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Crystal Bases and K-hives

SHOTA NARISAWA

Abstract. In this thesis, we study the theory of An−1-crystal bases and K-hives. This
thesis has three themes. The first theme is a combinatorial realization of crystal bases
of highest weight modules over the quantized enveloping algebra of type A by K-hives.
This contains the determination of a crystal structure on a set of K-hives using two
approaches. One approach is obtained by considering an embedding of a set of K-hives
determined by a dominant weight into a tensor product of sets of K-hives determined
by fundamental weights. The other approach is obtained by considering a combinatorial
description of the crystal structure. The second theme is a combinatorial tensor product
decomposition map of crystal bases in terms of K-hives. This map is described using the
notion of path operators on K-hives, and then the decomposition map can be computed
graphically. The third theme is a set of algorithms for computing the crystal structure
on a set of K-hives and their implementation as a Python package. Additionally, we
show some examples of performing this package.
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1. Introduction

Let g be a symmetrizable Kac–Moody algebra and let U(g) be the universal enveloping
algebra of g. The quantized enveloping algebra Uq(g) is the q-analogue of U(g), which
is introduced in the study of the quantum Yang-Baxter equation in [2, 4] When q = 1,
Uq(g) is the same as U(g). When q = 0, the representation of Uq(g) can be studied from
combinatorics by crystal bases.

Crystal bases are special bases of modules over Uq(g) at q = 0 developed in [6, 7,
5]. These bases have nice properties and give a combinatorial tool for studying the
representation theory of Uq(g). For example, computing the action of Uq(g) on the tensor
product of the modules is laborious. However, it can be simply computed at q = 0 using
the crystal basis. Moreover, some crystal bases have combinatorial realizations: let g be
a simple Lie algebra of type An−1. For a dominant weight λ of An−1, let V (λ) be the
highest weight module of the highest weight λ over Uq(g). Let Y be the Young tableau
corresponding to λ. Let B(Y ) be the set of semistandard tableaux of shape Y . Then,
B(Y ) is isomorphic to B(λ). This means that the crystal base of the highest weight
module of the highest weight λ of type An−1 is realized by semistandard tableaux of
shape Y [8]. Furthermore, the decomposition of a tensor product of crystal bases of
highest weight modules of type An−1 is given using the realization by Young tableaux.
This decomposition rule is obtained by determining that an element of a tensor product
is a highest weight element in terms of Young tableaux [14].

In this thesis, we study the theory of An−1-crystal bases and K-hives. This thesis has
three themes.

The first theme is a combinatorial realization of crystal bases of highest weight mod-
ules of type A by K-hives [19, 17, 18]. A K-hive is the labeling of the vertices of an
equilateral triangular graph introduced in [12, 13]. K-hives have correspondence with
semistandard Young tableaux or Gelfand-Tsetlin patterns and have applications, for ex-
ample, to (Stretched) Kostka coefficients [16, 10] (also, see [11, 24]). Then, the crystal
structure on K-hives introduced in this thesis is based on the construction of the crystal
structure on B(Y ) [8]: For a dominant weight λ of type An−1, let H(λ) be the set of K-
hives determined by λ. Let Λk (k = 1, 2, . . . , n − 1) be the fundamental weights of An−1.
First, we consider the crystal structure on H(Λk). Then, we construct the embedding
H(λ) to ⊗k H(Λk). Then the crystal structure on H(λ) is defined so that the embedding
is a crystal morphism. Further, we can show that H(λ) is isomorphic to B(λ). Also, we
give a direct combinatorial description of the crystal structure, which enables us to define
the crystal structure on H(λ) directly.

The second theme is the combinatorial tensor product decomposition map of crystal
bases by K-hives [20, 21]. This is an application of the realization by K-hives. We first
define maps from H(λ) to H(µ) and then define a map from H(λ) ⊗H(µ) to H(ν) ⊗H(ξ)
by combining these maps. Then, the decomposition map is constructed as a sequence of
the maps. We introduce the notion of path operators which can be graphically computed.
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From the fact that the maps from H(λ) to H(µ) are path operators, the decomposition
map can be graphically computed.

The third theme is a set of algorithms for computing the crystal structure on K-
hives, and the implementation of these algorithms [15]. We also give some examples of
executing these algorithms. The implementation is provided as a Python package named
khive-crystal. The source code is available in [22].

This thesis is organized as follows. In Section 2, we review basic notions and notation
of quantized enveloping algebras, crystals, and K-hives. Sections 3, 4, and 5 concern the
first, second, and third themes explained above, respectively. Finally, Section 6 gives
some concluding remarks.

2. Preliminaries

In this section, we review basic notions and notation. In 2.1, we review the definition
of quantized enveloping algebras and related notions. In 2.2, we review the definitions of
crystals, the tensor product of crystals, crystal graphs, and morphisms between crystals.
In 2.3, we review K-hives and define some notations.

2.1. Quantized Enveloping Algebras. In this subsection, we review the definition of
quantized enveloping algebras of type A, see [3] for more details.

Let sln be the Lie algebra of type An−1 over C with Cartan subalgebra h consisting of
traceless diagonal matrices. Let I = {1, 2, . . . , n − 1} be an index set. Let A = (aij)i,j∈I

be the Cartan matrix of type An−1. For m ∈ Z>0, let [m] = {1, 2, . . . , m}. For i ∈ [n],
define a linear map εi : h → C by εi(h) = ci, where h = diag(cj | j ∈ [n]) ∈ h. For i ∈ I,
set αi = εi − εi+1. Let Π = {αi}i∈I ⊂ h∗ be simple roots and Π∨ = {hi}i∈I ⊂ h be simple
coroots. Let ∆ be the root system of sln. Set ∆+ = ∆ ∩∑i∈I Z≥0αi and ∆− = ∆ − ∆+.
For all i ∈ I, let Λi = ε1 + ε2 + · · · + εi ∈ h∗ be an i-th fundamental weight. Set
P = ⊕

i∈I ZΛi, P + = ⊕
i∈I Z≥0Λi, and P ∨ = ⊕

i∈I Zhi. We call P the weight lattice, P +

the set of dominant integral weights, and P ∨ the dual weight lattice, respectively. Using
this notation, the Cartan datum for sln is defined as (A, Π, Π∨, P, P ∨).

Let q be an indeterminate. Let Uq(sln) be the quantized enveloping algebra over Q(q)
associated with the Cartan datum (A, Π, Π∨, P, P ∨). Let V (λ) be the irreducible highest
weight module of weight λ ∈ P + with the highest weight vector vλ over Uq(sln).

2.2. Crystals. In this subsection, we review the notion of crystals, see [3, 6, 7] for more
details.

Definition 2.1. A crystal associated with Cartan datum (A, Π, Π∨, P, P ∨) is a set B

together with the maps wt: B → P , ei, fi : B → B ∪ {0}, and εi, ϕi : B → Z ∪ {−∞}
(i ∈ I) satisfying the following properties.

(1) ϕi(b) = εi(b) + wt(b)(hi) for i ∈ I,
(2) wt(eib) = wt(b) + αi if eib ∈ B,
(3) wt(fib) = wt(b) − αi if eib ∈ B,
(4) εi(eib) = εi(b) − 1, ϕi(eib) = ϕi(b) + 1 if eib ∈ B,
(5) εi(fib) = εi(b) + 1, ϕi(fib) = ϕi(b) − 1 if fib ∈ B,
(6) fib = b′ if and only if b = eib

′ for b, b′ ∈ B, i ∈ I,
(7) if ϕi(b) = −∞, then eib = fib = 0.
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Since (A, Π, Π∨, P, P ∨) is the Cartan datum of type An−1, a crystal associated with
(A, Π, Π∨, P, P ∨) is also called a Uq(sln)-crystal.

A Uq(sln)-crystal can be thought of as a colored and oriented graph in the following
manner.

Definition 2.2. Let B be a Uq(sln)-crystal. A crystal graph of B is an I-colored
oriented graph whose vertices are elements of B and the arrows are written as b

i−→ b′

when fib = b′ for i ∈ I and b, b′ ∈ B.

The tensor product of crystals is defined as follows.

Definition 2.3. Let B1 and B2 be crystals. The tensor product B1 ⊗ B2 of B1 and B2
is defined to be the set B1 × B2 whose crystal structure is defined by

(1) wt(b1 ⊗ b2) = wt(b1) + wt(b2),
(2) εi(b1 ⊗ b2) = max(εi(b1), εi(b2) − wt(b1)(hi)),
(3) ϕ(b1 ⊗ b2) = max(ϕ(b2), ϕ(b1) + wt(b2)(hi)),

(4) ei(b1 ⊗ b2) =

eib1 ⊗ b2 ϕi(b1) ≥ εi(b2),
b1 ⊗ eib2 ϕi(b1) < εi(b2),

(5) fi(b1 ⊗ b2) =

fib1 ⊗ b2 ϕi(b1) > εi(b2),
b1 ⊗ fib2 ϕi(b1) ≤ εi(b2).

In general, we have the following proposition([8, Proposition 2.1.1]).

Proposition 2.4. For j ∈ {1, . . . , N}, let Bj be a Uq(sln)-crystal. Fix i ∈ I. Take
bj ∈ Bj (j = 1, . . . , N), and we set

ak =
∑

1≤j<k

(ϕi(bj) − εi(bj+1)) 1 ≤ k ≤ N.

In particular, we set a1 = 0. Then we have
(1) εi(b1 ⊗ · · · ⊗ bN) = max

{∑
1≤j≤k εi(bj) −∑

1≤j<k ϕi(bj) | 1 ≤ k ≤ N
}
,

(2) ϕi(b1 ⊗ · · · ⊗ bN) = max
{
ϕi(bN) +∑

k≤j<N (ϕi(bj) − εi(bj+1)) | 1 ≤ k ≤ N
}
,

(3) If k is the largest element such that ak = min{aj | 1 ≤ j ≤ N} then, we have

fi(b1 ⊗ · · · ⊗ bN) = b1 ⊗ · · · ⊗ bk−1 ⊗ fibk ⊗ bk+1 ⊗ · · · ⊗ bN ,

(4) If k is the smallest element such that ak = min{aj | 1 ≤ j ≤ N} then, we have

ei(b1 ⊗ · · · ⊗ bN) = b1 ⊗ · · · ⊗ bk−1 ⊗ eibk ⊗ bk+1 ⊗ · · · ⊗ bN .

Isomorphism of crystals is defined to be a bijection preserving the crystal structure.
Later we will also construct a crystal embedding as defined in the following.

Definition 2.5. Let B1, B2 be Uq(sln)-crystals. A crystal morphism Ψ: B1 → B2 is
a map Ψ: B1 ∪ {0} → B2 ∪ {0} satisfying

(1) wt(Ψ(b)) = wt(b), εi(Ψ(b)) = εi(b), ϕi(Ψ(b)) = ϕi(b) if b ∈ B1, Ψ(b) ∈ B2,
(2) fiΨ(b) = Ψ(fib), eiΨ(b) = Ψ(eib) if Ψ(b), Ψ(eib), Ψ(fib) ∈ B2 for b ∈ B1,
(3) Ψ(0) = 0.

A morphism Ψ: B1 → B2 is called an embedding if Ψ induces an injection B1 ∪ {0} →
B2 ∪ {0}. A morphism Ψ: B1 → B2 is called an isomorphism if Ψ induces a bijection
B1 ∪ {0} → B2 ∪ {0}. We write B1 ∼= B2 if there exists an isomorphism Ψ: B1 → B2.
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The irreducible highest weight module V (λ) of weight λ ∈ P + with the highest weight
vector vλ has the crystal basis (L(λ), B(λ)). In particular, B(λ) is a Uq(sln)-crystal with
a highest weight element bλ of weight λ.

2.3. K-hives. Hives are introduced by T. Tao and A. Knutson [12, 13] as the labeling
of the vertices of an equilateral triangular graph. There are three forms of hives, one
of which, the upright gradient representation, is used in this paper. See [24] for more
details. In this paper, we use K-hives, which are a special kind of hives introduced in [9].

