that U,gy) >0,
; 0 otherwise

For H and Hy, HV-D = (\XN-D_ ¢W=1 0 (VIN"D),_ 1y is defined by AV-D = X — A,
VD = — ™ and VY = U - U(N) (I1<i<j<n).

ij

Lemma 3.15. Let A = > ,c.;m;A; € PT. Set N = Zlel mZ Let H € ]I-]I()\) Let Hy and
HW=Y in Definition 3.14. Then, Hy € H(A;,) and HV=Y € H(A® =) hold.

Proof. Let H = (X, 1,0, (Uij)i<;) € H(X). Let Hy = (Ayy, ™, 0, <U1] )Z<j) and H"1 =
(AN ¢W=1 g (VDY ) in Definition 3.14.

For s = 1,2,...,ly, we can take js € [n] such that u(N)

= 1. We may assume
J1 < Ja < --- < Ji by retaking j, if necessary. By Definition 3.14,

U™ —

v

1 if (4,7) = (s, Js) for some s € {1,2,...,Iy},
0 otherwise.

By Proposition 3.8 and Corollary 3.9, we have Hy € H(A;,).
By Definition 3.14 and (2.2), then we have

N-1 N
D gy =

SR
k=1 k=1
1—1 n

=S V4 (A§N1> -y vﬁ”)
k=1 k=i+1

for i =1,2,...,n. Then H®¥=Y is an integer hive.
By Definition 3.14, Definition 2.8 (1), (2), (3), and (4) holds for HV=1, Set L(N)
Sish Ui(liV) — i Uz(-i]-vl)k and L(N Y= = Y5 zk M- i 1Vzgr1k for1 <i<j<n
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Then we know that
j—1 J
Lij=> U —> U1y
k=1 k=1

S (N-1) L) (N-1)
=Y Uy +Vy ) — Z(Ui—l-l,k +Viar )
k=1 k=1

=L+ LY > 0.

By Definition 3.14, LY " = L;; — LYY > 0.
By Definition 3.14, we have
i—1

Jj—1 J
N N-1 N N-1
Nj_E:Ukj:(N§)+5](‘ ))_E:(Ulfzj)+vl<:(j ))
k=1 k=1

j—1 j—1
N N N-1 N—1
= = UG+ =T
k=1 k=1

By Definition 3.14, u; > ,ugN) for j =1,2,...,n and U;; > UZ»(JN) for 1 <i < j <n hold,
and hence £ — 37 V&Y > 0. Therefore, HN-D € H(AN-D). O

Definition 3.16. Let A = > ;c;mA; € PT. Set N = 3 ,c;m;. For each H € H()\),
take Hy € H(A;,) and HN=Y € H(AW=Y) as in Definition 3.14. Then define the map
Wy H(A) — HOANY) x H(A;,) by Ux(H) = HN=Y x Hy.

Lemma 3.17. The map W, is an injection.

Proof. Let H, K € H()\). Let U)(H) = H¥™Y x Hy and ¥, (K) = KVY x Ky where
HN=D KWN=1 ¢ HAN-Y) and Hy, Ky € H(A;,). Suppose that HN-Y x Hy =
KW= x Ky. Then we have HV-Y = K(N=1 and Hy = Ky. By the construction of
U,, we have H = K. Il

0, (Uij)i<j) €

Example 3.18. Let n =4, A = (3,2,1,0) and p = (2, 3,1,0). Let H = (A, i, 0,
= H® @ H; is as

HW(A, 11,0) be the diagram on the left in FIGURE 4. Then Wy (H)
shown in FIGURE 4. Note that U;; =2 > 0.

——

FIGURE 4. Action of ¥y on H(\)

By applying Lemma 3.17 repeatedly, we obtain the following.

Proposition 3.19. Let A = Y_,c; m;A; € P™. Then there exists an injection
U H(A) — @ H(A;)™.

i€l
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Proof. Let A\ = Y ;c;miA; € PT. Set N = 3 ,c;m;. By Lemma 3.17, there exists an
injection Wy: H()\) — H(AWN-Y) x H(A;,). Then we apply Lemma 3.17 for A=V and
by repeating this argument, we get a map W: H(\) — I1;c;H(A;)™. Since each H(A;) is
a U,(sl,)-crystal, IT;c/H(A;)™ has U,(sl,)-crystal structure by Definition 2.3. Thus we
can write IT;c/H(A;)™ as ®;c; H(A;)®™i. Since ¥, is an injection, ¥ is an injection. [

Example 3.20. Let n = 4, A = (3,2,1,0) and px = (2,3,1,0). Let H € HW(\, u,0)
be the diagram on the left of FIGURE 5. Then V(H) = H; ® Hy ® Hj is as shown in
FIGURE 5.

FIGURE 5. Action of ¥ on H(\)

By the construction of ¥, we have the following.

Lemma 3.21. Let A = Y ;c;m;A; € PT. Set N =3 ,c;m,. Let H € H()). Let ¥(H) =
Hy ®---® Hy, where Hy, = (A, i®,0, (U )ic;) (k = 1,...,N). For k € {1,...,N}
and ¢ € [n], if there exists j € [n] such that Ui(’];-) > 0, then set j;; to its j, otherwise
set jix to 0. Suppose that j;, > 0 for some k € {1,...,N} and i € [n]. Then we have

Jig > Jig itk > K.
Proof. Set HN) = H and A\(") = \. By Definition 3.14, for m = 1,2,..., N there exists
H,, € H(A;,) and H™Y € H(A™D) such that

Uy oy (H™) = H™ Y @ H,,.

Form =1,2,...,N,let H™ = (\(™) ¢tm o (V™)) Fixk e {1,2,...,N}. It follows

7

from the definition of ¥ and ¥, (A € P*') that
VI =UP 10 (1<i<j<n).

1, 7

Then, by the definition of W,u),

o _ {1 j=min{j € [n] | V" > 0},

‘ 0 else.

This means that for 1 <k <k <N
jin =min{j € [n] | U + -+ U > 0}
<min{j € [n] | UL + -+ UL >0}

= Jik'
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Remark 3.22. It follows from Lemma 3.21 that
jop =min{j € [n] | UY >0,0=1,...,k}
=max{j € [n] | U} >0,l=Fk,...,N}.
Proposition 3.23. Let A = Y ,c;miA; = Y e Mie; € PT. Set N = Y ,c;m;. Then,
(3.3)

N
\II(H()‘>> = {Hl ®---®Hy € ®H(Alk) | ji7)\N+1—i > ji,)\N+1—i+1 > 2 ji,N for all 7 € I}a
k=1

where j;x (i € I,k € {1,...,N}) is defined in Lemma 3.21.

Proof. Let A = Y ic;mi\; = X ;c1 Miei € PT. Set F to the right set of (3.3).

First, we show W(H(\)) C F. Let H = H, ® --- ® Hy € V(H())), where Hy €
H(A,) for £ = 1,2,...,N. We know \; = m; + my1 + --- + my,_; for i € I. Then
by the construction of W, Al/\NJrl—i = Ayj1-¢. By Lemma 3.1, jiay,,_, > 0 holds. By
Lemma 3.21, Jiay,1_; = Jidniii+1 =+ = Jin holds. Thus, H € F holds.

Next, we show F C H(A). Let H = HH® -+ ® Hy € ®kN:1H(Alk), where Hj =
(Ag,,, u®)0, (Ui(f))iq) fork=1,2,...,N. Let H = (5\, i, 0, (U;j)iq), where \ = SN A,
fo= 4, 1 and Uij =V, Ui(f) (1 <i<j<n). Then we can check H € H()) as
follows. For i € I,

W
/]z = Z 2%
k=1
N i—1 *) n )
= Z Z Ulz + (Alk)l - Z Uzl
k=1 \I=1 l=i+1
i—1 n
=S U+ (Ag@ -y Uiﬁ’“)) .
=1 l=i+1

Then H is an integer hive. A € P+, i € P, Yic; N = ey fli, and Uy; > 0(1 < i < j < n)
immediately hold from the definition of H and Hj, € H(A;, ). For 1 <i < j <nmn,

Lz] = ik — Z i+1,k
k=1 k=1
AR o F
= Z U, — Z Z Uz’+17k
k=11=1 k=11=1
al )

(\
Il
R

Also, for i € I,

-1 N i—1 N
i =Y U= =Y > U
k=1 =1

k=11=1

M=

i—1
l l
(" = > U) 20
l k=1

By the choice of H, A = X\. Then H € H()).

1
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We may assume W(H) = H, @ --- ® Hy, where H, = (A, i™,0, ([72-8@)2-<j) for k =
1,2,...,N. We show H, = Hy for k = 1,...,N by induction on k. Set HN = H
and A") = X. By Definition 3.14, we know W, (H®) = H*=V @ H), where H*) =
(A gk 0, (V;gk))K]) for k =1,2,..., N. By Definition 3.14 and H € F,
g _ {1 if j =min{j € [n] | Ui(jl) +oee Tt Ui(jN) >0},

0 otherwise,
_ 1 itj= Ji,Ns

0 otherwise,
_ 7V

By Definition 3.14, g™ = u™ namely Hy = Hy holds. Assume that H, = H, for
s=k+1,k+2,...,N. By Definition 3.14, H € F, and the induction hypothesis,

50 _ {1 if j =min{j € [n] | UL+ +UP > 0},

0 otherwise,

ity =ik,
0 otherwise,
— 7%
By Definition 3.14, i®) = u®) namely Hj, = Hy holds. Thus, H € U(H())). O

Remark 3.24. For H € H(\) (A € P*%), let ¥(H) = H, ® --- ® Hy, where Hy =
(Ay, 1 ®,0, (UM),;) € H(Ay) for k=1,2,...,N. Fori € [n] and k € {1,2,..., N}, let

)

Jix be as in Lemma 3.21. Then, for each k =1,2,..., N, we have

(3.4) Jie < Joge <0 <k

from Lemma 3.7.

Proposition 3.25. Let A € P. W(H(\)) U {0} is stable under the action of e; and f; for
1€ 1.

Proof. We show that f;(W(H(N)) U {0}) € W(H(N))U{0}. Let H=H, ®---® Hy €
W(H(N)), where Hy, = (Ay, u®,0, (UL);c;). Assume f;H = H, @+ & fiHy, ® - @ Hy.
If f;H = 0, the statement is obvious.

Suppose fiH # 0. Let fiHy, = (Alko,ﬂ(kO),O, (Ui(k()))iq). For i € I, if there exists
J € [n] such that Ui(f()) > 0, then set j; 4, to its j, otherwise set j; 4, to 0. For Hy,
and 4, let ko in Definition 3.2 (5) be written as kypy. Then we know ji, ,k, = @. By
Definition 3.2, we have ji, , 5, =i+ 1 and jx, = jruk, if k # kgn. By Proposition 3.23,
to show that f;H € W(H), it suffices to check that kg mroko—1 = jkfiHukO =7+ 1. Note that
we have ji, k-1 = Jky ko = @ since H € W(H(A)). It also follows that ¢;(Hg,—1) = 0
since @;(Hy,—1) — €i(Hg,) < 0 holds from Proposition 2.4.

(ko—1) (ko—1)

Suppose Ji, k-1 = ¢ Then, p; = pi - = 1 follows from Remark 3.4 and

vi(Hp,—1) = 0. By Lemma 3.7, Jkpmtiko—1 = @+ 1 and ji, ;i1 > @ holds. Since
f; H*0) =0, we know METB = 0 by Remark 3.4. Then, we have ji, ,+16 > ¢+ 1 from
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(2.2). Now, we have Tk rtihko—1 = U+ 1 <k, 441k, however this is a contradiction for
H € U(H(N)). Thus, ji, k-1 > i+ 1 holds.
Similarly, e;(¥(H(A)) U {0}) € ¥(H(X)) U {0} is can be shown. O

Definition 3.26. Let A = Y}_,c.; m;A; € P*. The crystal structure on H(\) is defined so
that U is a morphism of crystals.

Remark 3.27. In this subsection, we take A € PT as A = > ,c;m;A;. Assume that
A= > \i€;, then we have \,, = 0. For [ € Z>q, let X' =3, N¢;, where X, = (\; +1)
fori=1,2,...,n. Then X, > 0 holds. The construction of the crystal structure on H(\)
can be applied for X. Note that A = X’ holds since ¢; + -+ + ¢, = 0.

Also, we know that partitions A = (\;); and X' = (X}); represent A. By Remark 2.10,
we know that H(X) = H()X) as a set. We also have that the bijection in Remark 2.10

preserves the crystal structure, and hence H()) 2 H()X) holds as a crystal.
In the rest of this subsection, we prove that H(\) = B(A).
Definition 3.28. Let A € P™. Then define Hy € H()\) by Hy = (A, A, 0, (0);<;).

Remark 3.29. Let A € P*. Let Hy = (\ ), 0,(0);<;) € H(N). Fori=1,2,...,4()\), we
have

i—1

k=1
Remark 3.30. Let A € P*. Let H = (A \,0,(Uij)ic;) € H(A). By Definition 2.6,
we have \y = Ay — >}, Uy This means that Uy, = 0 for 2 < k£ < n since U;; > 0.
Repetition of this argument yields U;; = 0 for 1 <7 < j <n. Thus, H = H) holds, and
hence we have that H) is the unique element H € H(\) such that wt(H) = .

Lemma 3.31. Let A = ZielmiAi € P*. Let H, = ()\,/\,0, (O)z<]) c H()\) Then
e, Hy =0 forall i € I.

Proof. Let N =Y ,c;m;. Let ¥(H)) = H; ® --- ® Hy. By Proposition 2.4, there exists
v such that

eH=H®  -®¢H,® - ® Hy.
Assume H, = (A;,, u™,0, (U‘(y))i<]‘). By the construction of ¥ and the definition of H),

)

u¥) is a partition, and hence e;H, = 0 for all v € 1,2..., N. Thus, e;H, = 0 holds for
alli e 1. Il

Lemma 3.32. Let A = X ,c; m;A; € PT. Then we have
Therefore H(\) is connected.

Proof. 1t suffices to show that if H € H(\) such that e;H = 0 for all j € I, then
H = H,. Let H € H(\). Set N = Y ,c;m;. Let V(H) = H; ® ---® Hy and H,, =
(Alm7 :u(m)a 0, (Ulgn))kd) € H(Alm>'

Suppose that e;H = 0 for all j € I. We show that for all k¥ € {1,2,..., N} there
exists a v € I such that H, = Hy,. Assume that there exists a k € {1,2,..., N} such
that Hy, # Hy, for all v € I, and let ko be the smallest such k. Then we have p*0) is a
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composition. Then we can take an ¢ € I such that uﬁi"f = 1 and ,ul(k(’) = 0, and hence

there exists a jo € {i + 1,7 + 2,...,n} such that Uf’;g) > 0. By Remark 3.22, we have
jo=min{l € IU{n} | U >0,k =1,2,...,k}. Thus, fork =1,2,... ,k—1,if Uy >0
then [ > ¢+ 1 holds. However, it follows from Hj, = H,, that Ui(lk) =0forl>¢+1if
k =1,2,...,ko — 1. This is a contradiction. Therefore, for all £ € {1,2,..., N} there

exists a v € I such that Hy = Hy,. Then, by the construction of ¥, H = H, holds. [
From Lemma 3.31 and Lemma 3.32, we have the following.

Lemma 3.33. Let A € P™. Then H) is the highest weight element of weight A in H(\).

Proposition 3.34. Let k € I. There is an isomorphism from H(Ay) to B(Ag).

Proof. Let k € I. From [23][1, Theorem 4.13], it suffices to show that

(1) If e;(H) =0, then ¢;(H) =0 for H € H(Ay), i € 1,

(2) If f;(H) =0, then ¢;(H) =0 for H € H(Ag), i € I,

(3) When i,j € I and i # j, it H, K € H(A;) and K = e;H, then ¢;(K) equals ¢;(H)
or £;(H)+ 1. The second case where ¢;(K) = ¢;(H) + 1 is possible only if a; and
a; are not orthogonal roots,

(4) When i,j € I and i # j, if H, K € H(Ax) and K = f;H, then ¢;(K) equals
@;i(H) or ¢;(H) + 1. The second case where ¢;(K) = ¢;(H) + 1 is possible only
if o; and «; are not orthogonal roots,

(5) Assume that i, € [ and i # j. If H € H(A;) with ¢;(H) > 0 and ¢;(e;H) =
e;(H) >0, then e;e; H = eje;H and ¢;(e;H) = ¢;(H),

(6) Assume that ¢,j € [ and i # j. If H € H(Ay) with ¢;(H) > 0 and ¢,;(fiH) =
¢;j(H) >0, then fif;H = f;f;H and &(f;H) = ;(H),

(7) Assume that ¢,j € I and ¢ # j. If H € H(Ay) with ¢;(e;H) =¢;(H)+ 1> 1 and
ei(ejH) = ei(H) + 1 > 1, then e;ele;H = ejefe; H # 0, ¢i(e;H) = pi(efe;H) and
pjle:ll) = pj(eie;H),

(8) Assume that i,j € I and ¢ # j. If H € H(Ag) with ¢,;(fiH) = ¢;(H)+1 > 1 and
¢i(fiH) = ¢i(H)+1 > 1, then fiijfiH = fif}fill #0, &i(f;H) = Ei(f]zfiH> and
S UH) = 2521, H).

by Remark 3.4, Lemmas 3.32 and 3.33. By Remark 3.4, (1) and (2) hold. Also, again by
Remark 3.4, we know that there is no i € I such that ¢;(H) > 1 (resp. ¢;(H) > 1), so
(7) (resp. (8)) is true.