Let m, n ∈ Z≥0 and µ̃ = (µ̃1, µ̃2, . . . , µ̃n) ∈ Zn
≥0. µ̃ is called a composition of m if

µ̃1 + · · · + µ̃n = m. A composition λ̃ is called a partition of m if λ̃1 ≥ · · · ≥ λ̃n ≥ 0. If λ̃

is a partition of m such that λ̃i = k for 1 ≤ i ≤ j ≤ n and λ̃i = 0 for j < i ≤ n, then we
write λ̃ as (kj). In particular, we simply write (0n) as 0 if there is no fear of confusion.
Also, `(λ̃) denotes the length of λ̃.

For λ ∈ P +, there exists a partition λ̃ such that λ̃1ε1 + λ̃2ε2 + · · ·+ λ̃nεn = λ. Similarly,
for µ ∈ P , there exists a composition µ̃ such that µ̃1ε1 + µ̃2ε2 + · · · + µ̃nεn = µ. Note that
a composition (µ̃1 + k, . . . , µ̃n + k) also represents µ ∈ P since ε1 + · · · + εn = 0.

Let ξ ∈ P be a weight of V (λ). Then ξ is written as λ −∑
i∈I kiαi ∈ P (ki ∈ Z). For ξ,

there exists a composition ξ̃ such that ξ̃1ε1 + ξ̃2ε2 + · · ·+ ξ̃nεn = ξ and ∑n
k=1 ξ̃k = ∑n

k=1 λ̃k.
Let λ, µ ∈ P +. Let λ̃ (resp. µ̃) be a partition which represents λ (resp. µ). Suppose

V (λ) ⊗ V (µ) ∼=
⊕

ν V (ν). Then, for each ν ∈ P + appearing on the right-hand side
above, we can take a partition ν̃ such that ν̃1ε1 + ν̃2ε2 + · · · + ν̃nεn = ν and ∑n

k=1 ν̃k =∑n
k=1 λ̃k +∑n

k=1 µ̃k.
In the following, a partition (resp. composition) λ̃ representing a dominant weight

(resp. an integral weight) λ is also denoted by λ by abuse of notation.

Definition 2.6. Let α = (α1, . . . , αn), β = (β1, . . . , βn), γ = (γ1, . . . , γn) ∈ Zn. Let
(Uij)1≤i<j≤n ∈ Zn(n−1)/2. An integer hive of size n in upright gradient representation
([24]) is a tuple (α, β, γ, (Uij)1≤i<j≤n) that satisfies

βk = (γk +
k−1∑
i=1

Uik) + (αk −
n∑

j=k+1
Ukj).(2.1)

Remark 2.7. In [12, 13, 24], the term hive refers to a hive with additional inequality
conditions called the rhombus inequalities. We rather follow the terminology of [9, 10,
11].

An integer hive in upright gradient representation is illustrated as the labeling of an
equilateral triangular graph with boundary edge labels (αi)i, (βi)i, (γi)i, and upright
gradients (Uij)i<j as shown in FIGURE 1.

In the following, for i ∈ [n], set

Uii = βi −
i−1∑
k=1

Uki(2.2)

and Uij = 0 if i > j or j > n or i < 1. Also, for simplicity, we will write (Uij)1≤i<j≤n as
(Uij)i<j.

In this paper, we consider a kind of integer hive called a K-hive.
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Figure 1. integer hive of size 4

Definition 2.8. Let m, n ∈ Z≥0. Let α, β, γ ∈ Zn
≥0. For 1 ≤ i < j ≤ n, set Lij =∑j−1

k=1 Uik − ∑j
k=1 Ui+1,k. Then an integer hive in upright gradient representation H =

(α, β, γ, (Uij)i<j) is called a K-hive if the following conditions are satisfied
(1) α is a partition of m,
(2) β is a composition of m,
(3) γ = (0n),
(4) Uij ≥ 0 for 1 ≤ i < j ≤ n,
(5) Lij ≥ 0 for 1 ≤ i < j ≤ n,
(6) βi ≥ ∑i−1

k=1 Uki for i ∈ [n].
For a partition α of m and a composition of β, let

H(n)(α, β, 0) = {H = (α, β, 0, (Uij)i<j) | H is a K-hive}.

Set

H(α) =
⋃
β

H(n)(α, β, 0),

where the union runs through all compositions of m. We sometimes call an element of
H(α) an α-K-hive.

Remark 2.9. For H = (α, β, 0, (Uij)i<j) ∈ H(n)(α, β, 0), we have
n∑

k=1
βk =

n∑
k=1

(
k−1∑
i=1

Uik + αk −
n∑

j=k+1
Ukj)

=
n∑

k=1
αk.

Thus, if ∑n
i=1 αi 6= ∑n

i=1 βi, we have H(n)(α, β, 0) = ∅.

Remark 2.10. Let α = (α1, α2, . . . , αn) be a partition of m ∈ Z≥0. Let l ∈ Z≥0. Set
α′ = (αi + l)i. We know that α and α′ represent the same dominant weight. We also have
that H(α) ∼= H(α′) as a set. The bijection from H(α) to H(α′) is given by the map which
maps (α, β, 0, (Uij)i<j) to (α′, β′, 0, (U ′

ij)i<j), where β′ = (βi + l)i and (Vij)i<j = (Uij)i<j.
Note that Vii = Uii + l holds for i = 1, 2, . . . , n − 1.

Remark 2.11. Let H ∈ H(n)(α, β, 0) ⊂ H(α). In this case, we have Uii = αi −
∑n

j=i+1 Uij

by Definition 2.6 (2.1)(2.2). Also, we have Uij = 0 for j ∈ [n] if αi = 0 since Ukl ≥ 0 for
1 ≤ k ≤ l ≤ n.
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Example 2.12. Let n = 4, λ = (3, 2, 1, 0) and µ = (2, 3, 1, 0). We have an example of
H ∈ H(4)(λ, µ, 0) ⊂ H(λ) as shown in FIGURE 2.

H =

0
0

0
0 3

2
1

0
2 3 1 0

1
0

0

0
0

0

∈ H(4)(λ, µ, 0) ⊂ H(λ).

Figure 2. An example of a K-hive

Remark 2.13. Let λ ∈ P + and let H = (λ, µ, 0, (Uij)i<j) ∈ H(λ). Let T be a Young
tableau of shape λ and weight µ, and let Uij be the number of j in the i-th row of T .
Then the map that sends H to T is a bijection from H(λ) to the set of semistandard
tableaux of shape λ (cf. [10]).

Remark 2.14. Let λ̃ = (λ1, λ2, . . . , λn) be a partition of m ∈ Z≥0. Let λ̃′ = (λ1, λ2, . . . , λn)
be a partition of m ∈ Z≥0.

3. Crystal Structure on K-hives

In this section, we introduce a crystal structure on the set of K-hives and show that
the crystal structure is isomorphic to the crystal basis of a highest weight module. In
3.1, the crystal structure on H(Λk) is given. In 3.2, for an arbitrary dominant weight
λ an embedding of H(λ) into a tensor product of crystals of the form H(Λk) is defined.
Then, the crystal structure on H(λ) is introduced such that the embedding is a crystal
morphism. In 3.3, a direct combinatorial description of the crystal structure on H(λ) is
given. The main reference is [19].

3.1. Crystal Structure on H(Λν). We will start with the case where a weight is a
fundamental weight. Since the ν-th fundamental can be viewed as the partition (1ν), the
upper right boundary edge labels of H ∈ H(Λν) are 1 or 0.

Lemma 3.1. Let ν ∈ I and H = (Λν , µ, 0, (Uij)i<j) ∈ H(Λν).

(1) For all i ∈ {1, 2, . . . , ν}, there exists a unique j ∈ {i, i + 1, . . . , n} such that
Uij = 1.

(2) Fix j ∈ I. If there exists i, i′ ∈ {1, 2, . . . , j} such that Uij, Ui′j > 0, then i = i′

holds.
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Proof. (1) Set λ = Λν . Let i ∈ {1, . . . , ν}. By Definition 2.6 (2.1), we have
i−1∑
l=1

Uli + λi −
n∑

l=i+1
Uil = µi

(
µi −

i−1∑
l=1

Uli

)
+

n∑
l=i+1

Uil = λi

n∑
l=i

Uil = 1.

Thus there exists a unique j ∈ {i, i + 1, . . . , n} such that Uij = 1 since H ∈ H(λ).
(2) Set λ = Λν . Fix j ∈ I. Suppose that there exists i, i′ ∈ {1, 2, . . . , j} such that

Uij, Ui′j > 0. Assume i 6= i′. From Definition 2.6 (2.1) and i, i′ ∈ {1, 2, . . . , j}, we have

µj =
j−1∑
k=1

Ukj + λj −
n∑

k=j+1
Ujk

=
j∑

k=1
Ukj ≥ 2.

On the other hand, it follows from Definition 2.6 (2.1) and Lemma 3.1 that µk ∈ {0, 1}.
This is a contradiction, and hence we have i = i′. □

Definition 3.2. Let ν ∈ I. The maps wt: H(Λν) → P , ei, fi : H(Λν) → H(Λν) ∪
{0} and εi, ϕi : H(Λν) → Z≥0 (i ∈ I) are defined in the following manner. Let H =
(Λν , µ, 0, (Uij)i<j) ∈ H(Λν).

(1) wt(H) := ∑n−1
k=1(µk − µk+1)Λk ∈ P ,

(2) εi(H) := max(µi+1 − µi, 0),
(3) ϕi(H) := max(µi − µi+1, 0),
(4) Set µ′ = ∑n

k=1 µ′
kεk ∈ P , where µ′

i = µi + 1, µ′
i+1 = µi+1 − 1, and µ′

k = µk for k 6=
i, i+1. Set U ′

k0,i = Uk0,i+1, U ′
k0,i+1 = Uk0,i+1−1 if there exists k0 ∈ {1, 2, . . . , i+1}

such that Uk0,i+1 > 0. Set U ′
kl = Ukl if k 6= k0 and l 6= i, i + 1. Then, for i ∈ I,

ei : H(Λν) → H(Λν) ∪ {0} is defined as follows:

eiH =

(Λν , µ′, 0, (U ′
kl)k<l) εi(H) > 0,

0 εi(H) = 0,

(5) Set µ′ = ∑n
k=1 µ′

kεk ∈ P , where µ′
i = µi − 1, µ′

i+1 = µi+1 + 1, and µ′
k = µk

for k 6= i, i + 1. Set U ′
k0,i = Uk0,i − 1, U ′

k0,i+1 = Uk0,i+1 + 1 if there exists k0 ∈
{1, 2, . . . , i} such that Uk0,i > 0. Set U ′

kl = Ukl if k 6= k0 and l 6= i, i + 1.
fi : H(Λν) → H(Λν) ∪ {0}(i ∈ I) is defined as follows:

fiH =

(Λν , µ′, 0, (U ′
kl)k<l) ϕi(H) > 0,

0 ϕi(H) = 0.

Proposition 3.3. Let H ∈ H(Λν). Suppose fiH, eiH 6= 0. Then we have fiH, eiH ∈
H(Λν).

Proof. Let ν ∈ I. Set λ = Λν . Let H = (λ, µ, 0, (Ukl)k<l) ∈ H(λ). We show that
fiH, eiH ∈ H(λ) if fiH, eiH 6= 0. Assume that fiH 6= 0 and fiH = (λ, µ′, 0, (U ′

kl)k<l).
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First, we show that fiH is an integer hive. By Definition 3.2, we have µ′
i = µi − 1,

µ′
i+1 = µi+1+1 and µ′

k = µk for k 6= i, i+1. Since fiH 6= 0, there exists a k0 ∈ {1, 2, . . . , i}
such that Uk0,i > 0. Then we have U ′

k0,i = Uk0,i − 1, U ′
k0,i+1 = Uk0,i+1 + 1 and U ′

kl = Ukl

for k 6= k0 and l 6= i, i + 1. Thus, by Lemma 3.1, we have

j−1∑
k=1

U ′
kj +

λj −
n∑

k=j+1
U ′

jk

 =
j∑

k=1
U ′

kj

=


∑

k 6=k0 Uki + (Uk0,i − 1) j = i,∑
k 6=k0 Uk,i+1 + (Uk0,i+1 + 1) j = i + 1,∑j
k=1 Ukj else

=


∑j

k=1 Uki − 1 j = i,∑j
k=1 Uk,i+1 + 1 j = i + 1,∑j
k=1 Ukj else

= µ′
j.

Thus Definition 2.6 (2.1) holds. Then we have that fiH is an integer hive.
Next, we show that fiH is a K-hive. It then suffices to show that fiH satisfies the

conditions from (1) to (6) in Definition 2.8. By Definition 3.2, (1), (2), (3) and (4) hold.
Set L′

kl = ∑l−1
m=1 U ′

km −∑l
m=1 U ′

k+1,m. If k 6= k0 and l 6= i + 1, then L′
kl ≥ 0 is obvious.

By Lemma 3.1, k0 is the unique element in {1, 2, . . . , i} such that Uk0,i > 0, then the
following holds.

L′
k0,i =

i−1∑
m=1

U ′
k0,m −

i∑
m=1

U ′
k0+1,m

=
i−1∑

m=1
Uk0,m −

i∑
m=1

Uk0+1,m

= −
i∑

m=1
Uk0+1,m ≥ 0.

Then Uk0+1,m = 0 holds for m = 1, 2, . . . , i. Also, we have Uk0+1,i+1 = 0 since µi+1 = 0.
Thus, the following holds.

L′
k0,i+1 =

i∑
m=1

U ′
k0,m −

i+1∑
m=1

U ′
k0+1,m

= (Uk0,i − 1) −
i+1∑

m=1
Uk0+1,m

= Uk0,i − 1 ≥ 0.

Therefore we have (5).
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If k 6= i, i + 1, then µ′
k ≥ ∑k−1

l=1 U ′
lk is obvious since H ∈ H(Λν). For k = i + 1, we have

the following.

µ′
i+1 −

i∑
l=1

U ′
l,i+1 = (µi+1 + 1) −

∑
l 6=k0

Ul,i+1 + (Uk0,i+1 + 1)


= µi+1 −

i∑
l=1

Ul,i+1 ≥ 0.

For k = i, there are two cases: k0 < i and k0 = i. If k0 < i, then we have

µ′
i −

i−1∑
l=1

U ′
li = (µi − 1) − (

i−1∑
l=1

Uli − 1)

= µi −
i−1∑
l=1

Uli ≥ 0.

If k0 = i, then we have

µ′
i −

i−1∑
l=1

U ′
li = (µi − 1) −

i−1∑
l=1

Uli

= µi − 1 ≥ 0.

Note that we have µi > 0 since fiH 6= 0. Thus, (6) holds. Therefore, fiH ∈ H(λ) holds.
eiH ∈ H(λ) is proved in a similar manner. □

Remark 3.4. It follows from Definition 2.6 (2.1) that µi ∈ {0, 1} for all i ∈ [n] since Λν

corresponds to (1k). Thus, we have ϕi(H), εi(H) ∈ {0, 1}. Moreover, the following holds.

ϕi(H) =

1 fiH 6= 0,

0 fiH = 0.

εi(H) =

1 eiH 6= 0,

0 eiH = 0.

Proposition 3.5. Let ν ∈ I. Then H(Λν) is a Uq(sln)-crystal together with the maps
wt, ei, fi, ϕi, εi in Definition 3.2.

Proof. It suffices to show that the maps satisfy the conditions from (1) to (7) in Defini-
tion 2.1. By Definition 3.2, the condition (7) is obvious. Let H = (Λν , µ, 0, (Uij)i<j) ∈
H(Λν).

(1) By Definition 3.2, we have

wt(H)(hi) = µi − µi+1

= ϕi(H) − εi(H).

(3) Suppose fiH ∈ H(Λν). By the definition of fi, we have

wt(fiH) =
∑

k 6=i,i+1
µkεk + (µi − 1)εi + (µi+1 + 1)εi+1

= µ − (εi − εi+1)
= wt(H) − αi.

We can then prove (2) in a similar manner to (3).
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(5) Suppose fiH ∈ H(Λν). In this case, ϕi(H) = 1 and εi(H) = 0 hold. Then we have
ϕi(fiH) = ϕi(H) − 1 since

ϕi(fiH) = max{(µi − 1) − (µi+1 + 1), 0} = 0.

We also have εi(fiH) = εi(H) + 1 since

εi(fiH) = max{(µi+1 + 1) − (µi − 1), 0} = 1.

We can then prove (4) in a similar manner to (5).
(6) Suppose fiH ∈ H(Λν). Assume fiH = (Λν , µ(1), 0, (U (1)

ij )i<j). Since fiH ∈ H(Λν),
we have µi − µi+1 > 0, and hence µ

(1)
i+1 − µ

(1)
i > 0 holds by the definition of fi. Then we

have ei(fiH) ∈ H(Λν). Assume ei(fiH) = (Λν , µ(2), 0, (U (2)
ij )i<j). By Definition 3.2, we

have

µ(2) =
∑

k 6=i,i+1
µ

(1)
k εk + (µ(1)

i + 1) + (µ(1)
i+1 − 1)

= µ.

Since fiH ∈ H(Λν), there exists a unique k0 ∈ {1, 2, . . . , i} such that Uk0,i, U
(1)
k0,i+1 > 0.

Then the following holds.

U
(2)
kl =


U

(1)
kl + 1 k = k0, l = i,

U
(1)
kl − 1 k = k0, l = i + 1,

U
(1)
kl else

=


(Ukl − 1) + 1 k = k0, l = i,

(Ukl + 1) − 1 k = k0, l = i + 1,

Ukl else

= Ukl.

Then we have ei(fiH) = H.
Suppose eiH ∈ H(Λν). Assume eiH = (Λν , µ(1), 0, (U (1)

ij )i<j). Since eiH ∈ H(Λν), we
have µi+1 − µi > 0, and hence µ

(1)
i − µ

(1)
i+1 > 0 holds. Thus, we have fi(eiH) ∈ H(Λν).

Assume fi(eiH) = (Λν , µ(2), 0, (U (2)
ij )i<j). By Definition 3.2, we have

µ(2) =
∑

k 6=i,i+1
µ

(1)
k εk + (µ(1)

i − 1) + (µ(1)
i+1 + 1)

= µ.
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Since eiH ∈ H(Λν), there exists a k0 ∈ I{1, 2, . . . , i+1} such that Uk0,i+1, U
(1)
k0,i > 0. Then

the following holds.

U
(2)
kl =


U

(1)
kl − 1 k = k0, l = i,

U
(1)
kl + 1 k = k0, l = i + 1,

U
(1)
kl else,

=


(Ukl + 1) − 1 k = k0, l = i,

(Ukl − 1) + 1 k = k0, l = i + 1,

Ukl else,

= Ukl.

Then we have fi(eiH) = H. □

Example 3.6. The action of fi on the Uq(sl4)-crystal H(Λ3) is computed as follows. Let
H = (Λ3, Λ3, (Ukl)k<l) ∈ H(Λ3), where Ukl = 0 for 1 ≤ k < l ≤ 4.

It follows that f1H = f2H = 0 from ϕ1(H) = ϕ2(H) = 0 since µ1 − µ2 = µ2 − µ3 = 0.
Since ϕ3(H) = µ3 − µ4 = 1 and U33 = 1, f3H is as shown in FIGURE 3.

0
0

0
0 1

1
1

0
1 1 1 0

0
0

0

0
0

0
3−→

0
0

0
0 1

1
1

0
1 1 0 1

0
0

0

0
0

1

Figure 3. Action of f3 on the Uq(sl4)-crystal H(Λ3)

In the following, we investigate the crystal structure on H(Λν) defined by Definition 3.2.
We will show that H(Λν) is isomorphic to B(Λν) with these results, see Proposition 3.34.

Lemma 3.7. Let H = (Λν , µ, 0, (Uij)i<j) ∈ H(Λν). Suppose that there exists i0, j0, i1, j1 ∈
[n] such that Ui0,j0 , Ui1,j1 > 0. Then i1 > i0 if and only if j1 > j0.

Proof. Let H = (Λν , µ, 0, (Uij)i<j) ∈ H(Λν). Suppose that there exists i0, j0, i1, j1 ∈ [n]
such that Ui0,j0 , Ui1,j1 > 0.

Assume i1 > i0 and i1 = i0 + l for some l ∈ Z. By Lemma 3.1 and H ∈ H(Λν),

l−1∑
k=0

Li0+k,j0+k =
j0−1∑
k=1

Ui0,k −
j0+l−1∑

k=1
Ui0+l,k

= −
j0+l−1∑

k=1
Ui0+l,k ≥ 0.

Then, we have Ui1k = 0 for k = 1, 2, . . . , j0 + l − 1, especially Ui1k = 0 if k ≤ j0. Thus,
j1 > j0 holds.
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Assume j1 > j0. Suppose that i0 ≥ i1 and i0 = i1 + l for some l ∈ Z. By Lemma 3.1
and H ∈ H(Λν),

l−1∑
k=0

Li1+k,j1+k =
j1−1∑
k=1

Ui1k −
j1+l−1∑

k=1
Ui1+l,k

= −
j1+l−1∑

k=1
Ui1+l,k ≥ 0

Then, we have Ui0k = 0 for k = 1, 2, . . . , j1 + l − 1, especially Ui0k = 0 if k < j1, however,
this is a contradiction for j1 > j0. Thus, i1 > i0 holds. □

Proposition 3.8. Let H, H ′ ∈ H(Λν). If wt(H) = wt(H ′), then H = H ′ holds.

Proof. Let H = (Λν , µ, 0, (Uij)i<j) ∈ H(Λν). Set λ = Λν . For s = 1, 2, . . . , ν, there
exists a unique js ∈ [n] such that Usjs = 1 by Lemma 3.1. By Lemma 3.1 and (2.2),
µk = 1 if k = js for some s = 1, 2, . . . , ν, otherwise µk = 0. By Lemma 3.7, we have
j1 < j2 < · · · < jν . Thus, (s, js) is uniquely determined by λ and µ. Therefore, if
wt(H) = wt(H ′), then H = H ′ holds for H, H ′ ∈ H(Λν). □

By the proof of Proposition 3.8, we have the following.

Corollary 3.9. Let H = (Λν , µ, 0, (Uij)i<j) ∈ H(Λν). For s = 1, 2, . . . , ν, let js ∈ [n]
such that µjs = 1. Assume j1 < j2 < · · · < jν . Then,

Uij =

1 if (i, j) = (s, js),
0 otherwise.

Lemma 3.10. For H = (Λν , µ, 0, (Uij)i<j) ∈ H(Λν), set Ω(H) = (Λν , ξ, 0, (Vij)i<j), where
ξi = µn+1−i (i ∈ [n]) and Vij = Uν+1−i,n+1−j (1 ≤ i < j ≤ n). Then, Ω(H) ∈ H(Λν).

Proof. Set λ = Λν . For s = 1, 2, . . . , ν, we can take js ∈ [n] such that µjs = 1 since
H ∈ H(Λν). We may assume j1 < j2 < · · · < jν by retaking js if necessary. By
Corollary 3.9,

Uij =

1 if (i, j) = (s, js) for some s ∈ {1, 2, . . . , ν},

0 otherwise.

By the definition of Ω, ξk = 1 if k = n + 1 − js, otherwise ξk = 0. Also, we have

Vij = Uν+1−i,n+1−j

=

1 if (i, j) = (ν + 1 − s, n + 1 − js),
0 otherwise.

Since ξ ∈ P and ∑n
i=1 ξi = ν, we can take H ′ ∈ H(Λν) such that wt(H ′) = ξ. By

Corollary 3.9, Ω(H) = H ′ holds, and hence Ω(H) ∈ H(Λν) holds. □

Definition 3.11. The map Ω: H(Λν) ∪ {0} → H(Λν) ∪ {0} is defined by H maps to
Ω(H) for H ∈ H(Λν) and Ω(0) = 0.

Proposition 3.12. The map Ω: H(Λν) ∪ {0} → H(Λν) ∪ {0} is an involution.
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Proof. Let H ∈ H(Λν). By Definition 3.11, we have Ω(Ω(H)) = H. Also, we have
Ω(0) = 0. Then, Ω is a surjection. Let H, K ∈ H(Λν) ∪ {0}. Assume Ω(H) = Ω(K). By
Definition 3.11, we have H = Ω(Ω(H)) = Ω(Ω(K)) = K. Then Ω is an injection. Thus,
Ω is a bijection, especially Ω is an involution. □
Proposition 3.13. Ω: H(Λν) → H(Λν) has the following properties. For H ∈ H(Λν)
and i ∈ I,

(1) wt(Ω(H)) = w0wt(H),
(2) ϕi(Ω(H)) = εn−i(H),
(3) εi(Ω(H)) = ϕn−i(H),
(4) fi(Ω(H)) = Ω(en−i(H)),
(5) ei(Ω(H)) = Ω(fn−i(H)),

where w0 denotes the longest element in the Weyl group of type An−1.