Let 4,7 € I with i # j. Let H, K € H(A;). Assume K = e¢;H. By Definition 3.2,
gj(K) = ¢j(H) is obvious if j # ¢ — 1,9+ 1. Let H = (A4, 1,0, (Uij)i<;) and K =
(A, &,0,(Vij)icj). We know ¢;(H) =1 from K # 0 and Remark 3.4, especially j;+1 =1
and p; = 0. By Definition 3.2, if p;—; = 0, then ¢;_1(K) = ¢;,_1(H) + 1, otherwise
gi1(K) =¢€;1(H). Also, if pi10 = 1, then €;41(K) = €;41(H) + 1, otherwise ¢;1(K) =
i+1(H). Then (3) holds.

Let 4,j € I with ¢ # j. Let H € H(Ay). Assume that ¢;(H) > 0 and ¢;(e;H) =
ej(H) > 0. By Definition 3.2, wt(e;e; H) = wt(eje;H) holds. Then, e;e;H = e;je; H holds
by Proposition 3.8. By assumption and (3), we can assume j # ¢ — 1,7 + 1. Then, we
have ¢;(e;H) = ¢;(H) by Definition 3.2. Thus, (5) is satisfied.

By Propositions 3.12, 3.13, and (5), (6) immediately holds. O



22 SHOTA NARISAWA

Theorem 3.35. Let A € PT. Then we have a crystal isomorphism ®: H(\) — B()\)
such that ®(H,) = b,.

Proof. By Proposition 3.34 and Proposition 3.19, if H(\) has the highest weight vector of
the highest weight A, then we have H(\) = B()\). By Lemma 3.32 and Lemma 3.31, they
hold. Then we have a crystal isomorphism ®: H(\) — B(\) such that ®(H,) =by. O

3.3. Direct Combinatorial Description of Crystal Structure on H(\). In this
subsection, we describe the crystal structure of H(\) directly. More specifically, we give
an explicit formula for computing the maps wt, e;, fi, ¢;, &; (i € I) for H()).

Theorem 3.36. Let A = Y ,c;m;A;. For H € H(\), the maps wt, f;, e;, ;, ¢; (j € 1)
are computed as follows. Fix j € [I.
(1) wt(H) = Zier(pi — pir1) i
(2) For k € {1,2,...,j}, set @§k)(H) = max{gog»kfl)(H) + Uy, — Ugy1,5+1,0}. Note
that we regard gpg-o) as 0. Then we have ¢;(H) = gpgj)(H).
(3) For k€ {1,2,...,5 41}, set e/ (H) = max{e!* Y (H) + Ujyo 41 — Ujp1-1;,0}.
Note that we regard 55-0) as 0. Then we have ¢;(H) = 5§j+1)(H).
(4) If ¢;(H) =0 then f;H =0. If ¢;(H) # 0, let

K =min{k € [n] | VI > k, o\ (H) > 0}.

J
Then we have f;H = (A, 1,0, (U};)x<1) where
po= Y0 e+ (g — D)6+ (i + Deja,
k41
Ukl_1 lfk}:k/,l:j,
Uy=Uu+1 ifk=FK,1l=j+1,

Ui else.
(5) If ¢;(H) =0 then e;H =0. If ¢;(H) # 0, let
kK =min{k € [n] | VI >k, ) (H) > 0}.
Then we have e;H = (\, i/, 0, (U )k<i) where

W= e+ (g + e+ (e — Deja,
k#7,j+1
Us+1 ifk=j+2—-FkK,1=7,

Ui else.

Proof. Let H = (A, 11,0, (Uij)icj) € H(X). Let N = Y ;c;m;. Assume that V(H) =

H ®- - ® Hy and H, = (Alk,p(’f),o,(Ui(f))Kj) for k = 1,2,...,N. Fix j € I. By
Proposition 2.4, we have

o) = { gy () + 3 (1) (L)) |1 < v < N,
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Suppose that v is the largest integer such that
N-1

i (H) = 0i(Hn) + Y (pi(Hi) — j(Hiy1)) -

k=9

Since ¢, (Hy) = max{,u§- - ,uJH,O} and €;(Hy) = max{,ug-lil M] ,0} we have

o3 (H) = o3(Hy) + kz_ (¢3(Hi) = &5(His)
= H,)+ Z SOJ (Hg) — (Hk))
= max{ﬂgy - :uj+17 0} + Z ( - M]Jr)l)

k=vo+1
Note that, by the choice of vy, we have ¢;(H,,) = ,ug.” o) _ ,u]H > 0 1f w;(H) > 0.
If gog.j)(H) > 0, then we can take &' = min{k € [n] | VI > k, gpj J(H) > 0}. Then we
have

| ;
oy (H) = Y (Uxj = Ugsa,51) > 0
K=k’

since cpg-k/_l)(H) = 0 by the choice of k'

(1) By Definition 2.3, we have wt(H) = S0 wt(Hy) = Sier(pti — ftir1) M.

(2) First, we consider the case where ¢,;(H) = 0. By the choice of vy, we have vy = N.
Then we have that u§ )—uj+) < 0and 35 V(,u] ") — i )) <0Oforv=1,2....,N. By the
above discussion, if 305- (H) > 0, then there exists &’ such that 37_,,(Uy; — Uk+17]’+1) > 0.
Then, to show that gog»j)(H) = 0, it suffices to show that

J
> (Ukj = Ursr41) <0 forallve{1,2,...j}.
k=v

For v € {1,..., N} and k € [n], if there exists | € [n] such that Uk%) > 0, then set ji,
to its j, otherwise set ji, to 0. Fix k' € {1,2,...,7}. For k¥’ and j, set

Nej={ke{l, . N} UP > 012K},
k
v ={ke{l N} U, > 00> 1Y

If Ny jUN 41 = 9, then S (Ukj — Upi1.541) = 0 holds since Uy = U,Ell) +-- -+U,§fv).
Suppose that NV ; UN| ;11 # @. Let v = min(Ny; UM ;,,). Suppose that there
exists ky € {K',k' 4+ 1,...,j} such that j;, ,, = j. By the choice of vy, ji, # j,j + 1 for
k' <k and v < v;. Also, by Remark 3.24 and Lemma 3.21, j,, # j,j + 1 for k < k; and
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v; < v. Then we have

7 j N j N
S (Ui = Unsrga) = > DU =3 S U 1
e =k v=1 k=K' v=1
LX) w
- Z Z Uk; - Z Z Ukil,jJrl
k=k’' v=r1 k=k’' v=u1
J 7 N
Z Z kz: > Uk+1j+1
k=1 v=v 1v=u1
N
Z: ( /“L]Jrl) S 0.

Suppose that there exists k; € {k' 4+ 1,...,j} such that ji, ,, = j + 1. By the choice of
v, Jrw 7# J, 7+ 1 for k' <k and v < vy. Also, by Remark 3.24 and Lemma 3.21, jj, # j
for k < ky and 1y < v, and ji, # 7+ 1 for kK < ky and vy < v. From ji, ., = 7+ 1,
k' < ki, and Remark 3.24, if there exists k such that j,,, = j, then k =k, — 1 > k'
Then ji,, # j for k < k’. Then we similarly have the following.
J N

> Uk = Ukirgi) = 3 (1™ = i) <o,

k=K’ v=r1

Next, we consider the case where ¢;(H) # 0. Suppose that there exists v’ € {1,2,..., N}
such that ¢;(H,/) > 0 and let jj,» = j for some k' € {1,2,...,j}. By Remark 3.24 and
Lemma 3.21, j, # j,j + 1 for k < k" and v/ < v. We know that j = jip, < jr41, from
Remark 3.24, especially 7 + 1 < jj41,+ holds since we have ,ugﬁ =0 from ¢,;(H,/) > 0.
Then, ji, # 7,7+ 1 for ¥ < k and v <v'. Suppose that ji, # jforv=1,2,...,0/ — 1.
Then we have

I
hE
M,
=
SR

Yow o w ) L w
> (”JV - /‘111) > kz Ui
v=v' k=1
N

v=y' v=v' k=1
AN v) & v)
=22 Uy =2 2 U
v=v' k=K’ v=v' k=k'+1
N J ) Jj+1
:ZZUM Z > Uk]+1
v=1k=k' v=1 k=k'+1
J
=2 Ok = Uk j41) -
k=
Since p;(H) # 0, then we have ¢;(H,,) > 0. Then there exists ky € {1,2,...,5} such

that ji, ., = j. By the choice of vy, for v =1,2,...,1p—1

vo—1 vo—1

> (0i(Hy) — gj(Hrir)) = @i(Hy) — 5(Hyy) + Y (@i(Hy) — €;(Hy))
(35) k=v - k=v+1
= o)+ Y (i =) <o.

Note that ¢;(H,,) = 0 holds from ¢;(H,,) > 0 and Definition 3.2. If there exists 1 €
{1,2,...,1 — 1} such that j,,, = j, then we have that ji., # j,j + 1 for k < ko and
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vy < v by Remark 3.24 and Lemma 3.21. Also, We know that ji, # j,J + 1 for kg < k
and v < vy. Then, we have that ¢;(H,,) > 0 and pﬁl = 0 for v < 1. Moreover,

vo—1 vp—1
)+ > ( —MJJBI)ZQO(H + > u] ) > 0.
k= V0+1 k= VO-‘rl
This is a contradiction for (3.5), and hence we have ji,, # j forall v = 1,2, ... 1y — 1.

Then, by the discussion above and ¢;(H) > 0,

N J
k k
> (“5 = N§'+)1> = > (Ukj = Upyr541) > 0.
k=0 k=ko
To show that 3", (Urj — Ugs1,j41) > 0(m = ko, ko +1,..., ), suppose that there exists
m € {ko,ko+1,..., 7} such that 353", (U;j — Ugy1,j41) < 0. Let mg be the largest among
such m. In this case, since we have

J J mo
Z (Ukj — Ukg1,j41) = Z (Ukj — Ukg1,j41) + Z (Ukj — Ug41,541) > 0,
k=ko k=mo+1 k=ko

then Zi:mo—i-l(Ukj — Uk41,4+1) > 0 holds, especially Upyy+1,; — Ung+2,5+1 > 0. Then we
can take v’ € {vo+1,19+2,..., N} such that j,,,+1,, = j since we have that ji, # j for
ko < k and v < vy. Let & be the smallest v € {vg+1,..., N} such that j,, 41, = j. We
know that j = jmo+1,60 < Jmo+2,6, €specially 7 + 1 < jpo42¢, holds since U492 j41 = 0.
Then ¢;(Hg,) > 0 holds. By the choice of &, jmy41., 7# j for v =1,2,...,& — 1. Then
by the above discussion,

N J
> (Mg‘k) - Mg‘]i)l) = > (Us = Ukpr11)-
k=&o k=mg+1

Recall that ji, # 7,7 + 1 for k <mo+1and § < v, or kg < k and v < 1, or k < ko
and vy < v. In addition, we know jy, , # j for k < my+ 1 and v < 1. Thus,

mo

Z (Ukj Uk+1,J+1 Z Z (V) Z Z k+1 J+1L
k=ko v=1 k=ko v=1k=ko
&o—1 mo (1/) &o—1 mo
=2 2 Uy Z > U
v=v9 k=kg v=v9 k=kg
So—1 j ) ]
- Z ZUkj Z Z k+1j+1
v=ug k=1 v=rg k=1
& 2
Z - IU’]-i-l
v=uyg
holds. Then, since we have
J J mo
> Uk = Uksrjs1) = > (Ukj = Upgrgi1) + > (Urj — Upg1,j41)
k=ko k=mo+1 k=ko

al k k ol k
= > (1 =) + 3 (" - ) >0,

k=¢&o k=vg
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then Z,JL&O(M?) — /é'jr)l) > 0. However, this is a contradiction to the choice of 1. Thus,

we have 3", (Urj — Upy141) > 0 for all m = ko, ko +1,...,j. Also, from (3.5) we have

vo—1

k k
> =) <o.
k=1

Then,
ko = min{k € [n] | VI >k, ¢\ (H) > 0}
holds. Therefore we have

pi(H) = ¢ (H).

(3) is proved in a similar way.
(4) By the above discussion and Proposition 2.4, we have

[H=H®  -®fH,® - ®Hy.

Suppose ¢;(H) = 0. By the choice of vy, we have vy = N. Then ¢;(H) = ¢;(Hy) =0
holds. By Remark 3.4, we have f;H = 0.

Suppose ¢;(H) # 0. By the above discussion, we know U ,50”?]? > 0. Then, by Defini-
tion 3.2, fiH,, = (A,,, 1,0, (Uk(;lyo))kd) € H(A,,), where

UG =1 if (k1) = (ko, ),
TaY = US4 i (k1) = (ko,j + 1),
Ul otherwise,

me” =1 itk =],

i = Qe 1 k=g

1) otherwise.

Thus the statement holds by the construction of W. We can then prove (5) in a similar
manner. U

Example 3.37. Let n = 4, A = = A; + A3. The action of f3 on the U, (sly)-crystal
H(A; + Aj3) is computed as follows. Let H = (Ay + Ag, i1, (Ui)k<1) € H(A; + A3), where
Uy =0for 1 <k<l<4. Then we have

gogl) = max(U;3 — Uy, 0) = 0,

gogz) = max(goél) + Uss — Usy, 0) = 0,

<p§3) = max(gogf) + Usz — Uyy,0) = 1.

Thus, we have p3(H) =1 and k¥’ = 3, and so f3H is as shown in FIGURE 6.



Crystal Bases and K-hives 27

FIGURE 6. Action of f5 on the U,(sly)-crystal H(A; + As)

Proposition 3.38 below shows how other parameters built into H can help express-
ing the results in Theorem 3.36. A hive H is actually a collection of edge labels of all
elementary triangles in the hive graph (see [24, on the right of (2.3)]), satisfying some
compatibility conditions, and each (elementary) rhombus, consisting of two adjacent el-
ementary triangles, determines its gradient as the difference between the labels of its
parallel edges, U;; is the gradient of an upright rhombus as shown in FIGURE 1, and
L;;, although expressible in terms of the Uj;’s, is the gradient of a left-leaning rhombus,
having the orientation shown on the left of FIGURE 7. Each right-leaning rhombus,

whose orientation is shown on the right of FIGURE 7, also gives a gradient R;;, express-

17
ible in terms of the U;;’s as in Proposition 3.38. Note that the R;; are not assumed to
be non-negative, as opposed to the case of LR-hives. Although the rhombi that would
correspond to R;; with ¢ = j lie outside the hive triangle, it is convenient to include such

parameters.

A\ Q [/

(A) left-leaning (B) upright (¢) right-leaning

F1GUuRrE 7. Rhombus

PI'OpOSitiOIl 3.38. Let H = ()\,,u, O, (Uij>i<j) < H()\) Set Rij = 2:;11 de',l - 2221 Ukj
for1<i<j<n. Fixjel

(1) For: = 1, 2, c. ,j+1, set Ri,j+1 = Rj+1,j+l_Ri,j+1- If thereisno i € {1, 2, Ce ,j—'—

1} such that R; ;41 > 0, then ¢;(H) = 0 holds. If there exists i € {1,2,...,j +

1} such that R; ;41 > 0, let iy be the maximum element such that R, ;11 =

max{R; ;1 | i€ {1,2,...,j+1}}. Then, p;(H) = Ry, ;41 and
io = min{k € [n] | VI > k, o\ (H) > 0}.