Proof. Let H = (Λν , µ, 0, (Uij)i<j) ∈ H(Λν). Let w0 be the longest element in the Weyl
group of type An−1. By Definition 3.11, we have

wt(Ω(H)) =
n∑

k=1
µn+1−kεk =

n∑
k=1

µkεn+1−k

=
n∑

k=1
µkw0(εk) = w0wt(H),

hence (1) holds.
By Definition 3.11, we have

ϕi(Ω(H)) = max{µn+1−i − µn−i, 0}
= εn−1(H).

Then (2) holds. Also, we have
εi(Ω(H)) = max{µn−i − µn+1−i, 0}

= ϕn−1(H).

Then (3) holds.
From (2), (4) is obvious if fiΩ(H) = 0. Suppose fiΩ(H) 6= 0. Set ξ = wt(fiΩ(H)) and

o = wt(Ω(en−i(H))). By Definitions 3.2 and 3.11, for k = 1, 2, . . . , n,

ξk =


µn+1−k − 1 if k = i,

µn+1−k + 1 if k = i + 1,

µn+1−k otherwise
= ok.

By Proposition 3.8, (4) holds.
From (3), (5) is obvious if eiΩ(H) = 0. Suppose eiΩ(H) 6= 0. Set ξ = wt(eiΩ(H)) and

o = wt(Ω(fn−i(H))). By Definitions 3.2 and 3.11, for k = 1, 2, . . . , n,

ξk =


µn+1−k + 1 if k = i,

µn+1−k − 1 if k = i + 1,

µn+1−k otherwise
= ok.
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By Proposition 3.8, (5) holds. □

3.2. Crystal Structure on H(λ). In this subsection, we determine a crystal structure
on H(λ) for λ = ∑

i∈I miΛi ∈ P +. This structure is induced by an embedding of H(λ)
into a tensor product of crystals of the form H(Λν) with ν ∈ I. We will then prove that
H(λ) ∼= B(λ).

We start with constructing an embedding such that H(λ) is split into a tensor product
of sets of K-hives.

Definition 3.14. Let λ = ∑
i∈I miΛi ∈ P +. Set N = ∑

i∈I mi. Let lN = max{i ∈ I |
mi 6= 0}. For H = (λ, µ, 0, (Uij)i<j) ∈ H(λ), HN = (ΛlN , µ(N), 0, (U (N)

ij )i<j) is defined by

U
(N)
ij =

1 if j = min{j ∈ [n] | Uij > 0},

0 otherwise,

µ
(N)
k =

1 if there exists j ∈ [n] such that U
(N)
kj > 0,

0 otherwise

For H and HN , H(N−1) = (λ(N−1), ξ(N−1), 0, (V (N−1)
ij )i<j) is defined by λ(N−1) = λ − ΛlN ,

ξ(N−1) = µ − µ(N), and V
(N−1)

ij = Uij − U
(N)
ij (1 ≤ i < j ≤ n).

Lemma 3.15. Let λ = ∑
i∈I miΛi ∈ P +. Set N = ∑

i∈I mi. Let H ∈ H(λ). Let HN and
H(N−1) in Definition 3.14. Then, HN ∈ H(ΛlN ) and H(N−1) ∈ H(λ(N−1)) hold.

Proof. Let H = (λ, µ, 0, (Uij)i<j) ∈ H(λ). Let HN = (ΛlN , µ(N), 0, (U (N)
ij )i<j) and H(N−1) =

(λ(N−1), ξ(N−1), 0, (V (N−1)
ij )i<j) in Definition 3.14.

For s = 1, 2, . . . , lN , we can take js ∈ [n] such that µ
(N)
js

= 1. We may assume
j1 < j2 < · · · < jlN by retaking js if necessary. By Definition 3.14,

U
(N)
ij =

1 if (i, j) = (s, js) for some s ∈ {1, 2, . . . , lN},

0 otherwise.

By Proposition 3.8 and Corollary 3.9, we have HN ∈ H(ΛlN ).
By Definition 3.14 and (2.2), then we have

ξ
(N−1)
i = µi − µ

(N)
i

=
i∑

k=1
Uki −

i∑
k=1

U
(N)
ki

=
i−1∑
k=1

V
(N−1)

ki +

λ
(N−1)
i −

n∑
k=i+1

V
(N−1)

ik


for i = 1, 2, . . . , n. Then H(N−1) is an integer hive.

By Definition 3.14, Definition 2.8 (1), (2), (3), and (4) holds for H(N−1). Set L
(N)
ij =∑j−1

k=1 U
(N)
ik − ∑j

k=1 U
(N)
i+1,k and L

(N−1)
ij = ∑j−1

k=1 V
(N−1)

ik − ∑j
k=1 V

(N−1)
i+1,k for 1 ≤ i < j ≤ n.
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Then we know that

Lij =
j−1∑
k=1

Uik −
j∑

k=1
Ui+1,k

=
j−1∑
k=1

(U (N)
ik + V

(N−1)
ik ) −

j∑
k=1

(U (N)
i+1,k + V

(N−1)
i+1,k )

= L
(N)
ij + L

(N−1)
ij ≥ 0.

By Definition 3.14, L
(N−1)
ij = Lij − L

(N)
ij ≥ 0.

By Definition 3.14, we have

µj −
j−1∑
k=1

Ukj = (µ(N)
j + ξ

(N−1)
j ) −

j−1∑
k=1

(U (N)
kj + V

(N−1)
kj )

= µ
(N)
j −

j−1∑
k=1

U
(N)
kj + ξ

(N−1)
j −

j−1∑
k=1

V
(N−1)

kj .

By Definition 3.14, µj ≥ µ
(N)
j for j = 1, 2, . . . , n and Uij ≥ U

(N)
ij for 1 ≤ i < j ≤ n hold,

and hence ξ
(N−1)
j −∑j−1

k=1 V
(N−1)

kj ≥ 0. Therefore, H(N−1) ∈ H(λ(N−1)). □

Definition 3.16. Let λ = ∑
i∈I miΛi ∈ P +. Set N = ∑

i∈I mi. For each H ∈ H(λ),
take HN ∈ H(ΛlN ) and H(N−1) ∈ H(λ(N−1)) as in Definition 3.14. Then define the map
Ψλ : H(λ) → H(λ(N−1)) × H(ΛlN ) by Ψλ(H) = H(N−1) × HN .

Lemma 3.17. The map Ψλ is an injection.

Proof. Let H, K ∈ H(λ). Let Ψλ(H) = H(N−1) × HN and Ψλ(K) = K(N−1) × KN where
H(N−1), K(N−1) ∈ H(λ(N−1)) and HN , KN ∈ H(ΛlN ). Suppose that H(N−1) × HN =
K(N−1) × KN . Then we have H(N−1) = K(N−1) and HN = KN . By the construction of
Ψλ, we have H = K. □

Example 3.18. Let n = 4, λ = (3, 2, 1, 0) and µ = (2, 3, 1, 0). Let H = (λ, µ, 0, (Uij)i<j) ∈
H(4)(λ, µ, 0) be the diagram on the left in FIGURE 4. Then Ψλ(H) = H(2) ⊗ H3 is as
shown in FIGURE 4. Note that U11 = 2 ≥ 0.

H

0
0

0
0 3

2
1

0
2 3 1 0

1
0

0

0
0

0

↪−−−→

↪−−−→

H(2)

0
0

0
0 2

1
0

0
1 2 0 0

1
0

0

0
0

0
×

× H3

0
0

0
0 1

1
1

0
1 1 1 0

0
0

0

0
0

0

Figure 4. Action of Ψλ on H(λ)

By applying Lemma 3.17 repeatedly, we obtain the following.

Proposition 3.19. Let λ = ∑
i∈I miΛi ∈ P +. Then there exists an injection
Ψ: H(λ) →

⊗
i∈I

H(Λi)⊗mi .
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Proof. Let λ = ∑
i∈I miΛi ∈ P +. Set N = ∑

i∈I mi. By Lemma 3.17, there exists an
injection Ψλ : H(λ) → H(λ(N−1)) × H(ΛlN ). Then we apply Lemma 3.17 for λ(N−1), and
by repeating this argument, we get a map Ψ: H(λ) → Πi∈IH(Λi)mi . Since each H(Λi) is
a Uq(sln)-crystal, Πi∈IH(Λi)mi has Uq(sln)-crystal structure by Definition 2.3. Thus we
can write Πi∈IH(Λi)mi as ⊗i∈I H(Λi)⊗mi . Since Ψλ is an injection, Ψ is an injection. □

Example 3.20. Let n = 4, λ = (3, 2, 1, 0) and µ = (2, 3, 1, 0). Let H ∈ H(4)(λ, µ, 0)
be the diagram on the left of FIGURE 5. Then Ψ(H) = H1 ⊗ H2 ⊗ H3 is as shown in
FIGURE 5.

H

0
0

0
0 3

2
1

0
2 3 1 0

1
0

0

0
0

0

↪−−→

↪−−→

H1

0
0

0
0 1

0
0

0
0 1 0 0

1
0

0

0
0

0 ⊗

⊗ H2

0
0

0
0 1

1
0

0
1 1 0 0

0
0

0

0
0

0 ⊗

⊗ H3

0
0

0
0 1

1
1

0
1 1 1 0

0
0

0

0
0

0

Figure 5. Action of Ψ on H(λ)

By the construction of Ψ, we have the following.

Lemma 3.21. Let λ = ∑
i∈I miΛi ∈ P +. Set N = ∑

i∈I mi. Let H ∈ H(λ). Let Ψ(H) =
H1 ⊗ · · · ⊗ HN , where Hk = (Λlk , µ(k), 0, (U (k)

ij )i<j) (k = 1, . . . , N). For k ∈ {1, . . . , N}
and i ∈ [n], if there exists j ∈ [n] such that U

(k)
i,j > 0, then set ji,k to its j, otherwise

set ji,k to 0. Suppose that ji,k > 0 for some k ∈ {1, . . . , N} and i ∈ [n]. Then we have
ji,k′ ≥ ji,k if k ≥ k′.

Proof. Set H(N) = H and λ(N) = λ. By Definition 3.14, for m = 1, 2, . . . , N there exists
Hm ∈ H(Λlm) and H(m−1) ∈ H(λ(m−1)) such that

Ψλ(m)(H(m)) = H(m−1) ⊗ Hm.

For m = 1, 2, . . . , N , let H(m) = (λ(m), ξ(m), 0, (V (m)
ij )i<j). Fix k ∈ {1, 2, . . . , N}. It follows

from the definition of Ψ and Ψλ (λ ∈ P +) that

V
(k)

ij = U
(1)
ij + · · · + U

(k)
ij (1 ≤ i < j ≤ n).

Then, by the definition of Ψλ(k) ,

U
(k)
ij =

1 j = min{j ∈ [n] | V
(k)

ij > 0},

0 else.

This means that for 1 ≤ k′ ≤ k ≤ N

ji,k = min{j ∈ [n] | U
(1)
ij + · · · + U

(k)
ij > 0}

≤ min{j ∈ [n] | U
(1)
ij + · · · + U

(k′)
ij > 0}

= ji,k′ .

□
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Remark 3.22. It follows from Lemma 3.21 that

ji,k = min{j ∈ [n] | U
(l)
ij > 0, l = 1, . . . , k}

= max{j ∈ [n] | U
(l)
ij > 0, l = k, . . . , N}.

Proposition 3.23. Let λ = ∑
i∈I miΛi = ∑

i∈I λiεi ∈ P +. Set N = ∑
i∈I mi. Then,

Ψ(H(λ)) = {H1 ⊗ · · · ⊗ HN ∈
N⊗

k=1
H(Λlk) | ji,λN+1−i

≥ ji,λN+1−i+1 ≥ · · · ≥ ji,N for all i ∈ I},

(3.3)

where ji,k (i ∈ I, k ∈ {1, . . . , N}) is defined in Lemma 3.21.

Proof. Let λ = ∑
i∈I miΛi = ∑

i∈I λiεi ∈ P +. Set F to the right set of (3.3).
First, we show Ψ(H(λ)) ⊂ F . Let H = H1 ⊗ · · · ⊗ HN ∈ Ψ(H(λ)), where Hk ∈

H(Λlk) for k = 1, 2, . . . , N . We know λi = mi + mi+1 + · · · + mn−1 for i ∈ I. Then
by the construction of Ψ, ΛlλN+1−i

= ΛN+1−i. By Lemma 3.1, ji,λN+1−i
> 0 holds. By

Lemma 3.21, ji,λN+1−i
≥ ji,λN+1−i+1 ≥ · · · ≥ ji,N holds. Thus, H ∈ F holds.

Next, we show F ⊂ H(λ). Let H = H1 ⊗ · · · ⊗ HN ∈ ⊗N
k=1 H(Λlk), where Hk =

(Λlk , µ(k), 0, (U (k)
ij )i<j) for k = 1, 2, . . . , N . Let H̃ = (λ̃, µ̃, 0, (Ũij)i<j), where λ̃ = ∑N

k=1 Λlk ,
µ̃ = ∑N

k=1 µ(k), and Ũij = ∑N
k=1 U

(k)
ij (1 ≤ i < j ≤ n). Then we can check H̃ ∈ H(λ) as

follows. For i ∈ I,

µ̃i =
N∑

k=1
µ

(k)
i

=
N∑

k=1

i−1∑
l=1

U
(k)
li +

(Λlk)i −
n∑

l=i+1
U

(k)
il


=

i−1∑
l=1

Ũ
(k)
li +

λ̃
(k)
i −

n∑
l=i+1

Ũ
(k)
il

 .

Then H̃ is an integer hive. λ̃ ∈ P +, µ̃ ∈ P , ∑i∈I λ̃i = ∑
i∈I µ̃i, and Ũij ≥ 0 (1 ≤ i < j ≤ n)

immediately hold from the definition of H̃ and Hk ∈ H(Λlk). For 1 ≤ i < j ≤ n,

L̃ij =
j−1∑
k=1

Ũik −
j∑

k=1
Ũi+1,k

=
j−1∑
k=1

N∑
l=1

U
(l)
ik −

j∑
k=1

N∑
l=1

U
(l)
i+1,k

=
N∑

l=1
L

(l)
ij ≥ 0.

Also, for i ∈ I,

µ̃i −
i−1∑
k=1

Ũki =
N∑

l=1
µ

(l)
i −

i−1∑
k=1

N∑
l=1

U
(l)
ki

=
N∑

l=1
(µ(l)

i −
i−1∑
k=1

U
(l)
ki ) ≥ 0.

By the choice of H, λ̃ = λ. Then H̃ ∈ H(λ).
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We may assume Ψ(H̃) = H̃1 ⊗ · · · ⊗ H̃N , where H̃k = (Λlk , µ̃(k), 0, (Ũ (k)
ij )i<j) for k =

1, 2, . . . , N . We show H̃k = Hk for k = 1, . . . , N by induction on k. Set H̃(N) = H̃

and λ(N) = λ. By Definition 3.14, we know Ψλ(k)(H̃(k)) = H̃(k−1) ⊗ H̃k, where H̃(k) =
(λ(k), µ̃(k), 0, (V (k)

ij )i<j) for k = 1, 2, . . . , N . By Definition 3.14 and H ∈ F ,

Ũ
(N)
ij =

1 if j = min{j ∈ [n] | U
(1)
ij + · · · + U

(N)
ij > 0},

0 otherwise,

=

1 if j = ji,N ,

0 otherwise,

= U
(N)
ij .

By Definition 3.14, µ̃(N) = µ(N), namely H̃N = HN holds. Assume that H̃s = Hs for
s = k + 1, k + 2, . . . , N . By Definition 3.14, H ∈ F , and the induction hypothesis,

Ũ
(k)
ij =

1 if j = min{j ∈ [n] | U
(1)
ij + · · · + U

(k)
ij > 0},

0 otherwise,

=

1 if j = ji,k,

0 otherwise,

= U
(k)
ij .

By Definition 3.14, µ̃(k) = µ(k), namely H̃k = Hk holds. Thus, H ∈ Ψ(H(λ)). □

Remark 3.24. For H ∈ H(λ) (λ ∈ P +), let Ψ(H) = H1 ⊗ · · · ⊗ HN , where Hk =
(Λlk , µ(k), 0, (U (k)

ij )i<j) ∈ H(Λk) for k = 1, 2, . . . , N . For i ∈ [n] and k ∈ {1, 2, . . . , N}, let
ji,k be as in Lemma 3.21. Then, for each k = 1, 2, . . . , N , we have

j1,k < j2,k < · · · < jlk,k(3.4)

from Lemma 3.7.

Proposition 3.25. Let λ ∈ P . Ψ(H(λ)) ∪ {0} is stable under the action of ei and fi for
i ∈ I.

Proof. We show that fi(Ψ(H(λ)) ∪ {0}) ⊂ Ψ(H(λ)) ∪ {0}. Let H = H1 ⊗ · · · ⊗ HN ∈
Ψ(H(λ)), where Hk = (Λlk , µ(k), 0, (U (k)

ij )i<j). Assume fiH = H1 ⊗· · ·⊗fiHk0 ⊗· · ·⊗HN .
If fiH = 0, the statement is obvious.

Suppose fiH 6= 0. Let fiHk0 = (Λlk0
, µ̃(k0), 0, (Ũ (k0)

ij )i<j). For i ∈ I, if there exists
j ∈ [n] such that Ũ

(k0)
ij > 0, then set j̃i,k0 to its j, otherwise set j̃i,k0 to 0. For Hk0

and i, let k0 in Definition 3.2 (5) be written as kfiH . Then we know jkfiH ,k0 = i. By
Definition 3.2, we have j̃kfiH ,k0 = i + 1 and j̃k,k0 = jk,k0 if k 6= kfiH . By Proposition 3.23,
to show that fiH ∈ Ψ(H), it suffices to check that jkfiH ,k0−1 ≥ j̃kfiH ,k0 = i + 1. Note that
we have jkfiH ,k0−1 ≥ jkfiH ,k0 = i since H ∈ Ψ(H(λ)). It also follows that ϕi(Hk0−1) = 0
since ϕi(Hk0−1) − εi(Hk0) ≤ 0 holds from Proposition 2.4.

Suppose jkfiH ,k0−1 = i. Then, µ
(k0−1)
i = µ

(k0−1)
i+1 = 1 follows from Remark 3.4 and

ϕi(Hk0−1) = 0. By Lemma 3.7, jkfiH+1,k0−1 = i + 1 and jkfiH+1,k0 > i holds. Since
fiH

(k0) 6= 0, we know µ
(k0)
i+1 = 0 by Remark 3.4. Then, we have jkfiH+1,k0 > i + 1 from
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(2.2). Now, we have jkfiH+1,k0−1 = i + 1 < jkfiH+1,k0 , however this is a contradiction for
H ∈ Ψ(H(λ)). Thus, jkfiH ,k0−1 ≥ i + 1 holds.

Similarly, ei(Ψ(H(λ)) ∪ {0}) ⊂ Ψ(H(λ)) ∪ {0} is can be shown. □

Definition 3.26. Let λ = ∑
i∈I miΛi ∈ P +. The crystal structure on H(λ) is defined so

that Ψ is a morphism of crystals.

Remark 3.27. In this subsection, we take λ ∈ P + as λ = ∑
i∈I miΛi. Assume that

λ = ∑n
i=1 λiεi, then we have λn = 0. For l ∈ Z≥0, let λ′ = ∑n

i=1 λ′
iεi, where λ′

i = (λi + l)
for i = 1, 2, . . . , n. Then λ′

n > 0 holds. The construction of the crystal structure on H(λ)
can be applied for λ′. Note that λ = λ′ holds since ε1 + · · · + εn = 0.

Also, we know that partitions λ̃ = (λi)i and λ̃′ = (λ′
i)i represent λ. By Remark 2.10,

we know that H(λ̃) ∼= H(λ̃′) as a set. We also have that the bijection in Remark 2.10
preserves the crystal structure, and hence H(λ̃) ∼= H(λ̃′) holds as a crystal.

In the rest of this subsection, we prove that H(λ) ∼= B(λ).

Definition 3.28. Let λ ∈ P +. Then define Hλ ∈ H(λ) by Hλ = (λ, λ, 0, (0)i<j).

Remark 3.29. Let λ ∈ P +. Let Hλ = (λ, λ, 0, (0)i<j) ∈ H(λ). For i = 1, 2, . . . , `(λ), we
have

Uii = λi −
i−1∑
k=1

Uki = λi > 0.

Remark 3.30. Let λ ∈ P +. Let H = (λ, λ, 0, (Uij)i<j) ∈ H(λ). By Definition 2.6,
we have λ1 = λ1 − ∑n

k=2 U1k. This means that U1k = 0 for 2 ≤ k ≤ n since Uij ≥ 0.
Repetition of this argument yields Uij = 0 for 1 ≤ i < j ≤ n. Thus, H = Hλ holds, and
hence we have that Hλ is the unique element H ∈ H(λ) such that wt(H) = λ.

Lemma 3.31. Let λ = ∑
i∈I miΛi ∈ P +. Let Hλ = (λ, λ, 0, (0)i<j) ∈ H(λ). Then

eiHλ = 0 for all i ∈ I.

Proof. Let N = ∑
i∈I mi. Let Ψ(Hλ) = H1 ⊗ · · · ⊗ HN . By Proposition 2.4, there exists

ν such that
eiH = H1 ⊗ · · · ⊗ eiHν ⊗ · · · ⊗ HN .

Assume Hν = (Λlν , µ(ν), 0, (U (ν)
ij )i<j). By the construction of Ψ and the definition of Hλ,

µ(ν) is a partition, and hence eiHν = 0 for all ν ∈ 1, 2 . . . , N . Thus, eiHλ = 0 holds for
all i ∈ I. □

Lemma 3.32. Let λ = ∑
i∈I miΛi ∈ P +. Then we have

H(λ) = {fi1 . . . fik
Hλ | k ≥ 0, i1, . . . , ik ∈ I} .

Therefore H(λ) is connected.

Proof. It suffices to show that if H ∈ H(λ) such that ejH = 0 for all j ∈ I, then
H = Hλ. Let H ∈ H(λ). Set N = ∑

i∈I mi. Let Ψ(H) = H1 ⊗ · · · ⊗ HN and Hm =
(Λlm , µ(m), 0, (U (m)

kl )k<l) ∈ H(Λlm).
Suppose that ejH = 0 for all j ∈ I. We show that for all k ∈ {1, 2, . . . , N} there

exists a ν ∈ I such that Hk = HΛν . Assume that there exists a k ∈ {1, 2, . . . , N} such
that Hk 6= HΛν for all ν ∈ I, and let k0 be the smallest such k. Then we have µ(k0) is a
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composition. Then we can take an i ∈ I such that µ
(k0)
i+1 = 1 and µ

(k0)
i = 0, and hence

there exists a j0 ∈ {i + 1, i + 2, . . . , n} such that U
(k0)
i,j0 > 0. By Remark 3.22, we have

j0 = min{l ∈ I∪{n} | U
(k)
i,l > 0, k = 1, 2, . . . , k0}. Thus, for k = 1, 2, . . . , k0−1, if U

(k)
il > 0

then l ≥ i + 1 holds. However, it follows from Hk = HΛk
that U

(k)
il = 0 for l ≥ i + 1 if

k = 1, 2, . . . , k0 − 1. This is a contradiction. Therefore, for all k ∈ {1, 2, . . . , N} there
exists a ν ∈ I such that Hk = HΛν . Then, by the construction of Ψ, H = Hλ holds. □

From Lemma 3.31 and Lemma 3.32, we have the following.

Lemma 3.33. Let λ ∈ P +. Then Hλ is the highest weight element of weight λ in H(λ).

Proposition 3.34. Let k ∈ I. There is an isomorphism from H(Λk) to B(Λk).