(2) If there isno 7 € {1,2,...,7 + 1} such that R; ;11 <0, then ¢;(H) = 0 holds. If
there exists i € {1,2,...,j+1} such that R; ;11 < 0, let iy be the minimum element
such that R’io,j+1 = min{Ri,jH ‘ 1€ {1,2, c. ,j + 1}} Then, Ej(H) = _RiOJ'Jrl
and

i = min{k € [n] | VI > k, " (H) > 0}.
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Proof. (1) Assume that there is no i € {1,2,...,5 + 1} such that R;;,; > 0. Then we
have

J Jj+1
Z Uk,j — Z Ukjs1 <0
k=i h—it1

for i € {1,2,...,7}. This means that gogk)(H) = 0 for k € {1,2,...,j}, especially
i (H) = soﬁ”(H) =0. )

Assume that there is ¢ € {1,2,...,j+1} such that R; ;11 > 0. Let iy be the maximum
element such that R;, j+1 = max{R;;+1 |1 €{1,2,...,j+1}}. Forie {1,2,...,j+ 1}
and [ € {1,2,...,7+1— i}, we have

B i+1—1 i+l
RZ73+1 - Z+l7]+1 Z Uk:] Z Uka]+1
k=i+1

By the choice of iy, for [ = 1,2,...,7+ 1 — iq, Iéiwﬂ — éio+l,j+1 > 0 holds, and hence
gpﬁk)(H) > 0 for k = ip,i9p + 1,...,5 + 1. Also, by the choice of iy again, for [ =
1,2,...,ig— 1, RZO lj+1 — RZO,JH < 0, and hence 805;'071)([{) = 0. Thus, iy = min{k €
[n] | VI z k, <pj“( ) > 0}.

(2) Assume that there isno ¢ € {1,2,...,7 + 1} such that R; ;11 < 0. Then we have

i-1 i
Z Uk,j — Z Ukjr1 >0
k=1 k=1

for i € {1,2,...,7+ 1}. This means that agk)(H) =0for k € {1,2,...,7+ 1}, especially
g;i(H) = 5(]+1)(H) =0.

Assume that there is ¢ € {1,2,...,j+ 1} such that R; ;11 < 0. Let ig be the minimum
element such that R; ;41 = min{R; ;1 | i€ {1,2,...,5+1}}. Forie {1,2,...,57+1}
and [ € {1,2,...,j+ 1 — i}, we have

i+l—1 i+l
Rivijy1 — Rij1 = Z Ukj = D> Ukjrr-
k=i+1

By the choice of 7, for i =1,2,...,i9—1, R;, j+1—Ri;—1;+1 < 0 holds, and hence 5§k (H)
0 for k =1ig,i9+ 1,...,7 + 1. Also, by the choice of iy again, for [ =1,2,...,7+1—

R 1141 — Rigj+1 < 0, and hence 85-2'071)([‘[) = 0. Thus, ig = min{k € [n] | Vl
ke (H) > 0.

EII\/o

4. TENSOR PRODUCT DECOMPOSITION MAP

In this section, we show the tensor product decomposition map in terms of K-hives.
The decomposition map is computed by a graphical method, through the notion of path
operators on K-hives. In 4.1, the notion of path operators on K-hives is defined, and
some examples of them are given. In 4.2, the tensor product decomposition map is given
using path operators. The main reference is [20].

4.1. Path Operators. In this subsection, we define the notion of a path operator on
K-hives and give some examples. Then we investigate the relationship between such
operators and the crystal structure of H(\).
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Definition 4.1. Let A € PT. Let H = (A, v, (Uyj)icj) € H(A). For 1 < j < n, let
L; denote the set of the thickened boundary edges and shaded upright rhombi shown in
FIGURE 8 (A), and let R; denote the set of the thickened boundary edges and shaded
upright rhombus shown in FIGURE 8 (B). Let p = (px)k=0.1...m—1 be a sequence of upright
rhombus and boundary edges of H. The sequence p is called a path on H if p satisfies
the following: p, € R; N L; implies pyr1 € R; UL, for k=0,1,...,m — 2.

For \,v € PT, let f be a map from H(\) to | |,cp+ H(v). Then f is called a path
operator if for H € H(\) there is a path p such that f(H) is obtained by reducing or
increasing boundary edge labels or rhombus gradients specified by the path p.

(B)

F1GURE 8. Example of L; and R;

Example 4.2. Let n =4, A = (6,4,1,0). Let H = (\, i, v, (Usj)i<;) € H(X) as shown in
FIGURE 9. Let p be a sequence of upright rhombus and boundary edges of H highlighted
in red on the left side of FIGURE 9, and let ¢ be a sequence of upright rhombus and
boundary edges of H highlighted in red on the right side of FIGURE 9. Then p and ¢
are a path on H, respectively.

FIGURE 9. An example of a path on a K-hive

We define an operator on H(\), which is a path operator as we will see later (Propo-
sition 4.8). Note that for A € PT a partition (Aq,...,\,) representing X\ is uniquely
determined by A, = 0.
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Definition 4.3. Let A = Y c; A\vep € P with A # 0. Set j,(gy = min{i € [n] | Uy, #
0}. The operator ¢ on H(A) is defined as «(H) = (v,&,0, (Vij)i<;), where

{)\k — 1 ifk=t(N),
V =

Ak otherwise,

[k otherwise,

o U =1 G g) = (), du),
* U otherwise.

Remark 4.4. The operator ¢ is considered as a path operator as follows. Let H € H(\).
Then the action of ¢ is obtained by decreasing boundary edge labels and rhombus gradients
specified by a path by 1, hence ¢ is a path operator. Note that we have that «(H) is a
K-hive by Proposition 4.8.

Example 4.5. Let n = 4. Let A = (6,4,2,0) € PT. Let H = (A, i, v, (Uyj)i<j) € H(N)
be as shown on the left of FIGURE 10, and then the path for + on H is as illustrated in
blue. Then the action of ¢ for H is as shown in FIGURE 10.

F1GURE 10. Action of ¢

Example 4.6. Let n = 4. Let A = (6,4,2,0) € PT. Let H = (A, i, v, (Uyj)i<j) € H(N)
be as shown to the left of FIGURE 11, and then the path for : on H is as illustrated in
blue. Then the action of ¢ for H is as shown in FIGURE 11.

FIGURE 11. Action of ¢
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As we will see in Proposition 4.8, the result of the action of ¢ is a K-hive. Before this,
we prepare the following lemma.

Lemma 4.7. Let A € Pt with A # 0. Let H € H(\). Then, «(H) is an integer hive.

Proof. Let A\ = Y ;e Nie; € PT with X # 0. Let H = (A, 1,0, (Usj)icj) € H(N). Let
vV = Yer Vi€, where vy = Ay — 1, v = A if k # £()). By Definition 4.3, we can
assume that ((H) = (,£,0, (Vij)i<s)-

To show that «(H) is an integer hive, we need to show that

m—1 n
(4.6) b= Vim=Vm— > Vi (m=12,...,n).

k=1 k=m+1
If m # ((\) and m # j,(m), then (4.6) is trivial by Definition 4.3. Suppose m = £(\). If
¢(X) = jum), Definition 4.3 and the fact that H € H(\) show (4.6) as follows.

m—1 m—1
k=1 k=1
k=m+1
=VUn — Z mG’
k=m+1

If £(X\) # Jumy, we know that €(A\) < j,m) by the choice of j,(g). Then it follows from
Definition 4.3 that

-1 (-1
Ey— Y Vieoy = tey — Y Uneons
k=1 =1

vy = DL Viook = Ay — 1 - ( Y Uk + Unaygo — 1)
k=£(M)+1 k#35,(r)

=Xy~ > Uiy
k=00 +1

Since H € H(\), (4.6) holds. Suppose that m = ju) # €(\). Since £(\) < jym) and
H € H(\), we have the following from Definition 4.3.

Jum—1
gjL(H) - Z V’w'L(H) = Hjmy — 1 - ( Z Uk,jL(H) + UZ(A)JL(H) - 1)
k=1 kAL(N)

JuH)—1

= Hjomy — Z Uk,jL(H)
k=1

n
= )‘J@(H) - Z UJ'L(H)JC

k=j,(my+1

n
= Vi — Z V}'L(H)Jf'

k=j,(m+1

Then (4.6) holds. Thus, «(H) is an integer hive. d
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Proposition 4.8. Let A = > ,c; \ie; € P with A # 0. Let v = Y ,c;v6; € P, where
1) = Ay — 1, v = A if k # £(X). Then, ¢ is a map from H(\) to H(v).

Proof. Let A = Yy \ie; € Pt with X # 0. Let H = (\, 11,0, (Uyj)icj) € H(X). Let
v =Y ervici € P, where vy = Ay — 1, v = A if & # £(X). By Definition 4.3, we can
assume that «(H) = (1,£,0,(Vij)i<;). By Lemma 4.7, we know that «(H) is an integer
hive, and then it suffices to show that ((H) is a K-hive.
By Definition 4.3, v € PT, f € P, and Vie > 0 hold. For 1 < 1 < j < n, set
= Y421 Uik — ey Usiaw, Ly = X421 Vie — Yh—y Vigre. Then we show that Lf; > 0.
If ¢ # 0\) — 1,4(N), 7 < juu ), r (4, j) (K(A),jL(H)), we have Li; = L;; > 0 since
Uk = Vi unless (k1) = (K(A),jL(H)). Suppose that i = £(\) — 1. In this case, it suffices
to consider the case where j > j,(g). By Definition 4.3, we have the following.

j—1 J
=2 Vey-1e — 2 Vo k
k=1 k=1
j—1
=Y U1k — | 2 Uk +Uinygon — 1
k=1

k%35, ()

j—1 J
=Y Uiny—16 — 2 Uspyp + 1
k=1

k=1
= Lg()\)_l’j +1>0.

Suppose that i = £(\). In this case, it suffices to consider the case where j > j, ). By
Definition 4.3, we have the following.

Jj—1 j
LZ(/\),J' - Z Vi ke — kz:l Ve +1,k

j
- Z Ueny e + (Ue N)sdury Z A)+1,k

= Loy, — 1.

By Remark 2.11 and the definition of ¢(\), we have Zi:l Ugny+1,5 = 0. It follows that

J

j—1
N = Uik Z U\ +1,k
k=1

Y Uk + Unry gy > 0
k#j.(m

This implies Ly, ; > 0. Thus, L;j > 0 holds for 1 <i < j < n.

Finally, we show that &, — S0 Vim > 0 for m € [n]. If m # Ju(H)>

m— m—1
= Z =2V
k=1 k=1
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holds by Definition 4.3. Suppose m = j,(g). By the proof of Lemma 4.7, we have

i —1 : .
& - : (i): Vi {MJL(H) (stﬁf Uk Ju(H) + UK(A) Ju(H) 1) if E()‘) < Ju(H)>
n ]L v . .
0 <H) Hjumy — 1— ?c(}{) Uk,h(H) if ((A) = Ju(H)»
i) —1 . .
JL -1

If £(X) = jum), by the definition of Uj; (i € [n]) and the choice of j,(g), we have

Jua)—1

UjL(H)ijL(H) = Hjmy — Z Ukij(H) >0
k=1

Thus, we have &, — > Vi > 0 for m € [n]. Therefore, ((H) € H(v). O

We also define another operator on H(\), which is a path operator as we will see later.
The operator is defined with a sequence of indices of H € H(\), and we define it first.
Forn,m € Z,let [n,ml]z={l € Z |n <1 <m}.

Definition 4.9. Let A € P* and let H = (A, 11,0, (Uij)i<;) € H(N). Let a € [n]. Set
(i0, jo) = (0,a). For k > 1, set

i if k € 22,
1. =
"Tlii+1 ifke2Z41,

. mln{j S [jk—l —+ 1,n]Z | Uikflyj > 0} ifk e QZ,
S P ithe2Z+1.

Let N be the minimum k € Z such that {j € [jx_1 + 1,n]z | U;
Jjn =n+ 1. Set por = (ix, jr). Then we define

pa(H) = (pa,k:)k:() ..... N-

Remark 4.10. Let A € Pt and let H = (\, 1,0, (Ujj)i<j) € H(N). Let a € [n]. Let
pa<H) = (pa,m)m:(] ..... N where Pam = (Zm7]m) Then, Pam = (Zm’]m) for m 7é 07N
represents the upright rhombus in R;, N Lj,,. Also, p,o = (0,a) represents the a-th
bottom boundary edge, and p, x = (iy,n + 1) represents the in-th right boundary edge.
Definition 4.11 defines an operator on H(\) which is obtained by increasing or decreasing
the rhombus gradients and the boundary edge labels determined by p,(H).

> 0} = @. Then set

k—1.J

Definition 4.11. Let A € P™ and let H € H(A). Let a € [n]. Let po(H) = (Pam)m=o....N,
where pom = (im, jm). The operator p, on H(\) is defined by p,(H) = (v,€,0 (Vkl)kz<l)
where

M+ 1 ifk=ip,
vV =
Ak otherwise,

{ukﬂ if & = jo,

Lk otherwise,
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and for 1 <k <1l <n,

Ug —1 if (k,1) = pam for some m € 2Z,
Vie=Uu+1 if (k,1) = pam for some m € 2Z + 1,

Ui otherwise.
If iy = n, reduce v, & (k € [n]) by 1.

Remark 4.12. The operator p, is considered as a path operator as follows. Let A € P+
and let H € H(X). Let a € [n]. Then p,(H) is obtained by increasing or decreasing
the boundary edge labels and the rhombus gradients specified by the path determined
by p.(H). Hence, p, is a path operator. Note that p,(H) is a K-hive according to
Proposition 4.18.

Example 4.13. Let n =4 and A = (6,4,1,0) € P™. Let H = (\, , v, (Uyj)i<j) € H(A) as
shown on the left of FIGURE 12, and then the path on H specified by p3(H) is illustrated
in blue and red. Then the action of p3 for H is as shown in FIGURE 12.

ps(H) = {(Oa 3), (17 3)> (17 4), (2, 4)7 (27 5)}
FIGURE 12. Action of p3
Example 4.14. Let n =4and A = (6,4,1,0) € P*. Let H = (A, i, v, (Uyj)i<;) € H(N) as

shown on the left of FIGURE 12, and then the path on H specified by p; (H) is illustrated
in red and blue. Then the action of p; for H is as shown in FIGURE 13.

F1GURE 13. Action of p;
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In Examples 4.13, 4.14, we can confirm that the action of p, generates a K-hive. As
we will see in the following, this observation holds in general.

Lemma 4.15. Let A € PT and H € H(\). Let a € [n] and p,(H) = (Pam)m=01,..N,
where pom = (4m, Jm). Suppose iy = n. Then p,(H) is an integer hive.

Proof. Let A € Pt and let H = (\, 11,0, (Uij)i<;) € H(X). Let a € [n]. Let p,(H)

(Pa,m)m=o,...N, Where pom = (im, jm). Suppose iy =n. Let p,(H) = (,£,0, (Vij)ic;). We
show that

m—1 n
(4.7) =Y Vim=vm— > Vi (m=12,...,n).
k=1

k=m-+1

By Definition 4.11, we have v, = A\ if £ = n, otherwise v, = A\ — 1, and & = py if
k = a, otherwise & = u — 1. Since ix = n, i = jy for k € [0,N]z N (2Z + 1), and
ir, = jr — 1 for k € [0, N|zN2Z by Definition 4.9. In particular, a = 1 holds. This implies
that 2?2—11 Vi = ZZ‘:? Upm —Land 373 1 Vik = 25—q1 Umik — 1. Then we have

m—1 m—1
gm_Z%m:Mm_ZUkTm
k=1 k=1

Since H € H(\), we have (4.7). O

Lemma 4.16. Let A € P™ and H € H()). Let a € [n]. Let po(H) = (Pam)m=01,..N,
where pom = (im, Jm). Suppose iy # n. Then p,(H) is an integer hive.

Proof. Let A € P and let H = (A, 1,0, (Uij)i<;) € H(N). Let a € [n]. Let p,(H)

(paﬂn)m:O ..... N where Pam = (va.]m) Suppose Z.N 7é n. Let pa(H) = (V7 éa 07 (‘/;])Z<j) €
show that

m—1 n
(4.8) b= > Vim=Vm— > Vi (m=1,2,...,n).
k=1

k=m+1
By Definition 4.11, we have v, = A\ + 1 if &k = iy, otherwise v, = A\g, and & = ug + 1
if k = a, otherwise & = ug. We first consider the left side of (4.8). If m = a, then

! iU+ 1 ifa#l,

Z ‘/ka - 1 .