Proof. Let k ∈ I. From [23][1, Theorem 4.13], it suffices to show that
(1) If ei(H) = 0, then εi(H) = 0 for H ∈ H(Λk), i ∈ I,
(2) If fi(H) = 0, then ϕi(H) = 0 for H ∈ H(Λk), i ∈ I,
(3) When i, j ∈ I and i 6= j, if H, K ∈ H(Λk) and K = eiH, then εj(K) equals εj(H)

or εj(H) + 1. The second case where εj(K) = εj(H) + 1 is possible only if αi and
αj are not orthogonal roots,

(4) When i, j ∈ I and i 6= j, if H, K ∈ H(Λk) and K = fiH, then ϕj(K) equals
ϕj(H) or ϕj(H) + 1. The second case where ϕj(K) = ϕj(H) + 1 is possible only
if αi and αj are not orthogonal roots,

(5) Assume that i, j ∈ I and i 6= j. If H ∈ H(Λk) with εi(H) > 0 and εj(eiH) =
εj(H) > 0, then eiejH = ejeiH and ϕi(ejH) = ϕi(H),

(6) Assume that i, j ∈ I and i 6= j. If H ∈ H(Λk) with ϕi(H) > 0 and ϕj(fiH) =
ϕj(H) > 0, then fifjH = fjfiH and εi(fjH) = εi(H),

(7) Assume that i, j ∈ I and i 6= j. If H ∈ H(Λk) with εj(eiH) = εj(H) + 1 > 1 and
εi(ejH) = εi(H) + 1 > 1, then eie

2
jeiH = eje

2
i ejH 6= 0, ϕi(ejH) = ϕi(e2

jeiH) and
ϕj(eiH) = ϕj(e2

i ejH),
(8) Assume that i, j ∈ I and i 6= j. If H ∈ H(Λk) with ϕj(fiH) = ϕj(H) + 1 > 1 and

ϕi(fjH) = ϕi(H)+1 > 1, then fif
2
j fiH = fjf

2
i fjH 6= 0, εi(fjH) = εi(f 2

j fiH) and
εj(fiH) = εj(f 2

i fjH).
by Remark 3.4, Lemmas 3.32 and 3.33. By Remark 3.4, (1) and (2) hold. Also, again by
Remark 3.4, we know that there is no i ∈ I such that εi(H) > 1 (resp. ϕi(H) > 1), so
(7) (resp. (8)) is true.

Let i, j ∈ I with i 6= j. Let H, K ∈ H(Λk). Assume K = eiH. By Definition 3.2,
εj(K) = εj(H) is obvious if j 6= i − 1, i + 1. Let H = (Λk, µ, 0, (Uij)i<j) and K =
(Λk, ξ, 0, (Vij)i<j). We know εi(H) = 1 from K 6= 0 and Remark 3.4, especially µi+1 = 1
and µi = 0. By Definition 3.2, if µi−1 = 0, then εi−1(K) = εi−1(H) + 1, otherwise
εi−1(K) = εi−1(H). Also, if µi+2 = 1, then εi+1(K) = εi+1(H) + 1, otherwise εi+1(K) =
εi+1(H). Then (3) holds.

Let i, j ∈ I with i 6= j. Let H ∈ H(Λk). Assume that εi(H) > 0 and εj(eiH) =
εj(H) > 0. By Definition 3.2, wt(eiejH) = wt(ejeiH) holds. Then, eiejH = ejeiH holds
by Proposition 3.8. By assumption and (3), we can assume j 6= i − 1, i + 1. Then, we
have ϕi(ejH) = ϕi(H) by Definition 3.2. Thus, (5) is satisfied.

By Propositions 3.12, 3.13, and (5), (6) immediately holds. □
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Theorem 3.35. Let λ ∈ P +. Then we have a crystal isomorphism Φ: H(λ) → B(λ)
such that Φ(Hλ) = bλ.

Proof. By Proposition 3.34 and Proposition 3.19, if H(λ) has the highest weight vector of
the highest weight λ, then we have H(λ) ∼= B(λ). By Lemma 3.32 and Lemma 3.31, they
hold. Then we have a crystal isomorphism Φ: H(λ) → B(λ) such that Φ(Hλ) = bλ. □

3.3. Direct Combinatorial Description of Crystal Structure on H(λ). In this
subsection, we describe the crystal structure of H(λ) directly. More specifically, we give
an explicit formula for computing the maps wt, ei, fi, ϕi, εi (i ∈ I) for H(λ).

Theorem 3.36. Let λ = ∑
i∈I miΛi. For H ∈ H(λ), the maps wt, fj, ej, ϕj, εj (j ∈ I)

are computed as follows. Fix j ∈ I.
(1) wt(H) = ∑

i∈I(µi − µi+1)Λi.
(2) For k ∈ {1, 2, . . . , j}, set ϕ

(k)
j (H) = max{ϕ

(k−1)
j (H) + Uk,j − Uk+1,j+1, 0}. Note

that we regard ϕ
(0)
j as 0. Then we have ϕj(H) = ϕ

(j)
j (H).

(3) For k ∈ {1, 2, . . . , j + 1}, set ε
(k)
j (H) = max{ε

(k−1)
j (H) + Uj+2−k,j+1 − Uj+1−k,j, 0}.

Note that we regard ε
(0)
j as 0. Then we have εj(H) = ε

(j+1)
j (H).

(4) If ϕj(H) = 0 then fjH = 0. If ϕj(H) 6= 0, let

k′ = min{k ∈ [n] | ∀l ≥ k, ϕ
(l)
j (H) > 0}.

Then we have fjH = (λ, µ′, 0, (U ′
kl)k<l) where

µ′ =
∑

k 6=j,j+1
µkεk + (µj − 1)εj + (µj+1 + 1)εj+1,

U ′
kl =


Ukl − 1 if k = k′, l = j,

Ukl + 1 if k = k′, l = j + 1,

Ukl else.

(5) If εj(H) = 0 then ejH = 0. If εj(H) 6= 0, let

k′ = min{k ∈ [n] | ∀l ≥ k, ε
(l)
j (H) > 0}.

Then we have ejH = (λ, µ′, 0, (U ′
kl)k<l) where

µ′ =
∑

k 6=j,j+1
µkεk + (µj + 1)εj + (µj+1 − 1)εj+1,

U ′
kl =


Ukl + 1 if k = j + 2 − k′, l = j,

Ukl − 1 if k = j + 2 − k′, l = j + 1,

Ukl else.

Proof. Let H = (λ, µ, 0, (Uij)i<j) ∈ H(λ). Let N = ∑
i∈I mi. Assume that Ψ(H) =

H1 ⊗ · · · ⊗ HN and Hk = (Λlk , µ(k), 0, (U (k)
ij )i<j) for k = 1, 2, . . . , N . Fix j ∈ I. By

Proposition 2.4, we have

ϕj(H) = max
{

ϕj(HN) +
N−1∑
k=ν

(ϕj(Hν) − εj(Hν+1)) | 1 ≤ ν ≤ N

}
.
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Suppose that ν0 is the largest integer such that

ϕj(H) = ϕj(HN) +
N−1∑
k=ν0

(ϕj(Hk) − εj(Hk+1)) .

Since ϕj(Hk) = max{µ
(k)
j − µ

(k)
j+1, 0} and εj(Hk) = max{µ

(k)
j+1 − µ

(k)
j , 0}, we have

ϕj(H) = ϕj(HN) +
N−1∑
k=ν0

(ϕj(Hk) − εj(Hk+1))

= ϕj(Hν0) +
N∑

k=ν0+1
(ϕj(Hk) − εj(Hk))

= max{µ
(ν0)
j − µ

(ν0)
j+1, 0} +

N∑
k=ν0+1

(
µ

(k)
j − µ

(k)
j+1

)
.

Note that, by the choice of ν0, we have ϕj(Hν0) = µ
(ν0)
j − µ

(ν0)
j+1 > 0 if ϕj(H) > 0.

If ϕ
(j)
j (H) > 0, then we can take k′ = min{k ∈ [n] | ∀l ≥ k, ϕ

(l)
j (H) > 0}. Then we

have

ϕ
(j)
j (H) =

j∑
k=k′

(Ukj − Uk+1,j+1) > 0

since ϕ
(k′−1)
j (H) = 0 by the choice of k′.

(1) By Definition 2.3, we have wt(H) = ∑N
k=1 wt(Hk) = ∑

i∈I(µi − µi+1)Λi.
(2) First, we consider the case where ϕj(H) = 0. By the choice of ν0, we have ν0 = N .

Then we have that µ
(N)
j − µ

(N)
j+1 ≤ 0 and ∑N

k=ν(µ(k)
j − µ

(k)
j ) ≤ 0 for ν = 1, 2. . . . , N . By the

above discussion, if ϕ
(j)
j (H) > 0, then there exists k′ such that ∑j

k=k′(Ukj −Uk+1,j+1) > 0.
Then, to show that ϕ

(j)
j (H) = 0, it suffices to show that

j∑
k=ν

(Ukj − Uk+1,j+1) ≤ 0 for all ν ∈ {1, 2, . . . , j}.

For ν ∈ {1, . . . , N} and k ∈ [n], if there exists l ∈ [n] such that U
(ν)
k,l > 0, then set jk,ν

to its j, otherwise set jk,ν to 0. Fix k′ ∈ {1, 2, . . . , j}. For k′ and j, set

Nk′,j =
{
k ∈ {1, . . . , N} | U

(k)
lj > 0, l ≥ k′

}
,

N ′
k′,j+1 =

{
k ∈ {1, . . . , N} | U

(k)
l,j+1 > 0, l > k′

}
.

If Nk′,j ∪N ′
k′,j+1 = ∅, then ∑j

k=k′ (Ukj − Uk+1,j+1) = 0 holds since Ukl = U
(1)
kl + · · ·+U

(N)
kl .

Suppose that Nk′,j ∪ N ′
k′,j+1 6= ∅. Let ν1 = min(Nk′,j ∪ N ′

k′,j+1). Suppose that there
exists k1 ∈ {k′, k′ + 1, . . . , j} such that jk1,ν1 = j. By the choice of ν1, jk,ν 6= j, j + 1 for
k′ ≤ k and ν < ν1. Also, by Remark 3.24 and Lemma 3.21, jk,ν 6= j, j + 1 for k < k1 and
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ν1 ≤ ν. Then we have
j∑

k=k′
(Ukj − Uk+1,j+1) =

j∑
k=k′

N∑
ν=1

U
(ν)
kj −

j∑
k=k′

N∑
ν=1

U
(ν)
k+1,j+1

=
j∑

k=k′

N∑
ν=ν1

U
(ν)
kj −

j∑
k=k′

N∑
ν=ν1

U
(ν)
k+1,j+1

=
j∑

k=1

N∑
ν=ν1

U
(ν)
kj −

j∑
k=1

N∑
ν=ν1

U
(ν)
k+1,j+1

=
N∑

ν=ν1

(
µj

(ν) − µ
(ν)
j+1

)
≤ 0.

Suppose that there exists k1 ∈ {k′ + 1, . . . , j} such that jk1,ν1 = j + 1. By the choice of
ν1, jk,ν 6= j, j + 1 for k′ ≤ k and ν < ν1. Also, by Remark 3.24 and Lemma 3.21, jk,ν 6= j

for k < k1 and ν1 < ν, and jk,ν 6= j + 1 for k < k1 and ν1 ≤ ν. From jk1,ν1 = j + 1,
k′ < k1, and Remark 3.24, if there exists k such that jk,ν1 = j, then k = k1 − 1 ≥ k′.
Then jk,ν1 6= j for k < k′. Then we similarly have the following.

j∑
k=k′

(Ukj − Uk+1,j+1) =
N∑

ν=ν1

(
µj

(ν) − µ
(ν)
j+1

)
≤ 0.

Next, we consider the case where ϕj(H) 6= 0. Suppose that there exists ν ′ ∈ {1, 2, . . . , N}
such that ϕj(Hν′) > 0 and let jk′,ν′ = j for some k′ ∈ {1, 2, . . . , j}. By Remark 3.24 and
Lemma 3.21, jk,ν 6= j, j + 1 for k < k′ and ν ′ ≤ ν. We know that j = jk′,ν′ < jk′+1,ν′ from
Remark 3.24, especially j + 1 < jk′+1,ν′ holds since we have µ

(ν′)
j+1 = 0 from ϕj(Hν′) > 0.

Then, jk,ν 6= j, j + 1 for k′ < k and ν ≤ ν ′. Suppose that jk′,ν 6= j for ν = 1, 2, . . . , ν ′ − 1.
Then we have

N∑
ν=ν′

(
µ

(ν)
j − µ

(ν)
j+1

)
=

N∑
ν=ν′

j∑
k=1

U
(ν)
kj −

N∑
ν=ν′

j+1∑
k=1

U
(ν)
k,j+1

=
N∑

ν=ν′

j∑
k=k′

U
(ν)
kj −

N∑
ν=ν′

j+1∑
k=k′+1

U
(ν)
k,j+1

=
N∑

ν=1

j∑
k=k′

U
(ν)
kj −

N∑
ν=1

j+1∑
k=k′+1

U
(ν)
k,j+1

=
j∑

k=k′
(Ukj − Uk+1,j+1) .

Since ϕj(H) 6= 0, then we have ϕj(Hν0) > 0. Then there exists k0 ∈ {1, 2, . . . , j} such
that jk0,ν0 = j. By the choice of ν0, for ν = 1, 2, . . . , ν0 − 1

ν0−1∑
k=ν

(ϕj(Hk) − εj(Hk+1)) = ϕj(Hν) − εj(Hν0) +
ν0−1∑

k=ν+1
(ϕj(Hk) − εj(Hk))

= ϕj(Hν) +
ν0−1∑

k=ν+1

(
µ

(k)
j − µ

(k)
j+1

)
≤ 0.

(3.5)

Note that εj(Hν0) = 0 holds from ϕj(Hν0) > 0 and Definition 3.2. If there exists ν ′
0 ∈

{1, 2, . . . , ν0 − 1} such that jk0,ν′
0

= j, then we have that jk,ν 6= j, j + 1 for k < k0 and
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ν ′
0 ≤ ν by Remark 3.24 and Lemma 3.21. Also, we know that jk,ν 6= j, j + 1 for k0 < k

and ν ≤ ν0. Then, we have that ϕj(Hν′
0
) > 0 and µ

(ν)
j+1 = 0 for ν < ν0. Moreover,

ϕj(Hν′
0
) +

ν0−1∑
k=ν′

0+1

(
µ

(k)
j − µ

(k)
j+1

)
= ϕj(Hν′

0
) +

ν0−1∑
k=ν′

0+1
µ

(k)
j > 0.

This is a contradiction for (3.5), and hence we have jk0,ν 6= j for all ν = 1, 2, . . . , ν0 − 1.
Then, by the discussion above and ϕj(H) > 0,

N∑
k=ν0

(
µ

(k)
j − µ

(k)
j+1

)
=

j∑
k=k0

(Ukj − Uk+1,j+1) > 0.

To show that ∑m
k=k0(Ukj − Uk+1,j+1) > 0 (m = k0, k0 + 1, . . . , j), suppose that there exists

m ∈ {k0, k0 +1, . . . , j} such that ∑m
k=k0(Ukj −Uk+1,j+1) ≤ 0. Let m0 be the largest among

such m. In this case, since we have
j∑

k=k0

(Ukj − Uk+1,j+1) =
j∑

k=m0+1
(Ukj − Uk+1,j+1) +

m0∑
k=k0

(Ukj − Uk+1,j+1) > 0,

then ∑j
k=m0+1(Ukj − Uk+1,j+1) > 0 holds, especially Um0+1,j − Um0+2,j+1 > 0. Then we

can take ν ′ ∈ {ν0 + 1, ν0 + 2, . . . , N} such that jm0+1,ν′ = j since we have that jk,ν 6= j for
k0 < k and ν < ν0. Let ξ0 be the smallest ν ∈ {ν0 + 1, . . . , N} such that jm0+1,ν = j. We
know that j = jm0+1,ξ0 < jm0+2,ξ0 , especially j + 1 < jm0+2,ξ0 holds since Um0+2,j+1 = 0.
Then ϕj(Hξ0) > 0 holds. By the choice of ξ0, jm0+1,ν 6= j for ν = 1, 2, . . . , ξ0 − 1. Then
by the above discussion,

N∑
k=ξ0

(
µ

(k)
j − µ

(k)
j+1

)
=

j∑
k=m0+1

(Ukj − Uk+1,j+1) .

Recall that jk,ν 6= j, j + 1 for k < m0 + 1 and ξ0 ≤ ν, or k0 < k and ν ≤ ν0, or k < k0
and ν0 ≤ ν. In addition, we know jk0,ν 6= j for k < m0 + 1 and ν < ν0. Thus,

m0∑
k=k0

(Ukj − Uk+1,j+1) =
N∑

ν=1

m0∑
k=k0

U
(ν)
kj −

N∑
ν=1

m0∑
k=k0

U
(ν)
k+1,j+1

=
ξ0−1∑
ν=ν0

m0∑
k=k0

U
(ν)
kj −

ξ0−1∑
ν=ν0

m0∑
k=k0

U
(ν)
k+1,j+1

=
ξ0−1∑
ν=ν0

j∑
k=1

U
(ν)
kj −

ξ0−1∑
ν=ν0

j∑
k=1

U
(ν)
k+1,j+1

=
ξ0−1∑
ν=ν0

(µ(ν)
j − µ

(ν)
j+1)

holds. Then, since we have
j∑

k=k0

(Ukj − Uk+1,j+1) =
j∑

k=m0+1
(Ukj − Uk+1,j+1) +

m0∑
k=k0

(Ukj − Uk+1,j+1)

=
N∑

k=ξ0

(
µ

(k)
j − µ

(k)
j+1

)
+

ξ0−1∑
k=ν0

(
µ

(k)
j − µ

(k)
j+1

)
> 0,
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then ∑N
ν=ξ0(µ(ν)

j − µ
(ν)
j+1) > 0. However, this is a contradiction to the choice of ν0. Thus,

we have ∑m
k=k0(Ukj − Uk+1,j+1) > 0 for all m = k0, k0 + 1, . . . , j. Also, from (3.5) we have

ν0−1∑
k=1

(µ(k)
j − µ

(k)
j+1) ≤ 0.

Then,

k0 = min{k ∈ [n] | ∀l ≥ k, ϕ
(l)
j (H) > 0}

holds. Therefore we have

ϕj(H) = ϕ
(j)
j (H).

(3) is proved in a similar way.
(4) By the above discussion and Proposition 2.4, we have

fjH = H1 ⊗ · · · ⊗ fjHν0 ⊗ · · · ⊗ HN .

Suppose ϕj(H) = 0. By the choice of ν0, we have ν0 = N . Then ϕj(H) = ϕj(HN) = 0
holds. By Remark 3.4, we have fjH = 0.

Suppose ϕj(H) 6= 0. By the above discussion, we know U
(ν0)
k0,j > 0. Then, by Defini-

tion 3.2, fiHν0 = (Λν0 , µ̃(ν0), 0, (Ũ (ν0)
kl )k<l) ∈ H(Λν0), where

Ũ
(ν0)
kl =


U

(ν0)
kl − 1 if (k, l) = (k0, j),

U
(ν0)
kl + 1 if (k, l) = (k0, j + 1),

U
(ν0)
kl otherwise,

µ̃
(ν0)
k =


µ

(ν0)
k − 1 if k = j,

µ
(ν0)
k + 1 if k = j + 1,

µ
(ν0)
k otherwise.

Thus the statement holds by the construction of Ψ. We can then prove (5) in a similar
manner. □

Example 3.37. Let n = 4, λ = µ = Λ1 + Λ3. The action of f3 on the Uq(sl4)-crystal
H(Λ1 + Λ3) is computed as follows. Let H = (Λ1 + Λ3, µ, (Ukl)k<l) ∈ H(Λ1 + Λ3), where
Ukl = 0 for 1 ≤ k < l ≤ 4. Then we have

ϕ
(1)
3 = max(U13 − U24, 0) = 0,

ϕ
(2)
3 = max(ϕ(1)

3 + U23 − U34, 0) = 0,

ϕ
(3)
3 = max(ϕ(2)

3 + U33 − U44, 0) = 1.

Thus, we have ϕ3(H) = 1 and k′ = 3, and so f3H is as shown in FIGURE 6.
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Figure 6. Action of f3 on the Uq(sl4)-crystal H(Λ1 + Λ3)

Proposition 3.38 below shows how other parameters built into H can help express-
ing the results in Theorem 3.36. A hive H is actually a collection of edge labels of all
elementary triangles in the hive graph (see [24, on the right of (2.3)]), satisfying some
compatibility conditions, and each (elementary) rhombus, consisting of two adjacent el-
ementary triangles, determines its gradient as the difference between the labels of its
parallel edges, Uij is the gradient of an upright rhombus as shown in FIGURE 1, and
Lij, although expressible in terms of the Uij’s, is the gradient of a left-leaning rhombus,
having the orientation shown on the left of FIGURE 7. Each right-leaning rhombus,
whose orientation is shown on the right of FIGURE 7, also gives a gradient Rij, express-
ible in terms of the Uij’s as in Proposition 3.38. Note that the Rij are not assumed to
be non-negative, as opposed to the case of LR-hives. Although the rhombi that would
correspond to Rij with i = j lie outside the hive triangle, it is convenient to include such
parameters.

(a) left-leaning (b) upright (c) right-leaning

Figure 7. Rhombus

Proposition 3.38. Let H = (λ, µ, 0, (Uij)i<j) ∈ H(λ). Set Rij = ∑i−1
k=1 Uk,j−1 −∑i

k=1 Ukj

for 1 ≤ i ≤ j ≤ n. Fix j ∈ I.
(1) For i = 1, 2, . . . , j+1, set R̃i,j+1 = Rj+1,j+1 −Ri,j+1. If there is no i ∈ {1, 2, . . . , j+

1} such that R̃i,j+1 > 0, then ϕj(H) = 0 holds. If there exists i ∈ {1, 2, . . . , j +
1} such that R̃i,j+1 > 0, let i0 be the maximum element such that R̃i0,j+1 =
max{R̃i,j+1 | i ∈ {1, 2, . . . , j + 1}}. Then, ϕj(H) = R̃i0,j+1 and

i0 = min{k ∈ [n] | ∀l ≥ k, ϕ
(l)
j (H) > 0}.

(2) If there is no i ∈ {1, 2, . . . , j + 1} such that Ri,j+1 < 0, then εj(H) = 0 holds. If
there exists i ∈ {1, 2, . . . , j+1} such that Ri,j+1 < 0, let i0 be the minimum element
such that Ri0,j+1 = min{Ri,j+1 | i ∈ {1, 2, . . . , j + 1}}. Then, εj(H) = −Ri0,j+1
and

i0 = min{k ∈ [n] | ∀l ≥ k, ε
(l)
j (H) > 0}.
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Proof. (1) Assume that there is no i ∈ {1, 2, . . . , j + 1} such that R̃i,j+1 > 0. Then we
have

j∑
k=i

Uk,j −
j+1∑

k=i+1
Uk,j+1 ≤ 0

for i ∈ {1, 2, . . . , j}. This means that ϕ
(k)
j (H) = 0 for k ∈ {1, 2, . . . , j}, especially

ϕj(H) = ϕ
(j)
j (H) = 0.

Assume that there is i ∈ {1, 2, . . . , j + 1} such that R̃i,j+1 > 0. Let i0 be the maximum
element such that R̃i0,j+1 = max{R̃i,j+1 | i ∈ {1, 2, . . . , j + 1}}. For i ∈ {1, 2, . . . , j + 1}
and l ∈ {1, 2, . . . , j + 1 − i}, we have

R̃i,j+1 − R̃i+l,j+1 =
i+l−1∑
k=i

Uk,j −
i+l∑

k=i+1
Uk,j+1.

By the choice of i0, for l = 1, 2, . . . , j + 1 − i0, R̃i0,j+1 − R̃i0+l,j+1 > 0 holds, and hence
ϕ

(k)
j (H) > 0 for k = i0, i0 + 1, . . . , j + 1. Also, by the choice of i0 again, for l =

1, 2, . . . , i0 − 1, R̃i0−l,j+1 − R̃i0,j+1 ≤ 0, and hence ϕ
(i0−1)
j (H) = 0. Thus, i0 = min{k ∈

[n] | ∀l ≥ k, ϕ
(l)
j (H) > 0}.

(2) Assume that there is no i ∈ {1, 2, . . . , j + 1} such that Ri,j+1 < 0. Then we have
i−1∑
k=1

Uk,j −
i∑

k=1
Uk,j+1 ≥ 0

for i ∈ {1, 2, . . . , j + 1}. This means that ε
(k)
j (H) = 0 for k ∈ {1, 2, . . . , j + 1}, especially

εj(H) = ε
(j+1)
j (H) = 0.