1 >i—1 Uka otherwise

since Vi, = Ua + 1 and Vy, = Uy, if k£ # 1. Suppose m # a. If there exists [ € [0, Nz
such that j; = m, let [y be the smallest such [. It follows from Definition 4.9 that [, € 2Z,

(19415 Jio+1) = (i1g + 1, i), and ji # m if k # lo, lp + 1. This implies that
mz_:lvk = P U — 1 if gy = m — 1,
k=1

7 Usn otherwise.
Note that the case where m = a and a = 1 and the case where m # a and 4, = m — 1
means that there is [ € [0, N]z such that i, = j; = m. Then we have

m—1 _
en— > Vi = {“m
k=1

T ZZQI Ukm otherwise.

"' Upm + 1 if there is [ such that 4; = jj,
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Then we consider the right side of (4.8). If m = iy, then

n n e Iy

Z V. L = Zk:iN+1 Uz’N,k 1f JN—-1 = IN,
IN,R T n .

fmin 41 Ph=iy+1 Uiy ke + 1 otherwise.

Note that iy_1 = iy holds by Definition 4.9. Suppose m # iy. If there exists k € [0, N|z
such that i, = m, let ky be the smallest such k. It follows from Definition 4.9 that
ko € 27 + 1, (ik0+1,jk0+1) = (ikoajk0+1>7 and Zk 75 m if k 7& ko, ko + 1. This implies that

n n . . _

Z v L = Zk:m+1 Um,k —1 if Tk = M,
m) - n .

k=m-+1 > k=mi1 Umk otherwise.

Note that the case where m =i and jy_; = ix and the case where m # iy and ji, = m
means that there is k& € [0, N|z such that i, = j, = m. Then we have

Z Vm,k =

k=m+1
Thus, we have (4.8). O

{)\m — > heme1 Uni + 1 if there is k such that iy = j, =m

m = 2kem1 Umik otherwise.

By Lemmas 4.15, 4.16, we immediately obtain the following.
Lemma 4.17. Let A € P and H € H()\). Let a € [n]. Then p,(H) is an integer hive.

Proposition 4.18. Let A € P*. Let a € [n]. Then we have that p, is a map from H(\)
to |—|Z/EP+ H(V)

Proof. Let A = Y,c; \ie; € PT. Let a € [n]. We show that for all H € H()) there
exist v € P such that p,(H) € H(v). Fix H = (\, 11,0, (Ujj)i<j) € H(N). Let p,(H) =
(Pam)m=0,....N, Where pom = (im, jm). Let po(H) = (v,&,0, (Vij)i<j). By Lemma 4.26, we
know p,(H) is an integer hive. Then we show that p,(H) is a K-hive.

First, we show v € P*. If i)y = n, then v € P is trivial. Suppose iy # n. It suffices
to show that v;,,_; > v;,, which implies that \;,,_1 > \;,,. Suppose \;,_1 = A;,. By the
choice of pg iy, Uiy, = 0if 7 > jy—1. Then we have that

n IN-1

Z ing = Z Uiy .j-

Note that ixy_1 = iy — 1 holds by Definition 4.9. For 1 < i < j < n, set L;; =
Zk_ll ik — Zk 1 Uig1 . It follows that

JN-1—1 JN-1
LiN71,jN71 = Z Uithk - Z UiN—l"FLk
JN-1—1 JN-1
Z UiNfl,k - Z UiN,k
k=1 k=1
JN-1—1

Z UzN 1L,k —
< )\iNfl - )‘iN = O

This is a contradiction for H € H(A). Then we obtain A\;,_1 > \;,, hence we have
Vin—1 = Viy. By Definition 4.9 and Definition 4.11, £ € P and V;; > 0 is clear.



Crystal Bases and K-hives 37

For 1 <i<j<mn,set L}; = ST Vik — 20, Vigrk. Next, we show that Li; > 0. If
) > iN, then V;; = U;; (i < j) by Definition 4.11, hence Li; = Ly (1 < j). If i =iy, then
Z Vink = Zk_ll Uiy r+1if j—1> jy_1, otherwise Zk 1 Vinde = Zk_i Uiy x+1. Then
L, ; 2 L, ; > 0 holds. Suppose 7 < iy. In this case, from Definition 4.9 it follows that
there exists k € [0, N|z such that i, = i. Let ko be the smallest such k. For [ = 1,2, 3,
set k; = ko + (. By Definition 4.11, kg € 2Z + 1, i, = 1, = %, tk, = gy = ¢ + 1, and
Tk < Jky = Jky, < Jks holds. Then we have the following.

j—1 Vo Zi;ll Uik +1 if jko < j < jkl?
Y Vi = -
k=1 S U otherwise,

iv . S U +1if iy <G < Jirg,

itk = :

" S Uik otherwise.

Hence, L}; > 0 is clear unless ji, < j < jr,. Suppose that ji, < j < jg;. In this case,
L;; = Lij — 1, and then we would like to show L;; > 0. By the construction of p,(H), we
know that U4y ; = 0 if ji, < j < ji, and Ui,jkl > 0. It follows that

Jj—1 J
ng = Z Uik — Z Ui—i—l,k
Jmy

_ZUzk_ZUH—lk

>L 2().

ik
Thus, L;j >0 holdsfor 1 <i<j<n.
Finally, we show that &, — 7' Viyn > 0 for m € [n]. If iy # n, then &, — 75! Vi >
Mo — ZZL:_ll Ukm holds by the proof of Lemma 4.17. If iy = n, then 7, = j, holds for
k € [0,N]z N (2Z + 1) by Definition 4.9. In particular, a = 1 holds. It follows that
Unim = fim — 2op 7 Upn > 0, hence Vi = En — 05! Vi > 0 holds. Therefore, p,(H)

is a K-hive. O

Remark 4.19. By Remark 2.13, the operator p, can be viewed as an analogue to the
operation for a semi-standard tableau which inserts a box with a into the 1st row, then
move the leftmost box in the 1st row containing a number greater than a to the 2nd row,
and so on. This means that p, is an analogue of the insertion algorithm in K-hives.

There exists a path operator which can be viewed as a reverse operator of p, defined
as follows.

) € H(X). If A # 0, then let

Definition 4.20. Let A € PT. Let H = (A, 1,0, (Uij)i<j
i, jo) = (b,n +1). For k > 1, set

be{iel|\#0}U{n}, otherwise let b =n. Set (

- lk 1—1 1f]€€2Z,
Z =
A T ifke2Z+1,

- Jr-1 it k € 27,
j =
Y \max{y € LGk — Uz | U, >0} ifke2Z+1.
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Let M be the minimum k € [0, M]z such that iy = 0. Set Py = (ix, jr). Then we define

Remark 4.21. Let A € PT. Let H = (A, 11,0, (Uij)i<c;) € H(A). If X # 0, then let
be{iel| )\ #0}U{n}, otherwise let b = n. Let py(H) = (DPpm)m=0.1...0, Where
Dom = (ims Jm). Then, Py = (im,jm) for m # 0, M represents the upright rhombus
in R; N L; . Also, ppg = (b,n + 1) represents the b-th right boundary edge, and
Por = (0, jar) represents the jp-th bottom boundary edge. Definition 4.22 defines an
operator on H(A) which is obtained by increasing or decreasing the rhombus gradients
and the boundary edge labels determined by p,(H).

Definition 4.22. Let A € P*. Let H = (A, 1,0, (Uij)i<;) € H(X). If X # 0, then let
be{iel]|\ #0}U/{n}, otherwise let b = n. If b = n, then increase A\, uy (k € [n])
by 1. Let pp(H) = (Pom)m=01....00, Where Py = (im,jm). An operator p, on H € H(\)
is defined by py(H) = (1, £, 0, (Vii)k<:) as follows. Then

{/\k—l if k=,
vV =

Ak otherwise,

pr— 1 if k= j,
&k = _

Lk otherwise,

and for 1 <k <1 <n,

U +1 if (k,1) = ppm for some m € 2Z,
Vie=1Uu—1 if (k,1) = Dy for some m € 2Z + 1,

Ui otherwise.

Remark 4.23. The operator p, is considered as a path operator as follows. Let A € P+
and let H € H(\). If A # 0, thenlet b € {i € I | \; # 0}U{n}, otherwise let b = n. Then
p»(H) is obtained by increasing or decreasing the boundary edge labels and the rhombus
gradients specified by the path determined by p,(H). Therefore, p, is a path operator if
pu(H) is a K-hive. Note that p,(H) is a K-hive under some conditions (Proposition 4.27).

Example 4.24. Let n =4 and A\ = (6,5,1,0) € P™. Let H = (\, i, v, (Uyj)i<j) € H(A) as
shown on the left of FIGURE 14, and then the path on H specified by po(H) is illustrated
in blue and red in the figure. Then the action of p, for H is as shown in FIGURE 14.
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3 4 3 2

ﬁZ(H) = {<27 5)7 (27 4)7 (17 4)7 (17 3)? (07 3)}
FIGURE 14. Action of ps

Example 4.25. Let n =4and A = (6,4,3,0) € P*. Let H = (A, i, v, (Uyj)i<;) € H(A) as
shown on the left of FIGURE 15, and then the path on H specified by ps(H) is illustrated
in blue in the figure. Then the action of ps for H is as shown in FIGURE 15.

FI1GURE 15. Action of p3

In Example 4.24, 4.25, the action of p, generates a K-hive. Moreover, this action can
be viewed as an inverse operator of p,, see Example 4.13, 4.14. As we see in the following,
this observation generally holds under some conditions.

Lemma 4.26. Let A\ € PT. If A # 0, then let b € {i € I | \; # 0} U {n}, otherwise let
b =mn. Then, p,(H) is an integer hive.

Proof. Let A € PT and H = (A, 1,0, (Uyj)ic;j) € H(A). IfX#£0, thenletbe {i e I | \; #
where Py = (im, jm). Note that if b = n, then we consider Ay, ux (k € [n]) by increasing
by 1. By Definition 4.20, v, = Ay — 1 if £ = b otherwise v, = A\g, and & = pup — 1 if
k = ju otherwise &, = pi- We need to show that

m—1 n
(4.9) b= Vim=Vm— > Vi (m=1,...,n).
k=1 k=m+1
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We first consider the left side of (4.9). If m = jj, then
- M ‘U kdar otherwise

since V5, = U3, —1and Vi5 = Uz, if k # 1. Suppose m # jy. If there exists
I € [0, M]z such that j; = m, let Iy be the smallest such I. It follows from Definition 4.20
that lp € 2Z +1, (ijy11, Jig+1) = (i, — 1, Ji, ), and j; # m if [ # Iy, lo + 1. This implies that

m—1
> Vim = {
k=1

Note that the case where m = jj; and jy = 1 and the case where m # jy and iy, = m
implies that there is [ € [0, M]z such that i = j; = m. Then we have

m—1
fm - Z Vim = {
k=1
Then we consider the right side of (4.9). If m = b, then

n Sy U+ 1 if j1 =0,
> Vi = i _
k=m-+1 > k=ps1 Uk otherwise

since V5, = Up;, — 1 and Vyy = Uy if | # j1. Suppose m # b. If there exists k € [0, M]y

such that i, = m, let ky be the smallest such k. It follows from Definition 4.20 that
ki() € 2Z7 (Eko-klvjko-‘rl) = (Ekoajko-i-l)v and jk‘ 7& m if k= kOa kO + 1. This lmphes that

" ZZ:m+1 mG +1 if jko—i-l =1m,
Z Vink =

S U + 1 if 4y, = m,

ZZ;I Ukm otherwise.

fhm — Z;":_ll Um — 1 if there is [ such that i, = j, = m,

Mom — ZZ;I Ukm otherwise.

n .
k=m-+1 Y h—mt1 Vimk otherwise.

Note that the case where m = b and j; = b and the case where m # b, ji,+1 = m implies
that there is k € [0, M|z such that i, = jr = m. Then we have

- z": Vo — Am = Dhmmg1 Vmk — 1 if there' is k such that i, = jp = m,
ke 1 Am = Dliemt1 Vimk otherwise.
Thus, we have Lemma 4.26. U

Proposition 4.27. Let A = Y ;c; \ie; € P IEA#0, thenletbe {i € I | \; # 0} U{n},
otherwise let b = n. If b = n, consider \; (k € [n|) by increasing by 1. Let v = Y ,c; v€; €
Pt where v, =\, — 1, v, = A\, if k # b. Suppose that A, > \py1. Then p, is a map from
H()\) to H(v).

Proof. Let Y ie; M6 € PP oand let H = (A, 1,0, (Uij)ic;) € H(N). If X # 0, then let
be{iel]| )\ #0}U{n}, otherwise let b = n. Let py(H) = (1,&,0, (V;j)ic;) and let
p(H) = (Poon)m=o...1, Where P = (im, jm). Note that if b = n, then we consider
Ak, ti (k € [n]) by increasing by 1. Let v = > ;c; vi€;, then it follows from Definition 4.22
that v, = A\, — 1 and v, = A\ if & #b.

By Lemma 4.26, p,(H) is an integer hive. Suppose that A, > A,y1. Then we show that
pp(H) is a K-hive.

Since A € P and A\, > M\y;1, we have v € P*. It follows from Definition 4.22 that
€ PandV; >0.
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For 1 <k <l < n, set Ly = Z Uml — Z 1Uk+lm7 and Lk:l = Z le —
Zm:1 Vit1,m- We would like to show Lj, 2 0. If k > iy, then Vj; = Uy, holds for k<1
by Definition 4.22. Then we see L}, = Lkl > 0. Suppose k = iy. By Definition 4.22, we
have that V; 5 = U; 5, —land V; , =U; ,if | # 71. Note that ig = i; by Definition 4.20.
Then we obtain the following.

zol Z mm_z io+1,m

{z i =S Uit if1—1< 7,

stéal Uigm + (U j, = 1) — e U, ot ALL—1> 71,
L, if 1 —1< 7,

B {Lio’l—l ifl—1>j.

Since U;, ,,, = 0 holds for m > 71 by the choice of 51,

n

=2 Uiw = Z

Then if [ — 1 > jy,

Z i0,m Z i0+1,m

5
z_: io,m Z io+1,m

- Z Ugo—l-l,m
m=1

> )\go - )‘50—1-1 > 0.

This implies Lgml > 0. Suppose k < ip. By construction of p,(H), there exists m € Z
such that i,, = k, let mg be the smallest such m. For [ = —2, 1, 1, set m; = mgo + 1. By
Definition 4.20, mg € 27, iy = im, = Ky im_, = tm_o =k + 1, iy < Jmg = Jm_1 < Jm_o-
By Definition 4.22, we have the following.

L U =1 4f oy <1< i

kam:{ llUik

1 otherwise,

Z’rrL:l Uk—i—l,m -1 if 5m0 S [ < jm_za
S Ukiim otherwise.

l
> Vitim = {
m=1

Therefore, L, > 0 is clear unless j,, < | < jmg- SUPPOSe Jim, < | < jm,. In this case,
L}, = Ly — 1 holds, then it suffices to show that Ly > 0. By the choice of j,,,, we know

that Uy = 0 for jml <l< jmo. Then we obtain

-1 l
Ly = Z Ukm — Z Uk+1,m
m=1 m=1

Jmy

l
= Z Ukm — Z Uk—&—l,m‘
m=1 m=1
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This implies that Ly > Ly if Jmy < 1 < 1" < jmy. In particular, since UkH,ij > 0 by
the choice of my, Ly.jp, -1 > Lyj,, - Thus, we have Ly >0 for 1 <k<l<n.

By the proof of Lemma 4.26, it suffices to check the case where there exists [ € [0, N]z
such that 4, = j; = m. In this case, m € 2Z + 1 holds by Definition 4.22, and hence
Unm > 0. Then g, — S0 Upy > 0, which implies &, — 37" Vi > 0. Therefore,
pp(H) is a K-hive. 0

The relation between p, and p, can be viewed as an inverse operator under some
conditions, as we see in the following. See Examples 4.13, 4.14, 4.24, 4.25.

Proposition 4.28. (1) Let A € Pt and H € H()A). Let a € [n] and p,(H) =
(Paym)m=o.,...N, Where pom = (im,jm). Set b = iy and K = p,(H). Then, we
obtain py(K) = H.

(2) Let v € P" and K € H(v). If A # 0, thenlet b € {i € I | \; # 0} U {n},
otherwise let b = n. Set H = py(K), and let pp(K) = (Dpim)m=o.. 1, Where
Pom = (im, jm). Set a = jp. Suppose that H € H()) for some A € P*. Then, we
obtain p,(H) = K.

Proof. (1) Let A € PT and H = (A, 1,0, (Up)k<t) € H(A). Let a € [n] and p,(H) =
(pa,m)mzo ..... N> where Pam = (Zm7]m) Set K = pa(H) and b = Z‘N' Let K = (Vv 57 07 (V;cl)k<l) €
H(V) Let ﬁb(K) = (ﬁb,m)mzl ..... M where ﬁb,m = (Zmajm)

By Definition 4.11, we have v, = \y+1, v = \x (kK # b). We would like to show p,(K) =
H, then it suffices to show that p,(H) = p,(K) by Definition 4.11 and Definition 4.22.
Note that if b = n, then we consider v, &, (k € [n]) by increasing by 1. By the construction
of po(H) and py(K), we have N = 2iy and M = 2iy. By the choice of b, iy = ip = b
holds, and hence N = M. We claim p, n—m = Dpm for m = 0,1,..., N, and show this
by induction on m. By the definition of p,(H) and py(K), jx = jo = 0, and hence
Pa,N = Dbo-

Suppose m € 2Z~o \ {IN}. Note that N —m € 2Z~(. By the induction hypothesis and
Definition 4.20,

IN—m = IN-mt1 — L =1 — 1 =iy,

IN-m = IN-mt1 = Jm-1 = Jm-
Then poN—m = Dom holds for m € 2Z-o \ {N}. If m = N, then
o =1n =0,
jo=J1=JjN-1=Jn
holds by the definition of p,(H) and p,(H). Then p,o = pp v holds.

Assume that m € 2Z>+ 1. In this case, N —m € 2Z>¢+ 1. Also, note that ¢,, = i,,41

and U, = 0 if j,, < J < Jms1 hold, and hence

m+1,j

Jm = max{j € [1, jms1 — 1z | Ui, ; # 0}
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Then, by the induction hypothesis and Definition 4.20,

Z’me = imeJrl = ;mfl = im;

ijm == maX{j e [17jN*m+1 - 1]Z ‘ UiN—m-!—l:j 7é O}
=max{j € [1, jm-1 — 1]z | Ui, .; 7 0}
= .

Then we have p, n—m = Dpm for m € 2Z>¢ + 1, thus the claim holds for m =0,1,..., N.
Thus, p.(H) = pp(H) holds, and hence py(K) = H.

(2) Let v € PT and K = (1,&,0, Vi)k<t) € H(v). If v £ 0, then let b€ {i € I | v; #
0} U {n}, otherwise let b = n. Set H = py(K), and let py(K) = (Pbm)m=o,..m, Where
Pbon = (im, jm). Note that if b = n, then we consider vy, & (k € [n]) by increasing by 1.
Suppose H € H(\) for some A € PT. By Definition 4.22, we know that A\, = 15, — 1 and
Me = v if k # b, Set a = jar. Let H = (A, 11,0, (Ut)r<t). Let pa(H) = (Pagm)m=1....N
where pom = (ims Jm)-

To show p,(H) = K, it suffices to show that py(K) = p,(H) by Definition 4.11 and
Definition 4.22. Set L = min{M, N}. We claim that py pr—pm = Pam for m =0,1,..., L.
By the construction of p,(K), p,(H) and the choice of a,

77777

poar = (0,a) = pa.

Also, we have
EM_1:EM+1:7;0+1:Z.17

Jv-1=Jm = Jo = Jr,

hence we have py pr—1 = Pa1-
Suppose m € 2Z~o \ {L}. Note that L — m € 2Z~. By the induction hypothesis, we
have iy, = im_1 = iN—mi1 = IN—m and
jm = max{j € [jm—l + 17 n]Z | Uimflyj 7é 0}
= max{j € [jN—m—‘rl +1,n]z | UZN_m+1,j # 0}

- 3N—m-

Then ﬁb,N—m = Pa,m-
Suppose m € 2Z~ + 1. Note that N —m € 2Z~,. By the induction hypothesis,

Iy = b1+ 1= ;me+1 +1= ;mea
Jm = Jm-1= 3me+1 = ijm-

Then Py as—m = Pam holds for m = 0,1,..., L — 1. By the definition of L, jy_ =n+ 1

or jr = n+ 1 holds. Since pprpr—m = Pam for m = 0,1,..., L — 1, we have JM_L =
jr = n+ 1. This implies M = N. Thus, we have py(K) = p,(H). Therefore, we obtain
po(H) = K. O

Now, we investigate the relation between path operators and the crystal structure of

T(\).
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Lemma 4.29. Let A € Pt with A # 0. Let H € H()\). Fori € I and j € [i], set
@Z(j)(H> =U;; —Ujiris1 + gofj 1)(H). Then we have the following.
oi(H) =1 if jum) =1,
Pi(t(H)) = @i(H) + 1 if jury =i+ 1, g7V (H) > 0,
wi(H) otherwise.

Proof. Let A € Pt with X\ # 0 and let H = (A, 11,0, (Up)k<t) € H(X). Let v € PT and
let «(H) = (1,£,0,(Vii)k<:) € H(v). Fix i € I. Note that it follows from Remark 2.11
that ;(H) = "M (H) and ¢;(u(H)) = "M (L(H)) since £(v) < £()). Since Viy = Uy,
i (5, 1) # (€N, ) we obtain o () = o (u(H) for k < £(\) —
Suppose j,(g) = ¢. In this case, Uyy); > 0 and Uyy)i+1 = 0. Then the following holds.
pi(H) = max{Uyy s = Usoyrrin + oy 0 (H),0}
= Uspry; + goﬁf( V() > o.

Since j,(u) = i, we have goz(g(’\)_l)(L(H)) = goz(g(’\)_l)(H). Then we obtain
((H)) = max{Vipyi = Vioarin + 1 (e(H)), 0}
wilL maxa Ve, LN)+1,i4+1 T P4 L )

= max{Uyy,; — 1 + go?”*”(m, 0}

Thus, ¢;(¢(H)) = ¢;(H) — 1 holds.
Suppose j ) = ¢+ 1. In this case, Uyx); — Ugr)+1,i+1 = 0 holds. Then we have

pi(H) = max{Uyy-1; = Usgnya + 12 (H), 0}.
Also, the following holds.

0i(t(H)) = max{Vin-15 — Vipyis1 + o V2 ((H)), 0}
= max{Usn)_1; — (Urpyinr — 1) + o™ (H), 0}

For i € I and j 6 [2], set @Y ( ) =U;i —Ujs1i11 —l—gol(-j_l)(H). Then we have @;(¢(H)) =
wi(H)+1if @ ng Y > 0 otherwise 0i(t(H)) = pi(H).

Suppose j,(g 7é i,7+ 1. By Definition 4.3, Vi; = Uk, Viit1 = Uk,i1 holds for k € [n].
Thus, we have gp,(H) wi(L(H)). d

Remark 4.30. Suppose j,uy = @+ 1. In this case, Uyn,; = 0. Then ¢;(H) =
max{Usx)-1, — Usn),it1 + go,gé(’\)_Q)(H), 0}. Thus, if j,zy =i+ 1 and ¢;(«(H)) = pi(H),
then ¢;(H) = 0 holds.

Lemma 4.31. Let A € Pt with A # 0. Let H € H(\). For i € I and j € [i], Set
29 (H) = Uji — Ujr1im + @V (H). Then we have the following.

e(H)+1 if juun =i+ 1, 3"V V(H) <0,
ei(H) otherwise.
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Proof. Let A € Pt with X\ # 0 and let H € H(\). By Definition 4.3, we have

(hi, wt(o(H))) = § (hi, wtH) + 1 if j,y =i+ 1,
(h;, wtH) otherwise.

Then the statement follows from Definition 2.1 and Lemma 4.29. O

Lemma 4.32. Let A € PT and let H € H()\). Let a € [n]. Then, for i € I, we have the
following.

g(H)+1 ifa=i+1,
gilpa(H)) =qei(H) =1 ifa=1,e(H) >0,
g;(H) otherwise.

Proof. Let A € Pt and let H = (\, 14,0, (Ug)k<t) € H(A). Let a € [n] and let p,(H) =
(pa,m)m:O,l ..... N> where Pam = (Zk7.]k) Let pa(H) = (V7§’07 (Vkl)k<l) S H(V) for v € P*.

Suppose a = i + 1. By Definition 4.11, V; = Uy, for k € [n]. Also, if £ = 1 then
Viit1 = Ugiy1+1 otherwise Vi ;11 = Uy 41 holds. It follows that 5§k) (pir1(H)) = 5§k)(H)
for k£ <i. Then we have

eilpi(H)) = e (pia ()
= max{Vy1 + ) (Pz’+1(H)) 0}
= max{U; ;41 + 1+ 9(H),0}
= Urip1 + €§ )(H) +1
=ei(H)+ 1.
Suppose that @ = ¢ and ¢;(H) > 0. By Definition 4.11, if k = 1 then V;; = Uy, + 1

otherwise Vi ; = Uy, holds. Suppose U; ;41 = 0. In this case, Vj ;41 = Upiq1 for k € [n]
by Definition 4.11. It follows that £\ (p;(H)) = e™(H) if k < i — 1. Since &;(H) > 0,

)

gi(H)=Us;1 — Up; + 5(1 1)(H) holds. Then we have

cilpi () = max{Vii1 + 2 (pi(H)), 0}
= max{Va;11 — Vig+e 1)(Pi(H)) 0}
= max{Us,;41 — (U“ +1)+ 6 ( ),0}
= Upisy — Ui+ V(H) — 1
=ei(H)—1.
Suppose Uy ;11 > 0. By Definition 4.11, we have

U1,1'+1—1 lszl,
Vk,iJrl = U2,i+l +1 ifk= 2,

Ukit1 otherwise.
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Then &* (piv1(H)) = 5(-k)(H) holds if £ <1i — 1. Moreover, the following holds.

ggi) (pi(H)) = max{Va,; 11 — Vi + 5§i_1)(Pi(H)), 0}
= I’IlaX{U27i+1 - Ul,i + 5Ei_1)(H)7 0}

It follows that

ei(pa(H)) = max{Vi o1 + . (pa(H)), 0}
= max{Ui a1 — 1 + £ (H), 0}
= 61(H) — 1.

Suppose that a = i and ¢;(H) = 0. By the above discussion, we have ¢;(p.(H))
maX{UQ@H—U17a+55i_1)(H)—1, 0}. Since ¢;(H) = 0, we obtain Ug,aH—ULa—ksEi_l)(H)
0. Thus, €;(p.(H)) =0=¢;(H).

Suppose that a #i,i+ 1. If a > i+ 1, then Vj; = Ui, Viiz1 = Ukiy1 holds for k € [n].
Thus, we have €;(p,(H)) = ¢;(H). Suppose that a < i. In this case, there are four cases
as follows.

(1) There is no k € [0, Nz such that jj € {i,i + 1},
(2) there exists k,l € [0, N]z such that j, =1, jy =i+ 1,
(3) there exists k € [0, N]z such that jp = i and there is no [ € [0, N]z such that

AVA

n=1+1,
(4) there is no k € [0, N]z such that j = i and there exists [ € [0, N]z such that
ji=i+1.

In case (1), Vis = Uki, Vkir1 = Ukiq1 for k € [n] by Definition 4.11. Thus, we have
gi(pa(H)) = &i(H).

In case (2), let ko be the smallest k& € [0, N|; such that j, = i. For [ = 1,2,3,4, set
ki = ko + . By Definition 4.9, we have that ko € 2Z, por, = (iky, 1), Pak, = (ix, + 1,7),
Paks = (iko + 1,1 + 1), Paks = (iko + 2,1 + 1), and jk4 > ¢+ 1. By Definition 4.11,
Vkl = Ukl —1if (k,l) = Pa,kor Paks> and Vkl = Ukl +1 if (/{I, l) = Pa,ky)Paks- Then
Vit 1,41 — Vii = Ukg1,i41 — Uy, holds for k= 0,1... 4. Thus, ¢;(p.(H)) = €:;(H).

In case (3), let ko be the smallest k € [0, N]z such that j, = i. By Definition 4.9,
ko € QZ, DPaky = (iko,i), Pako+1 = (iko + 1,i), and jk0+2 > 1+ 1. Note that jk0+2 >0+ 1
means Uik0+17i+1 = 0 by Definition 4.9. Also, Uiko,i > 0 holds by the choice of k3. Then
we have

‘/;k0+1,i+1 - ‘/iko,’i = Uik0+1,i+1 - (Uiko,i - 1)
Also, we have

Virg+2i+1 — Vg, 41, = Uiy 12,601 — (Ui 41,5 + 1)
= Uiy+2+1 — Uiy 41, — 1.
Note that sgk)(pa(H)) = egk)(H) if k < i — 14, by Definition 4.11. Then we obtain
sgz_zko)(pa(H)) < 62(1_%)(]{), and hence 5§Z+1_Zk°)(pa(]—])) = 55”1_%0)(]-[). By Defini-
tion 4.11, we have ¢;(p.(H)) = €;(H).
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In case (4), let Iy be the smallest | € [0, N]z such that j, = i + 1. By Definition 4.9,
lo € 2Z + 1, Jlo—1 < 7, Pay = (’ilo, 1+ 1), Palo+1 = (’ilo +1,74+ 1), and Jlo+2 > 1+ 1. By the
choice of [y, we have Uizo,i = 0. Then

%zo+17i+1 -V = Ui10+17i+1 +1- Uiloﬂ'

= Uizo,iJrl +1>1.

lp N

Note that e\’ (po(H)) = e’(H) if I < i + 1 — i, by Definition 4.11. Then we obtain

55”17%)(@1([{)) > 554172’10)(}]) > 0. Also, we have

— 1.

lg N

‘/z‘lo,i+1 — Viloq,z‘ = Uilo+1,i+1 - U;

Hence, e’—:(HQ*ilo)(pa(H)) = gEiH*ilo)(H). Thus, by Definition 4.11, we have ¢;(p.(H))

)

ei(H). ;

Lemma 4.33. Let A € P* and let H € H()\). Let a € [n]. Then, for i € I, we have the
following.

wi(H) otherwise.

wi(pa(H)) = {
Proof. Let A € P™ and let H € H(\). Let a € [n]. By Definition 4.11,

(hi,wtH) +1 if a =1,
(hi, wt(pa(H))) = § (hy, wtH) — 1 ifa=1i+1,
(h;, wtH) otherwise.

Thus, the statement holds from Definition 2.1 and Lemma 4.32. U

Remark 4.34. Since ¢;(H) = 0 implies that > ;"1 (Uipo—ki+1 — Uir1-k,) < 0 for m €
[i + 1], we have 34 (Upi — Ugs1i41) > 0 for m € [i +1]. Also, we have Uy ;11 = 0. Then
ife;(H) =0and a =i, then >-7" | (Ug; —Ugs14+1) > 0 holds for m € [i] by Definition 4.11.
This means ky,,,z) = 1.

4.2. The tensor product decomposition. In this subsection, we define an operator ©
on the tensor product of a set of K-hives and show that © is a crystal embedding. Then
we give the decomposition theorem.

Definition 4.35. Let A\, € Pt with A # 0. Let H ® K € H()\) ® H(u). Then O is
defined as an operator on H(A) ® H(u) by ©(H ® K) = «(H) ® pj, ,,, (K).

Example 4.36. Let n = 4. Let A = (3,2,1,0),u = (6,4,1,0) € P*. Let H® K €
H(\) ® H(i) as shown in FIGURE 16. We have j,z) = 3. Then the action of © for
H ® K is as shown in FIGURE 16.
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FIGURE 16. Action of ©

Proposition 4.37. Let A\, u € P™ with A # 0. Let v € PT, where v, = A\, — 1 if k = £()\)
otherwise v, = ;. Then we obtain
©: H\) @ H(p) — | | H(v) @ H(E).

¢ep+

Proof. Let A\, € PT with A # 0. Let v € P*, where v, = A\, — 1 if kK = ¢(\) otherwise
v = A,. Let Hy ® Hy € H(A) @ H(u). It follows from Proposition 4.8 that «(H;) € H(v).
Set a = j,(m,). By Proposition 4.18, p,(H>) € H(&) for some £ € P*. Then ©(H, ® Hs) €
H(v) ® H() holds. Since £ € P* is determined by the choice of H; ® Hs, we have that
© is a map from H(\) ® H(u) to [eep+ H(v) @ H(E). d

In the following, we show that © is a crystal embedding (Proposition 4.42).

Proposition 4.38. Let A\, € P with A\ # 0. Let H; ® Hy € H(\) ® H(u). Then, the
following holds.

(4.10) (hi, wt(©(H1 ®@ Hz))) = (hi, wt(Hy ® Hp)) (1 € 1)
Proof. Let AW A2 ¢ P+ with A #£ 0 and let H; ® Hy, € H(AY) @ H(A®). Set

K, ® Ky, = O(H, ® Hy). For vV v ¢ P* let K; ® Ky € HvW) @ H(v®). Let
Hy, = (A 1m0 (UT);c5), Ky = (0™, €0 0, (V™),_;). By Definition 4.3,

<hl,WtH1> +1 if 1 = jL(Hl) — 1,
<h7,,WtK1> = <hl,WtH1> -1 ifi= jL(H1)7
(h;, wtH{) otherwise.

On the other hand,
(hi,wtHy) — 1 if @ = jym,) — 1,
(hiy W) = { (heywtHy) + 1 if i = j,m),
(h;, wtHy) otherwise.
Thus we have the following.
(hi, wt(K; @ K3)) = (h;, wt K1) + (h;, wt K3)
= (hi, wtH;) + (hi, wtHy)
= (h;, wt(H; ® Hy)).
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Proposition 4.39. Let A\, u € P™ with A # 0. Let H; ® Hy € H(\) @ H(u). Then the
following holds.

(4.11) i(Hy ® Hy) = ¢;(0(H, ® Hy)) (i € 1),

Proof. Let (™ p(m) ¢ P+ (m = 1,2) with A1), (M) £ 0. Let H; ® Hy € H(AM)@H(A?),
and let O(H; ® Hy) € H(vW) @ H(¥?). Set K; ® Ky = O(H; ® Hy). For m = 1,2,
let Hy = (A, 10,0, (UF)icy), Ko = (V™ 60,0, (Vi )icy). T oi(Hy ® Hy) =

©i( K1 ® K>3) holds, then it follows from Proposition 4.38 that ¢;,(H; ® Hy) = €;(K; ® K>)
since
Ei(Kl ® Kg) = SOZ(KI ® Kg) — <hZ,Wt(K1 ® K2)>
= Si(Hl & HQ)
Then it suffices to show that ¢;(Hy ® Hs) = ;(K; @ K).

First, we consider the case where i < j,g,) — 1. By Definitions 4.11, 4.3, Vk(lm) =
U,g;n) (m=1,2)if l =4,i+ 1. Then we have ¢;(H,,) = ¢i(K,,) (m = 1,2). Thus, (4.11)
holds by Proposition 4.38.

Next, we consider the case where ¢ = j,(,) — 1. In this case, we have p;(K3) = ¢;(H>)
by Lemma 4.33. Suppose that ¢;(K;) = ¢;(H1) + 1. By Definitions 4.3, 4.11,

Thus, (4.11) holds. Suppose that ¢;(K;) = ;(H;). By Remark 4.30, we have ¢;(H;) = 0.
This means

i

1 1 1 1
Nz( ) - /%('+)1 = Z(Ulgi) - Ul§+)1,i+1) < 0.
k=1

Then ¢V — €% < 0 holds by Definition 4.3. Then we have (h;, wtH), (hy, wtK;) < 0.
Hence, (4.11) holds since

0i(H1 ® Hy) = @;(Ha) = 0i(K2) = ¢i(F @ K»).

Next, we consider the case where i = j (). By Lemma 4.29, ¢;(K;) = ¢;(H;) — 1. By
Definition 4.3, (h;, wt(K3)) = (h;, wt(H3)) + 1. Then we have

@i(Hy) + (hi, wt(Ha)) = i (K1) + (hi, wt(K3)).

If ;(Ky) = ¢;(Hs), then (4.11) is trivial. Suppose that ¢;(K3) = ¢;(H2) + 1. By
Lemma 4.33, we have €;(Hy) = 0. Then ¢;(H,) = p — ,uz(i)l holds by Definition 2.1. It
follows that

@i(Hy) + (hiy wtHy) = o, (Hy) + pi” — 12 > @i(Hy).
Then ¢;(K7) + (hi, wtKs) > ¢;(K3). Thus, we obtain
0i(Hy ® Hy) = pi(Hy) + (hi, wtHa) = 0;( K1) + (hi, wt K3) = ¢;( Ky @ K>).
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Finally, we consider the case where ¢ > j,u,). In this case, ¢;(H1) = ¢;(K;) holds
by Lemma 4.29. By Definition 4.11, we have (h;, wt(Hs)) = (h;, wt(K3)). Also, by
Lemma 4.33, p;(Hs) = ¢;(K3) holds. Then we have ¢;(H; ® Hy) = ¢;(K; ® K). O

From Lemma 4.29, Lemma 4.32, and Definition 2.3, we can investigate the relation
between © and f;, e;.

Lemma 4.40. Let \,u € Pt with A # 0. Let H; ® Hy € H()\) ® H(p). Then we have
the following.

(1) If fi(Hy ® Hy) = filly ® Hy, then

LH1) @ fipj, gy, (H2) i Jumy = 4, 9i(Hi) = 1,

fi (L(Hl) ® PjL(Hn(H?)) - {fib(Hl) ® ij(Hl)(HQ) otherwise.

(2) If fi(Hy ® Hs) = Hy ® f;Ho, then

fi (L(Hl) ® ij(Hl)(HQ)) = L(Hl) ® fiij(Hl)(HQ)'
(3) If €i(H1 X Hg) = e,-Hl ® HQ, then

L(Hy) ® eiij(H1>(H2) if Jumy) =1+ 1 wi(L(H1)) =0,
eit(H1) @ pj,,,(H2) otherwise.

e (L(Hl) ® Pjyuy) (H2)) = {

(4) If €i(H1 X HQ) = Hl X €Z'H2, then
ei (t(H1) @ pj ) (Ha)) = L(HL) ® €ipj, (o).

Proof. Let \M) € P+ with AV #£ 0 and let H; = (AM, uM)0, (Ui(‘l))i<j) € H(AW). Let
A2 € Pt oand let Hy = (A, 1@, 0, (UJ)ic;) € HA®).

(1) Suppose f;(H; ® Hs) = fiH; ® Hs. By Definition 2.3, ¢;(H;) > €;(Hs) holds. If
Juryy =1 and @;(Hy) = 1, then ¢;(¢(H,)) =0 < ei(ij<H1)(H2)) holds.

Suppose Jymy) # 1 U ) # 1+ 1, @i(L(Hy)) = @i(Hy) > ei(Hy) = 5i(ij(H1)(H2)). If
Jumy =1+ 1, then @i(Hy) = Uy — Uy ipn + 082 (Hy) > 0. Then ;(u(Hy)) =
ei(Hy) + 1> ei(H2) + 1 = €i(pj, p,, (H2))-

Suppose p;(H;) # 1. Then we have p;(H;) > 1. It suffices to consider the case where
Jum) = 4. In this case, ¢;(¢(Hi)) = @i(Hi) — 1. If &;(Hz) > 0, then &;(pj,,, ,(H2)) =
gi(Hz) — 1, otherwise &;(pj,,, ,(Hz2)) = €i(Ha). Then ¢;(t(H1)) > £i(pj,,, (H2)) holds.
Thus, the statement holds by Definition 2.3.

(2) Suppose f;(Hy ® Hy) = Hy ® f;Hy. By Definition 2.3, ¢;(H;) < &;(H,) holds.
By Lemmas 4.29, 4.32, we immediately obtain ¢;(¢(H1)) < €i(pj,,, (Hz2)). Thus, the
statement holds by Definition 2.3.

(3) Suppose e;(H; ® Hy) = e;H; ® Hy. By Definition 2.3, ¢;(Hy) > ¢;(Hs) holds.
Suppose that j,gz,) = ¢+ 1 and ¢;(¢(Hy)) = 0. Since ju,) = @ + 1, then we have
Ei(Pj,u,)(H2)) = €i(H2) + 1 and ¢;(e(H1)) > ¢i(H1) from Lemma 4.32 and Lemma 4.29.
Since ¢;(¢(Hy)) = 0, we have ¢;(H) = 0. Hence, we obtain ¢;(¢(Hy)) = wi(H;) =0 <
ei(Hs) + 1 = €i(pj,,, (Hz)).

If jm,y # i+1, then ¢;(¢(Hy)) > 5i(ij<H1> (H,)) is clear by Lemmas 4.29, 4.32. Suppose
@i(t(Hy)) > 0. It suffices to consider the case where j,(z,) = 7+ 1. In this case, by
Lemma 4.29, ¢;(t(H1)) = ¢i(Hi) + 1. Then we have ¢;(«(H1)) > €i(pj,,,,(H2)) by
Lemmas 4.29, 4.32. Thus, the statement holds by Definition 2.3.
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(4) Suppose that 61'(H1 X H2) = H, ® e;H,. By Definition 23, (pZ(Hl) < €i<H2) holds.
By Lemmas 4.29, 4.32, we immediately obtain ¢;(¢(H1)) < €i(pj,,,(Hz2)). Thus, the
statement holds by Definition 2.3. O

Proposition 4.41. Let AV, A\ € P+ with A" £ 0 and let H, ® H, € H(AM)@H(A?),
Then the following holds.

(4.13) (©o fi)(Hi ® Hy)) = (fi o ©)(H1 ® Hy)) (i €l),
(4.14) (©oe)(H, ® Hy)) = (e;0 O)(H, @ Hy)) (i € I).

Proof. Let A\U™ v ¢ P+ (m = 1,2) with A\, v £ 0. Let H; ® Hy € HAW)@H(A?),
and let ©(H; ® Hg) = H(vW) @ H(v®).

If we show (©o f;)(H1® Hs) = (fi00)(H1® Hs), then we can obtain (Ooe;)(H,® Hy) =
(e;00)(H;® Hy) as follows. Since (f;00)(e;(H1®Hs)) = O(fi(e;(Hi @ Hy)) = ©O(H1® Hy)
and ¢;(fi(©(e;(Hi® H)))) = O(e;(H1 ® Hy)), we have O(e;(H, ® H)) = €;(0(H, ® Hy)).
Then it suffices to show that (0 o f;)(H; ® Hy) = (f; 0 ©)(H; ® H,).

Set K1 ® Ky = O(H, ® Hy). For m = 1,2, let H,, = (A", u(™ 0, (US)), K,, =
(v, €m0, (V™).

Suppose that (O o f;)(H1 ® Hz) = «(fiH1) ® pj,; ,,,(H2). Note that ¢;(H1) > &;(H>)
by Definition 2.3. By Lemma 4.40, we have

Kl ® fZKQ if jK1 - i? Qpl(Hl) - 17

0 O)(H, ® Ha) =
(fO )( 1 2) {fiK1®K2 otherwise.

Then we consider the case where (f;00)(H;® Hy) = K1 ® f; K. In this case, we have that
Jr, =t and @;(Hy) = 1, and hence ¢;(K;) = 0 holds by Lemma 4.29. Since jg, =i and
wi(Hy) = 1, we have that ¢;(H;) = Ue((l/zm),i = 1. This means kf,z, = (A1), and hence
Jufiby) = 1+ 1. Thus, we have Ky = «(f;H;) by Definition 4.3. Let p;(H2) = (pik)r=1,... N+

where p; . = (i, Jk). Let pip1(H2) = (Dis1k)k=1,...m, Where piy1 = (g, tx). Then we
have

pio = (0,4), pi1 = (1,1),pi2 = (1, j2),
Pir10 = (0,0 + 1), pir1n = (Li + 1), pi12 = (1, 62).
Since ¢;(Hy) = 1, we have ¢;(Hy) = 0 and, in particular, Ul(i-)Jrl = 0. Then we obtain
jr=min{j € i+ 1,n]z | U7 # 0}

=min{j € [i +2,n]z | U7} # 0}
= 9.

Since piy = pisix for k > 2, we have that 7® = v® and W) = Vv, unless (k,
(1,4),(1,i 4+ 1). Thus, to show that f;Ky = p;+1(Hz), it suffices to show that ky x, =
Since ¢;(Hs) = 0, we have

Then we have p; , = piy1.x for k > 2. Tt means M = N. Let p;1(Hs) = (73,03 0, (W, ,5 Vi<t)-
l) =

i+1
2 2 .
Z (Uz(+)2 k,i+1 Ui(-i-)l—k:,i) <0 (m = 17 2a S Al ]')

k=m
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This implies that
- 2 2 .
Z(U]g-‘y—)17i+l - Ulg,i)) <0 (m=0,1,...,7).
k=0

Since Ul(i»)Jrl = 0, we have

7 r(2 2 :
Z(Ulg,i) - Ungr)1,1;+1) >0 (m=12...4).

k=1
Since ¢;(Hy) = 0 and j,(m,) = 4, we have ¢;(K3) = 0 by Lemma 4.32. Since Ul(i-)Jrl =0

and j2 > 7 + 1, we obtain Vl(f)ﬂ = 0. Then we also have

Z(Vk(,? - VIC(JQr)l,iJrl) >0 (m=1,2,...,1).
k=1
4 (2) @) ) (2) 2) ) _
By Definition 4.11, we have V; 7" — V517 11 = U —Uip+1>0and Viy =Vl =
U — U, 4y for k> 1. Tt follows that

(2 2 .
Z(Vk(,i) - Vk(+)1,i+1> >0 (m=1,2,...,1).

k=1

This implies o{*)(K3) > 0 for k > 1, then we have ks, = 1. Hence, fiPj,u,,(Ha) =
ij(fiH)(H2) holds.

Next, we consider the case where (f; 0 ©)(H; ® Hs) = fiK; ® Ky. In this case,
©i(K1) > 0 holds. If j,(m,) # Jusimy), then jumy = 4, kg, = ¢(AM), and U(l)z(l) =1

hold by Theorem 3.36 and Definition 4.3. However, this leads to

@i(K1) = pi(Hi) — 1= Ue(o?(l)) —1=0.

Then we have j, ) = jupm)- Hence, we obtain Ky, = iju'H)(HQ). To show that
filK1 = o(f;Hy), it suffices to show that ky g, = kg, m,). Since j,m) = Jusm), we have
Juany # 15 kg £ €AW), or U, ; # 1. Note that

oM (HY) = P (u(Hy)) (ke [[(AY) - 2)
holds by Definition 4.3. If j,(g,) # i, we have

1) 1) (1) (1)
VZ(,\(U)A,i - V(,\(1>),z‘+1 > U (A —14 Ué(/\<1>),i+1’
(1) 1) 1) 1)
VZ(A(U -V M) +1,54+1 Uz(m B U LAM)+1,i+1°

Then gpgk)( (Hy)) > <p<k)(H1) holds for k € [i]. If j,(u,) = i and Ut sy 7 1, then we have

2

U((/\)(l)) > 1 by the choice of j,(g,). Then we obtain that

(AMy—1 (AMy—1 M
() = VY, N W) = Uy, — 1> 0.

. . (Hy— (1)y—
IF iy = i Uy, = 1 and kg, # D), then ol ™0 (k) = o070 (1) >
0. Also, we have

(A 1 (M
902(' ( ))<L(H1)) = Ug((;(l)) -1+ 90( ( - )(HI)

e AR
Hence, we have kg, g, = k). Thus, ;K = o(fiH;) holds by Definition 4.3.
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Suppose (© o fi)(H1 ® Ha) = «(H1) ® pj, ., (fill2). By Lemma 4.40, we have (f; o
©)(H; ® Hy) = K; ® f;K,. Note that ¢;(Hy) < g;(Hz), vi(K1) < g;(K3) holds by
Definition 2.3.

Suppose fiH, = 0. If j,(u,y # i, then p;(Ky) = ¢;(Hs) = 0 holds by Lemma 4.33. If
Jury) = 1, then ¢;(H;) > 0 holds. This implies that ¢;(H,) > 0 by Definition 2.3, and
hence ¢;(K2) = ¢;(Hy) = 0 holds from Lemma 4.33. Then we obtain f; Ky = 0.

Suppose f;Hs # 0. It suffices to show that ij<H1)(fiH2) = f;K5. Let ij(Hl>(H2) =
(D)., mIm=0,1,...N, Where pj .o = (im, jm). Let pj,, (fil2) = (p;Lm L) m=0,1,....M
where pj 0 = (ir,, Jn,)- Let fiHy = (A®, 102 0, (U),.,). Note that it follows from
Theorem 3.36 that

(4.15) UG = US it (k1) # (i, 1), (ko i+ 1),

Suppose jyu,) < i. Let mg be the largest m € [0, N]z such that j,, < i. We have
Djirryym = p}L(lem for m € [0, mo]z from (4.15). By Lemma 4.33, we know that

(4-16) %’(K2) = %‘(H2>-

Suppose iy, # kfm,, kg, — 1. By Definition 4.11, p;, ,, (Ha) = pj,,, ,(fiH2) holds.
Also, by Definition 4.11 and the choice of i,,,, we have that

(4.17) S v -v@in= 3 U2 Ul ).

k=ky b, k=ky b,

In particular, we obtain

(2) (2) (2) (2)
kal,HTi ka Hy L+l kaiHTi - kaiH2+1,i+1 > 0.

Then it follows from (4.16) that kfp, = kf,x,. Then fiKy = ij(H1>(fiH2) holds.
. i 2 2
Suppose iy, = kgm, — 1. By the definition of ky,g,, Uk(ffi)HQ_lai - U]gfi)HQ»i"Fl <0. If

U’gi)H _1,; = 0, then p;, [(Ha) = ij(H1>(fZ»H2) is clear by Deﬁnitiqn 4.11 and Theorem
3.36. I UY, 1, >0, then U, ., >0 holds. Also, we have U\ US> 0
by T heorem 3.36 Then we obtam that

Do (aryymot1 = p;L(Hﬂ’mOJrl = <kf¢H2 —1,4),

Pjiryymo+2 = p;‘L(Hl),moJrZ = (kfiH27i)7
ij(Hl)’mO+3 - p;L(H1>:mo+3 = (kfinvi + 1)7

Pji i,y mo+a = p;L(H1)vmo+4 = (kfz'Hz + 1,0+ 1)'

It follows that p,, (Hl)(Hg) = Dj,u,,(fiH2). Also, by Definition 4.11, we have that W‘:(f?)HQ i
2
Ve i = U o= U2 ey and (417). Hence, kyu, = Ky, holds from (4.16).
Then Pi.ciy) (fiHs) = fi K5 holds.
SUppose imy = kppy- 1 US> 0, Py (Ha) = pjp (fiHa) and (4.17) hold by
Definition 4.11. Also, ka.HQ,i > 0 implies Ulgj)Hg,z’ > 1. By Definition 4.11, we have

Kbyt ki ry 1, i+l (2)

(2) (2) e 7r(2)
A () ka H2 kaiH2+1’i+1 if kaiH2+1,z’+1 > 0,
Uk:f Ho»l - kaiH2+1,Z'+1 — 1 otherwise.
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Then we have V;? . — 1® .1 > 0. It follows from (4.16) and (4.17) that k; py, =
ky iy i g my 41,41 fiHo

i

kf.ro- Thus, pj, ., (fiHa) = fiK>. Suppose U,S;QPL% = 0. This means U,E?Hmi =1, and
hence U, ,gi)% +14+1 = 0 holds by the definition of kf,g,. Then we have

Piocaryymo+1 = (Kfimy, 1),
Pjcyyimot2 = (Kpmy +1,4),
Pjcayyimots = (K, + 1, mg+3),
and
Diaryymor = (kg i+ 1),
Pioaryymot2 = By + 1,04 1),
Planymo+s = (kg + 1, g ),

where Jing13, jpmoes > @+ 1. From (4.15), jumg4s = Ji,,.s holds. In particular, we have

— 2/ .
Piicyym = Pj,egyym for m > my + 3. Since

(kg my) 2 2
Pi Jitte <H2) = lf;fsz,z‘ - Ulf:fi)H2+1,i+1 =1
and gp§kfiH2)+l(H2) > 0, we have U,gi)HerM - U,gi?H2+27i+1 > 0. It follows that

(2 (2 _ 772 (2 _
kainvi o kgLl T Uk’fini —-1- kaiH2+1’i+1 - O’

) ) —_ 717 (2)
‘/kfiHQ-l-l,i - kaiH2+2’i+1 - Uk:fiH2+1,’i + 1 - kaiH2+2,i+1 > 0

This implies kf,r, = kf,u, + 1. Then p;, ,  (fiH2) = fiK> holds by Theorem 3.36 and
Definition 4.11.
Suppose j,(g,) = @. In this case, we have ¢;(H;) > 0, and hence ¢;(H) > 0 holds. If

U1(,2z‘)+1 > 0, then pj, ,  (H2) = pj, ., ,(fiH2) holds from Ul(f{i)l > 0. By Definition 4.11,
o () = " (H,) holds for k € [i], and hence we have that (4.16) and ky,x, = kym,-
Then, we have p;, ,, (fill2) = fiK>.

Suppose U1(,2z‘)+1 =0, then k., < i+ 1. By the definition of k., y,, we have

i+1—ke, 11,
2 2 .
Z (Ulgi) - lg+)17¢+1) <0 (me0,i+1~—kemlz)
k=m
By Definition 4.11, we have that
2 2 .
Vk(z) — k‘(2)1 i1 = Ul(’i) N UQ(vi)Jfl +1 ifk=1,
! e U,gi-) - U,ﬁi)uﬂ otherwise,
then we obtain that
’H”l*keiHQ
2 2 .
> (Vk(i) - k(+)1,i+1> <0 (me(0,i+1—kemlz)
k=m

This implies @+ "Feim) (K,) = gOEiH_kEiHQ)(Hg) = 0, and hence 905’“)(&) = %(k)(Hz)

holds for & > ¢ +1 — k¢, m,. By the definition of ky,p,, we have k¢, g, > i +1— ke, m,. Thus,
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ki, = kg, > 1. Then pj, o, (Ha) = pj ., (fiHs). Therefore, p;, ,  (fiH2) = fiKs
holds.

Suppose j,a,) > i+ 1. By Definition 4.11 and (4.15), ij(Hl)(Hz) = ij(H1>(fiH2) holds.
Also, we have ky,x, = kf,m,. Thus, pj, . (fiHz2) = fiK> holds. 0

From Propositions 4.38, 4.39, and 4.41, we know that © is a crystal morphism. Fur-
thermore, we have the following proposition.

Proposition 4.42. O is a crystal embedding.

Proof. From Propositions 4.38, 4.39, and 4.41, © is a crystal morphism. It then suffices to
show that ©: H(A\) @H(u) U{0} = eep+ H(rv)@H(§)U{0} is an embedding. Fori = 1,2,
let H; = (A, 14,0, (U)e)) € HAD), K; = (AD ¢® 0, (V),,) € HAD). Set a =
oy and b = j,(x,). Suppose that O(H; @ Hy) = O(K1®K>). Let O(H1®H,) € HrW)®
H(v®). Then we have t(H,) = 1(K}), pa(Hz) = pp(Ks). Let pa(Hz) = (Pam)m=01...N5
where pom = (4m, Jm). Let po(K2) = (Pom)m=0.1,..m, Where py, = (Spm, tn)-

Suppose iy # n. By Definition 4.11, there exists ¢ € I such that v = \® 4 1,
V,EQ) = )\22) (k # ¢). Tt follows from Proposition 4.28 that p.p,(H2) = Hy and pepy(K3) =
K,. Since po(Hs) = pp(K3), Hy = K, holds. Suppose iy = n. By Definition 4.11,
v =AY _1fork eI Let L = (A p,0, (Un)eet), where Ap = A2 + 1, i = 1 + 1
for k € [n], and Uy = U for 1 < k <1 < n. Let L' = (1,0, (Vi)ret), where
T )\ff) +1,& = f,(f) + 1 for k € [n], and Vi, = Vk(f) for 1 < k <1 < n. By the proof
of Proposition 4.28, p,(L) = Hy and p, (L") = K. Since p,(Hz) = pp(K3), L = L' holds.
Hence, we have Hy, = K. In particular, a = b holds.

Since «(H1) = (K1), we have Uy = VI if (k,0) # QD) jim), (€OAD), Gigrcr)).
Since a = b, we obtain U\}) = Vi{! for 1 < k < [ < n, and therefore p() = ¢® holds.
This implies H; = K. Thus, we have H, ® Hy = K1 ® K. ]

For H® K € H(\) ® H(u), let H® K be the highest weight vector of the connected
component that contains H ® K. Let  be a map from H()\) ® H(u) to H(\) @ H(u)
that maps H ® K to H ® K.

Theorem 4.43. Let A\, u € PT with A 2 0. Set N =Y ,c; A\i. Let M(\, i) be the set of
highest weight vectors in H(A) ® H(x). Then

(M) H\) @H(u) — || H(wt(L))

LeM(\p)
H®K+— (H® K,0N(H ® K)).

is a crystal isomorphism. Note that the elements of the disjoint union are denoted by
pairs (L, H'), where L € M(\, ) and H' € H(wt(L)).

Proof. Let \,p € P*. Set N = >,c;\. For H® K € H(\) ® H(u), let O(H @ K) €
H(v) @ H(§). Let v € P*. By Definition 4.35, we have > ,c;v; = N — 1. Then we can
assume O (H®K) € H(0)®H(¢). Then ON (H®K) can be viewed as ON (HR K) € H(§).
In particular, the highest weight vector in H(¢) is obtained by ©~(H ® K). Thus, by
Lemma 3.32 and Proposition 4.42, the statement holds. O
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5. ALGORITHMS AND IMPLEMENTATIONS FOR THE CRYSTAL OF K-HIVES

In this section, we give a set of algorithms to compute the crystal structure on H(\)
defined in Section 3 and show examples of the execution of the implementations of these
algorithms. In 5.1, a set of algorithms for computing the crystal structure on H(\) is
given. In 5.2, examples of the execution of these algorithms by the Python implementation
named khive-crystal are shown. The main reference is [15].

5.1. Algorithms for crystal of K-hives. In this subsection, we give a set of algo-
rithms to compute the components of the crystal structure on H(X) (A € PT) using two
approaches. One approach is based on Definition 3.26, which implies that the crystal
structure on H(\) is regarded as a submodule of a tensor product of crystals of the form
H(Ag). The other approach is based on Theorem 3.36, which is a more direct combina-
torial description.

To consider algorithms, we regard H = (A, t, 0, (Ui;)i<;) € H(A) as a hash table with
keys A, p, v, and (U;j)i<j, where the value of A is an array [A1, A, ..., \,], the value of p
is an array [p1, i, - . - , fbn], the value of ~y is an array [0,0, ..., 0], and the value of (Uj;)<;
is a two-dimensional array [[Ui2, Uss, ... ], [Uzs, .. .|, ., [Un—1n]]-

To give algorithms for the crystal structure on H()) based on Definition 3.26, we first
consider algorithms for the crystal structure on H(Ay) (k € I). The maps f; (resp. e;)
(I € I) for H(Ay) (k € I) are computed by Algorithm 1 (resp. Algorithm 2). Note that
the maps wt, ¢;,&; (i € I) are simply computed by Definition 3.2 as > ,c;(px — 1)k,
max(f; — fti+1,0), max(p;41 — i, 0), respectively for H = (A, 1,0, (Usj)i<;) € H(Ag).

Algorithm 1 Algorithm for f; on H(Ay)

Require: H= (Ak, M, 0, (Uij)i<j> S H(Ak), 1el
Ensure: f;H

1. if max(u; — pi+1,0) = 0 then

2 return 0

3: end if

4: Take ko from {k € [i] | Uy, > 0}
B pi =ty — 1

6: fliv1 = fiv1 + 1

7 Uko,i = Uko,i —1

8: Ukyit1 = Upgit1 +1

9: return (Ag, 1,0, (Uij)i<s)

Let us give an example of the execution of Algorithm 1.

Example 5.1. The action of f; on the U,(sly)-crystal H(A3) is computed as follows by
Algorithm 1. Let H = (A3, Az, (Uki)g<:) € H(A3), where Uy = 0 for 1 < k <1 < 4. Set
i = A3. Note that Az corresponds to the partition (1,1,1,0). For i = 1, we have f{H =0
since max(p; — pe,0) = 0. Also, for i = 2, we have foH = 0 since max(us — 3, 0) = 0.
Let ¢ = 3. In this case, max(us — p4,0) = 1. Then we can proceed to the next step.
Since {k € [3] | Uxs > 0} = {3}, ko is uniquely determined to 3. Then, set { = p, then
set {3 =p3—1=0and {& = s +1=1. Also, set V;; = U,j, and set Va3 =Us3—1=0
and V34 = Us 4+ 1 = 1. Then we have f;H = (A3,&,0,(Vi;)icj). See Fig. 17.
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Algorithm 2 Algorithm for e; on H(Ay)

Require: H = (A, 11,0, (Usj)ic;) € H(Ag), i€ I
Ensure: ¢, H

1. if max(p;1 — pi,0) = 0 then

2 return 0

3: end if

4: Take ko from {k € [i + 1] | Uy;+1 > 0}
5r pi = p; + 1

6: i1 1= Hit1 — 1

T ng,i = Uko,i +1

8: Ukg,it1 1= Ukpit1 — 1

9: return (A, 11,0, (Ujj)i<;)

FIGURE 17. Action of f; on the U,(sly)-crystal H(Aj3)

Algorithms 1 and 2 generate results that correspond to Definition 3.2 as follows.

Proposition 5.2. For k € I, let H € H(Ay). Let i € I.

(1) Let K be the result of Algorithm 1 with inputs H and i. Then, K = f;H
(2) Let K be the result of Algorithm 2 with inputs H and ¢. Then, K = ¢;H.

Proof. For k € I, 1let H € H(Ay). Let i € I. (1) Let K be the result of Algorithm 1 with
inputs H and i. By Lemma 3.1, kg in Algorithm 1 is uniquely determined. Then we have
K = f;H from Definition 3.2. Similarly, (2) can be shown. O

For A € P*, the map ¥, is computed by Algorithm 3.
The following is an example of the execution of Algorithm 3.

Example 5.3. Let n =4, A = (3,2,1,0), and . = (2,3,1,0). Let H = (A, 11,0, (Usj)i<j) €
H(\), where Ujs = 1 and U;; = 0if (4,7) # (1,2) and @ < j. Then W, (H) is computed by
Algorithm 3 as follows. Set v = £(A) = 3. Let A® = A2 AP . A®), where AP =1
it k€[] else Ay = 0. Set U = Uy; for 1 < i < j < 4. Since min{l € [4] | Uy, > 0}

set U2 =1 and U = U2 = U? = 0. Since min{l € [4] | Uy > 0} = 2, set U =
and UY = UL = 0. Since min{l € [4] | Uy, > 0} = 3, set U$Y =1 and U} = 0. Set

U =1, ) =U5+Ug =1,
=U? + U(Q) + U =1, U2 +UP+Ud +U2 =o0.
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Algorithm 3 Algorithm for ¥

Require: H = (A, 11,0, (U;j)i<;) € H(N)
Ensure: V,(H)

1: fork=1,2,...,ndo > Compute A\(?)
2: if k€ [1,4(\)]z then
3: /\,(3) =1
4: else
5: )\1232) =0
6: end if
7: end for
g A = (AP AP A
9: (U)icj = (Uy)icy > Compute (U)i<;
10: fori=1,2,...,n—1do
11: for j=i+1,i+2,...,ndo
12: if j = min{l € [n] | Uy > 0} then
13: Ui(j2) =1
14: else
15: U =0
16: end if
17: end for
18: end for
19: for k=1,2,...,n do > Compute p(?
20: =i U
21: end for
22: 4@ = (u 1, @)
23: for k=1,2,...,ndo > Compute A\(V
o1 A= = AP
25: end for
26: A = (AP AL AW
o7: (UM)ie; = (Uij)ics > Compute (UM);;
28: fori=1,2,...,n—1do
29: for j=1+1,1+2,...,ndo
30: v =u,; - UY
31: end for
32: end for
33: fori=1,2,...,ndo > Compute pM
34: u =i, U
35: end for
36: return (A1, pM 0, (Uig'l)>i<j) ® (MA@ 1?0, (Ui(f
Set

AV =0 AP =20 A = -0 =1,
Mo=x -2 =0, AV =x-2P =0
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Set Ul-(jl) =U;; — Ui(f) for 1 <i<j <4. Set
p =0 =1, u =0l + UL =2,
i = U+ U 0 =0, ) =0+ U+ U8+ U =0

Then ¥y = AV, 1M, 0, (UL)) @ (A, 1,0, (UF)). See Fig. 18

FIGURE 18. Action of ¥, on H(\)

Algorithm 3 generates a result corresponding to an image of U,.

Proposition 5.4. For A € P*, let H € H()\). Let K be the result of Algorithm 3 with
input H. Then, K = U, (H).

Proof. The statement immediately follows from Definition 3.14. U

The map V is defined to apply ¥, (A € PT) repeatedly, and note that the algorithm
for W, is given by Algorithm 3. Then, the map W is computed using Algorithm 4.

Algorithm 4 Algorithm for W
Require: H = (\, 1,0, (Uij)i<j) € H(N)
Ensure: V(H)
- Hy @ Hy = Wy(H)
2: N =2
3: while H; ¢ H(Ay) for any k € I do
4 K, ® Ky = U(H)
5: H=KIQK, @H,®---® Hy
6
7
8
9

N=N+1

Rename Has H=H, Q Hy,® ---Q Hy
: end while
: return Qo n Hi

The following is an example of the execution of Algorithm 4.

Example 5.5. Let n =4, A = (3,2,1,0) and o = (2,3,1,0). Let H = (\, 11,0, (Uy;)i<;) €
H(\), where Uyp = 0 and U;; = 0 if (¢,7) # (1,2) and ¢ < j. By Algorithm 3,

\IJA(H) = ((27 17 07 O)’ (17 27 07 O>’ (04)7 (Uz(jl))> ® ((17 17 17 O>’ (17 17 17 0)’ (04)7 (Uz(32)>>
= H; ® Ho,
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where

17 .
0 otherwise,

UP =0 (1<i<j<4).
Since H; € H((2,1,0,0)), we proceed with the algorithm.
W (H1) = ((1,0,0,0),(0,1,0,0), (0%), (V5)) ® ((1,1,0,0),(1,1,0,0), (0%), (V3))
= K ® K,
where

W _ {1 if (z,7) = (1,2),

0 otherwise,
(2) . . .
Vi =0 (1<i<j<4).
Then rename K7 ® Ky ® Hy as H; ® Hy ® Hz. Then, we have
\IJ(H) :Hl ®H2®H3
See Fig. 19.

FIGURE 19. Action of ¥ on H(\)

The result of Algorithm 4 corresponds to the image of W.

Proposition 5.6. For A € Pt let H € H()A). Let K be the result of Algorithm 4 for
input H. Then, K = V(H).

Proof. By Proposition 3.19, it is clear that Algorithm 4 yields the image of W if the while
statement stops. For A € Pt let H € H()\). Suppose that H; @ Hy ® -+ ® Hyp o is
obtained at the k-th step of the while statement in Algorithm 4, and H; ¢ H(A;) for all
i € 1. Assume H; € H(AW) for A € P+, where A() # A, for all i € I. This means that
there exists m € [n] such that A() > 1, especially Al > 1. Set X = A and mq = AW,
Then at the £ 4+ my — 1 step in the while statement, we have

Hi @ Hy® @ Hyymot1-

Assume H; € H(A(l)). Note that, since the indices are renamed, we retake H; and A1),
By Algorithm 4, we have A) = max(A®) — (mg — 1),0) for m € [n]. Since N € P* and
mo = N, MU € {0,1}. Therefore, H; € H(A,) for v € I. Thus, the while statement
stops. U
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To compute f;,e; (i € I) on H()), we need the algorithm of ¥~! for the image of W.
Algorithm 5 computes U~! for H € U(H(\).

Algorithm 5 Algorithm for ¥—!

Require: H = Hi®@ Hy®---® Hy € @, H(Ay), H, = (A\®, u®),0, (U),;) € HO®).
Ensure: V~'(H) € H()\)
fori=1,2,...,ndo

= A
end for
A= (A, Ay A)
fori=1,2,...,ndo

pi =Y ,ng)
end for
fi= (s f2, - fin)
fori=1,2,...,n—1do

for j=i+1,94+2,...,ndo

Uij = Y Uz‘(f)
end for

— = =
Mo

. end for
: return (A, 1, (0™), (Uij)i<j)

—_ =
= W

Proposition 5.7. For A € P*,let H € H(\). Let V(H) = Hi @ Hy® -+ @ Hy. Let K
be the result of Algorithm 5 with input H; ® Ho ® --- ® Hy. Then, K = H.

Proof. For A € P*, let H € H(\). Let V(H) = Hi ® Hy ® --- ® Hy. Let K be the
result of Algorithm 5 with input H; ® Ho® - --® Hy. Assume that H = (X, 1,0, (Ui;)i<;)
and Hy, = (A\® p® 0, (UZ@)K]-) for k =1,2,...,N. Let V\(H) = K; ® Ky. Assume
K, = (™ ¢m o, (Vzgk))) By Definition 3.14, we have A\, = u,i” + 1/,9), Wi = 5,({1) + f,(f)
fork=1,2,...,Nand U;; = Ui(jl) + Ui(jQ) for 1 <17 < 7 < n. By the construction of ¥, we
obtain

A=A 4 AN =12, N),
=+l (k=1,2,... N),
Thus, we have K = H. Il

By Definition 3.26, the crystal structure on H(\) is defined by considering H()\) as a
submodule of tensor products of H(Ag). In detail, embed H € H(\) into ®; H(Ax) by
U, then compute the maps wt, ¢;, &;, fi, €; (i € I) by Definition 2.3, then pull it back into
H(A). Then, the maps wt, ¢;, &, fi,e; (i € I) are computed by the following algorithms.
For A\ € P*, let H € H()\). Let ¥(H) = Hy ® Hy ® --- ® Hy, which is computed
by Algorithm 4. Then wt(H) is computed by wt(H) = S&_, wt(Hy), where wt(Hy) is
computed by an algorithm of wt for H(Ay ) for some k' € I. Then ¢;(H) is computed
by p;(H) = ¢i(H; ® Hy ® -+ ® Hy), where ¢;(H; ® Hy ® -+ ® Hy) is computed by
Definition 2.3 and ¢; for H(Ay) (k € I). Similarly, ¢;(H) can be computed. Also, f;(H)
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is computed by V"1 f;(Hi® Hy®---® Hy)), where f;(H; ® Hy®---® Hy)) is computed
by Definition 2.3 and Algorithm 1. Similarly, e;(H) can be computed.

Proposition 5.8. Let A € PT. Let wt, ¢;,¢;, fi,e; (i € I) be computed using the above
algorithms for H(A). Then, the crystal structure on H(\) determined by these maps
corresponds to the crystal structure defined by Definition 3.26.

Proof. By Definition 3.26, Proposition 5.6, and Proposition 5.2, the statement follows. [

The crystal structure on H(A) (A € PT) is also directly computed by Theorem 3.36.
The following algorithms compute the maps ¢y, &;, fi, €; (i € I) based on Theorem 3.36.
Note that the map wt is simply computed by > e ; (e —prr1)Ag for H = (X, 11,0, (Uij)i<j)-

Algorithm 6 Algorithm for ¢; on H(\)
Require: H= ()\,[L,O, (Uij)i<j) S H(/\), 1el
Ensure: ¢;(H)

wi(H):=0

for k=1,2,...,ido

@i(H) := max(Uy; — Upy1,i41 + @i(H),0)
end for
return o;(H)

Algorithm 7 Algorithm for ¢; on H(\)
Require: H = (A, 11,0, (Ujj)icj) € H(A), i € 1
Ensure: ¢;(H)
gi(H):=0
for k=1,2,...,ido
£i(H) = max(Uipo—p,iy1 — Uiy1-k; +i(H),0)
end for
ei(H) = max(Uy ;41 +¢,(H),0) >For k=i+1
return ¢;(H)

The following is an example of the execution of Algorithm 8.

Example 5.9. Let n = 4, A = u = Ay + A3. Note that A; + A3 corresponds to the
partition (2,1,1,0). Let H = (A, 1,0, (Ui)g<t) € H(X), where Uy =0 for 1 < k <[ < 4.
The action of f; on H(\) is computed as follows by Algorithm 8. Let i = 1. Set F' = [0].
Since Uyy — Usy + F[0] = 1, set F' = [0,1]. Set kpy = 1. Since F[1] =1 > 0, we
have kpg = 1. Thenset g = gy —1 =1, po = po +1 =2, U;; = U;; —1 =1, and
Uy = Uja +1 = 1. Then we have fiH = (A, i, 0, (Uij)i<;). See Fig. 20.

Algorithms 6, 7, 8, and 9 compute ¢y, &;, fi, €;, (1 € I) according to Theorem 3.36.

Proposition 5.10. For A € Pt let H € H(\). Let i € I.
(1) Algorithm 6 with inputs H and ¢ yields ¢;(H).
(2) Algorithm 7 with inputs H and ¢ yields ¢;,(H).
(3) Let K be the result of Algorithm 8 with inputs H and i. Then, K = f;H.
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Algorithm 8 Algorithm for f; on H(\)
Require: H = (A, 11,0, (U;j)ic;) € H(N), i € 1
Ensure: f;H

1. if p;(H) =0 then

2 return 0

3: end if
4: F :=[0] > Set an array
5. for k=1,2,...,ido
6
7
8
9

F := F.append(max(Uy; — Ugy14+1 + F[k — 1],0))
: end for
: kfiH =1
cfor k=14,i—1,...,1do
10: if F[k] <0 then
11: kpmi=k—1
12: break
13: end if
14: end for
15: p; =y — 1
16: fliy1 = pliy1 + 1
17: ka“i = kai’i —1
18: Uk, iv1 = Uk, iy1 +1
19: return (A, 1,0, (Usj)i<j)

FIGURE 20. Action of f3 on the U,(sly)-crystal H(A; + A3)

(4) Let K be the result of Algorithm 9 with inputs H and i. Then, K = ¢;H.

Proof. (1) and (2) immediately follow from Theorem 3.36. (3) is proved if &,z in Algo-
rithm 8 corresponds to the one in Theorem 3.36.

For A € P, let H = (A, 1,0, (Uij)i<;) € H(X). We can assume ¢;(H) > 0. This means
that kg is defined and

n

wi(H) = Z (Ui = Ugt1,i41)-

k3
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Algorithm 9 Algorithm for e; on H(\)
Require: H = (A, 11,0, (U;j)ic;) € H(N), i € 1
Ensure: ¢, H
if ¢;,(H) = 0 then
return 0
end if
E :=10]
for k=1,2,...,i+1do
E := E.append(max(U;so-k; — Uiv1-ki41 + Elk — 1],0))
end for
ke =1
for k=1+1,7,...,1do
if E[k] <0 then
ke =k —1
break
end if
end for
pii= i+ 1
Pit1 = Hip1 — 1
Ukt+2—ke i = Ukto—k,,i + 1

Uk+2-ke, i+1 = Ukta—k, it1 — 1
return (X, 1,0, (Usj)i<j)

In particular, goEkfiH_l)(H) = 0 and ¢

definition of kf, . Then we have

(kg;m)

%

(H) = kaiH’i — kaiH+1’i > 0 hold by the

oM (H) = > (Uni = Ukgrint) > 0 (m = ky b +1,...,4).
k:kfl.H

By Theorem 3.36, F in Algorithm 8 is an array of ¢\ (H) such that F[I] = ¢\ (H) for

l € [i]. Then max{k € [i] | F[k] < 0} = ky,y — 1 holds, and hence ky,y in Algorithm 8
corresponds to the one in Theorem 3.36. Similarly, (4) can be shown. O

5.2. Implementations and examples by khive-crystal. In this subsection, we show
some examples of executing the algorithms given in Section 5.1. These examples are
computed using the Python package originally implemented named khive-crystal [22].
Then we also provide examples of the usage of khive-crystal.

In khive-crystal, K-hive can be declared by the function khive. Furthermore, we can
show a K-hive as an image using the function view. The following code is an example of
functions of khive and view.

>> from khive_ crystal import khive, view

>> H = khive(

. n=4, alpha=I[3, 2, 1, 0], beta=[3, 2, 1, 0], gamma=|0, 0, 0, 0], Uij=[[0, 0, 0], [0, 0], [0]]
>>H
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KHive(n=4, alpha=[3, 2, 1, 0], beta=[3, 2, 1, 0], gamma=|[0, 0, 0, 0], Uij=[[0, 0, 0], [0, 0], [0]])

>> view(H)

The following codes compute the crystal structure on U,(sls)-crystal H(Ay) by Algo-
rithms 1 and 2.

>> from khive_ crystal import e, epsilon, f, khive, phi, view
>> H = khive(n=3, alpha=[1, 1, 0], beta=[1, 1, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]])
>> view(H)

>> f(i=1)(H)
# None
>> view(f(i=2)(H))
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The crystal graph of H(Ay) can be shown by the function called crystal graph, where
the function khives is the function to declare H(As).

>> from khive crystal import khives, crystal graph
>> crystal__graph(khives(n=3, alpha=[1, 1, 0]))

@:3, alpha=[1, 1, 0], beta=[1, 1, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0T)

:

@a& alpha=[1, 1, 0], beta=[1, 0, 1], gamma={[0, 0, 0], Uij=[[0, 0], [1]])

ll
@:3, alpha=[1, 1, 0], beta=[0, 1, 1], gamma=[0, 0, 0], Uij=[[1, 0], [11)

Note that the crystal graph is realized by the open source graph visualization software
called Graphuviz.

The crystal structure on H(A) (A € P*) is defined by algorithms of the crystal structure
of H(Ag) (k € I), Uy, U, and ¥~'. Then we first show an example for Algorithms 3, 4,
and 5, which are implemented as functions psi_lambda, psi, and psi_inv, respectively.
The following code is an example for W3 34y and ¥ for H((3,3,0)).

>> from khive crystal import khive, psi, psi_lambda, view
>> H = khive(n=3, alpha=I[3, 3, 0], beta=[3, 3, 0], gamma=]0, 0, 0], Uij=[[0, 0], [0]])
>> psi_lambda(H)
[
KHive(n=3, alpha=[2, 2, 0], beta=[2, 2, 0], gamma=|0, 0, 0], Uij=[[0, 0], [0]]),
KHive(n=3, alpha=[1, 1, 0], beta=[1, 1, 0], gamma=|0, 0, 0], Uij=[[0, 0], [0]])
]

>> view(psi_lambda(H))
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>> psi(H)

KHive(n=3, alpha=[1, 1, 0], beta=[1, 0, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]]),

KHive(n=3, alpha=[1, 1, 0], beta=[1, 0, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]]),

KHive(n=3, alpha=[1, 1, 0], beta=[1, 1, 0], gamma=|[0, 0, 0], Uij=[[0, 0], [0]])
]

>> view(psi(H))

Then we show examples of algorithms of f; for H()A). The following code is an example
of fy for H((3,3,0)).

>> from khive crystal import khive, psi, psi_inv, view
>> H = khive(n=3, alpha=][3, 3, 0], beta=[3, 3, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]])
>> psi_inv(f(i=2)(psi(H))) # = fi(H)
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The crystal structure on H(A) (A € P*) is also computed by Algorithms 8 and 9.

>> from khive crystal import khive, e, epsilon, f, phi

>> H = khive(n=3, alpha=[3, 3, 0], beta=[3, 1, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]])
>> phi(i=2)(H)

3

>> view(f(i=2)(H))

The crystal graph of H((3,3,0)) is the following.

>> from khive_crystal import khives, crystal graph
>> crystal__graph(khives(n=3, alpha=[3, 3, 0]))
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@bma:[S, 3,01, gm@
2
/ \
@: 1], gamma=[0, 0, 0], Uij=[[1, 0], [1]])

KHive(n=3, alpha=[3, 3, 0], beta=[3, 1, 2], gamma=(0, 0, 0], Uij=[[0, 0], [2]])

KHive(n=3, alpha=[3, 3, 0], beta=[3, 0, 3], gamma=[0, 0, 0], Uij=[[0, 0], [3]])

2 1

KHive(n=3, alpha=[3, 3, 0], beta=[2, 1, 3], gamma=(0, 0, 0], Uij=[[1, 0], [3]])
/
KHive(n=3, alpha=[3, 3, 0], beta=[1, 2, 3], gamma=[0, 0, 0], Uij=[[2, 0], [3]])
1

KHive(n=3, alpha=(3, 3, 0], beta=[0, 3, 3], gamma=(0, 0, 0], Uij=[[3, 0], [3]])

2

KHive(n=3, alpha=[3, 3, 0], beta=[2, 2, 2], gamma=[0, 0, 0], Uij=[[1, 0], [2]])

KHive(n=3, alpha=[3, 3, 0], beta=[1, 3, 2], gamma=[0, 0, 0], Uij=[[2, 0], [2]])

/

/

|

6. CONCLUDING REMARKS

In this thesis, we study the theory of A, _;-crystal bases and K-hives. This thesis has
three themes. The first theme is a combinatorial realization of crystal bases of highest
weight modules over the quantized enveloping algebra of type A by K-hives. The second
theme is the combinatorial tensor product decomposition rule of crystal bases by K-hives.
The last theme is a set of algorithms for computing the crystal structure on K-hives and
the implementation of these algorithms as a Python package.

We have obtained the results in the case of type A. The extension to other types is
a remaining problem. In addition, affine crystal structures on K-hives should also be
determined. It may also be possible to consider the Robinson-Schensted correspondence
by K-hives using the tensor product decomposition map. In any case, the realization of
the crystal structures is useful for considering these problems.
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