Assume that there is i ∈ {1, 2, . . . , j + 1} such that Ri,j+1 < 0. Let i0 be the minimum
element such that Ri0,j+1 = min{Ri,j+1 | i ∈ {1, 2, . . . , j + 1}}. For i ∈ {1, 2, . . . , j + 1}
and l ∈ {1, 2, . . . , j + 1 − i}, we have

Ri+l,j+1 − Ri,j+1 =
i+l−1∑
k=i

Uk,j −
i+l∑

k=i+1
Uk,j+1.

By the choice of i0, for l = 1, 2, . . . , i0−1, Ri0,j+1−Ri0−l,j+1 < 0 holds, and hence ε
(k)
j (H) >

0 for k = i0, i0 + 1, . . . , j + 1. Also, by the choice of i0 again, for l = 1, 2, . . . , j + 1 − i0,
Ri0+l,j+1 − Ri0,j+1 ≤ 0, and hence ε

(i0−1)
j (H) = 0. Thus, i0 = min{k ∈ [n] | ∀l ≥

k, ε
(l)
j (H) > 0}. □

4. Tensor product decomposition map

In this section, we show the tensor product decomposition map in terms of K-hives.
The decomposition map is computed by a graphical method, through the notion of path
operators on K-hives. In 4.1, the notion of path operators on K-hives is defined, and
some examples of them are given. In 4.2, the tensor product decomposition map is given
using path operators. The main reference is [20].

4.1. Path Operators. In this subsection, we define the notion of a path operator on
K-hives and give some examples. Then we investigate the relationship between such
operators and the crystal structure of H(λ).
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Definition 4.1. Let λ ∈ P +. Let H = (λ, µ, ν, (Uij)i<j) ∈ H(λ). For 1 ≤ j ≤ n, let
Lj denote the set of the thickened boundary edges and shaded upright rhombi shown in
FIGURE 8 (A), and let Rj denote the set of the thickened boundary edges and shaded
upright rhombus shown in FIGURE 8 (B). Let p = (pk)k=0,1...,m−1 be a sequence of upright
rhombus and boundary edges of H. The sequence p is called a path on H if p satisfies
the following: pk ∈ Ri ∩ Lj implies pk+1 ∈ Ri ∪ Lj for k = 0, 1, . . . , m − 2.

For λ, ν ∈ P +, let f be a map from H(λ) to ⊔
ν∈P + H(ν). Then f is called a path

operator if for H ∈ H(λ) there is a path p such that f(H) is obtained by reducing or
increasing boundary edge labels or rhombus gradients specified by the path p.

(a) (b)

Figure 8. Example of Li and Ri

Example 4.2. Let n = 4, λ = (6, 4, 1, 0). Let H = (λ, µ, ν, (Uij)i<j) ∈ H(λ) as shown in
FIGURE 9. Let p be a sequence of upright rhombus and boundary edges of H highlighted
in red on the left side of FIGURE 9, and let q be a sequence of upright rhombus and
boundary edges of H highlighted in red on the right side of FIGURE 9. Then p and q

are a path on H, respectively.

0
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0

1

1
1

0

,

0
0

0
0 6

4
1

0
3 4 3 2

2
0

1

1
1

0

.

Figure 9. An example of a path on a K-hive

We define an operator on H(λ), which is a path operator as we will see later (Propo-
sition 4.8). Note that for λ ∈ P + a partition (λ1, . . . , λn) representing λ is uniquely
determined by λn = 0.
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Definition 4.3. Let λ = ∑
k∈I λkεk ∈ P + with λ 6= 0. Set jι(H) = min{i ∈ [n] | U`(λ),i 6=

0}. The operator ι on H(λ) is defined as ι(H) = (ν, ξ, 0, (Vij)i<j), where

νk =

λk − 1 if k = `(λ),
λk otherwise,

ξk =

µk − 1 if k = jι(H),

µk otherwise,

Vij =

Uij − 1 if (i, j) = (`(λ), jι(H)),
Uij otherwise.

Remark 4.4. The operator ι is considered as a path operator as follows. Let H ∈ H(λ).
Then the action of ι is obtained by decreasing boundary edge labels and rhombus gradients
specified by a path by 1, hence ι is a path operator. Note that we have that ι(H) is a
K-hive by Proposition 4.8.

Example 4.5. Let n = 4. Let λ = (6, 4, 2, 0) ∈ P +. Let H = (λ, µ, ν, (Uij)i<j) ∈ H(λ)
be as shown on the left of FIGURE 10, and then the path for ι on H is as illustrated in
blue. Then the action of ι for H is as shown in FIGURE 10.

H
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0

1

1
1

0
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Figure 10. Action of ι

Example 4.6. Let n = 4. Let λ = (6, 4, 2, 0) ∈ P +. Let H = (λ, µ, ν, (Uij)i<j) ∈ H(λ)
be as shown to the left of FIGURE 11, and then the path for ι on H is as illustrated in
blue. Then the action of ι for H is as shown in FIGURE 11.
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Figure 11. Action of ι
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As we will see in Proposition 4.8, the result of the action of ι is a K-hive. Before this,
we prepare the following lemma.

Lemma 4.7. Let λ ∈ P + with λ 6= 0. Let H ∈ H(λ). Then, ι(H) is an integer hive.

Proof. Let λ = ∑
i∈I λiεi ∈ P + with λ 6= 0. Let H = (λ, µ, 0, (Uij)i<j) ∈ H(λ). Let

ν = ∑
i∈I νiεi, where ν`(λ) = λ`(λ) − 1, νk = λk if k 6= `(λ). By Definition 4.3, we can

assume that ι(H) = (ν, ξ, 0, (Vij)i<j).
To show that ι(H) is an integer hive, we need to show that

ξm −
m−1∑
k=1

Vkm = νm −
n∑

k=m+1
Vmk (m = 1, 2, . . . , n).(4.6)

If m 6= `(λ) and m 6= jι(H), then (4.6) is trivial by Definition 4.3. Suppose m = `(λ). If
`(λ) = jι(H), Definition 4.3 and the fact that H ∈ H(λ) show (4.6) as follows.

ξm −
m−1∑
k=1

Vkm = µm − 1 −
m−1∑
k=1

Ukm

= λm − 1 −
n∑

k=m+1
Umk

= νm −
n∑

k=m+1
Vmk.

If `(λ) 6= jι(H), we know that `(λ) < jι(H) by the choice of jι(H). Then it follows from
Definition 4.3 that

ξ`(λ) −
`(λ)−1∑

k=1
Vk,`(λ) = µ`(λ) −

`(λ)−1∑
k=1

Uk,`(λ),

ν`(λ) −
n∑

k=`(λ)+1
V`(λ),k = λ`(λ) − 1 −

 n∑
k 6=jι(H)

U`(λ),k + U`(λ),jι(H) − 1


= λ`(λ) −

n∑
k=`(λ)+1

U`(λ),k.

Since H ∈ H(λ), (4.6) holds. Suppose that m = jι(H) 6= `(λ). Since `(λ) < jι(H) and
H ∈ H(λ), we have the following from Definition 4.3.

ξjι(H) −
jι(H)−1∑

k=1
Vk,jι(H) = µjι(H) − 1 −

 ∑
k 6=`(λ)

Uk,jι(H) + U`(λ),jι(H) − 1


= µjι(H) −

jι(H)−1∑
k=1

Uk,jι(H)

= λjι(H) −
n∑

k=jι(H)+1
Ujι(H),k

= νjι(H) −
n∑

k=jι(H)+1
Vjι(H),k.

Then (4.6) holds. Thus, ι(H) is an integer hive. □
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Proposition 4.8. Let λ = ∑
i∈I λiεi ∈ P + with λ 6= 0. Let ν = ∑

i∈I νiεi ∈ P +, where
ν`(λ) = λ`(λ) − 1, νk = λk if k 6= `(λ). Then, ι is a map from H(λ) to H(ν).

Proof. Let λ = ∑
i∈I λiεi ∈ P + with λ 6= 0. Let H = (λ, µ, 0, (Uij)i<j) ∈ H(λ). Let

ν = ∑
i∈I νiεi ∈ P +, where ν`(λ) = λ`(λ) −1, νk = λk if k 6= `(λ). By Definition 4.3, we can

assume that ι(H) = (ν, ξ, 0, (Vij)i<j). By Lemma 4.7, we know that ι(H) is an integer
hive, and then it suffices to show that ι(H) is a K-hive.

By Definition 4.3, ν ∈ P +, ξ ∈ P , and Vkl ≥ 0 hold. For 1 ≤ i < j ≤ n, set
Lij = ∑j−1

k=1 Uik −∑j
k=1 Ui+1,k, L′

ij = ∑j−1
k=1 Vik −∑j

k=1 Vi+1,k. Then we show that L′
ij ≥ 0.

If i 6= `(λ) − 1, `(λ), j < jι(H), or (i, j) = (`(λ), jι(H)), we have L′
ij = Lij ≥ 0 since

Ukl = Vkl unless (k, l) = (`(λ), jι(H)). Suppose that i = `(λ) − 1. In this case, it suffices
to consider the case where j ≥ jι(H). By Definition 4.3, we have the following.

L′
`(λ)−1,j =

j−1∑
k=1

V`(λ)−1,k −
j∑

k=1
V`(λ),k

=
j−1∑
k=1

U`(λ)−1,k −

 ∑
k 6=jι(H)

U`(λ),k + U`(λ),jι(H) − 1


=

j−1∑
k=1

U`(λ)−1,k −
j∑

k=1
U`(λ),k + 1

= L`(λ)−1,j + 1 ≥ 0.

Suppose that i = `(λ). In this case, it suffices to consider the case where j > jι(H). By
Definition 4.3, we have the following.

L′
`(λ),j =

j−1∑
k=1

V`(λ),k −
j∑

k=1
V`(λ)+1,k

=
∑

k 6=jι(H)

U`(λ),k + (U`(λ),jι(H) − 1) −
j∑

k=1
U`(λ)+1,k

= L`(λ),j − 1.

By Remark 2.11 and the definition of `(λ), we have ∑j
k=1 U`(λ)+1,k = 0. It follows that

L`(λ),j =
j−1∑
k=1

U`(λ),k −
j∑

k=1
U`(λ)+1,k

=
∑

k 6=jι(H)

U`(λ),k + U`(λ),jι(H) > 0.

This implies L′
`(λ),j ≥ 0. Thus, L′

ij ≥ 0 holds for 1 ≤ i < j ≤ n.
Finally, we show that ξm −∑m−1

k=1 Vkm ≥ 0 for m ∈ [n]. If m 6= jι(H),

ξm = µm ≥
m−1∑
k=1

Ukm =
m−1∑
k=1

Vkm
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holds by Definition 4.3. Suppose m = jι(H). By the proof of Lemma 4.7, we have

ξjι(H) −
jι(H)−1∑

k=1
Vk,jι(H) =

µjι(H) − 1 −
(∑

k 6=`(λ) Uk,jι(H) + U`(λ),jι(H) − 1
)

if `(λ) < jι(H),

µjι(H) − 1 −∑jι(H)−1
k=1 Uk,jι(H) if `(λ) = jι(H),

=

µjι(H) −∑jι(H)−1
k=1 Uk,jι(H) if `(λ) < jι(H),

µjι(H) −∑jι(H)−1
k=1 Uk,jι(H) − 1 if `(λ) = jι(H).

If `(λ) = jι(H), by the definition of Uii (i ∈ [n]) and the choice of jι(H), we have

Ujι(H),jι(H) = µjι(H) −
jι(H)−1∑

k=1
Uk,jι(H) > 0.

Thus, we have ξm −∑m−1
k=1 Vkm ≥ 0 for m ∈ [n]. Therefore, ι(H) ∈ H(ν). □

We also define another operator on H(λ), which is a path operator as we will see later.
The operator is defined with a sequence of indices of H ∈ H(λ), and we define it first.
For n, m ∈ Z, let [n, m]Z = {l ∈ Z | n ≤ l ≤ m}.

Definition 4.9. Let λ ∈ P + and let H = (λ, µ, 0, (Uij)i<j) ∈ H(λ). Let a ∈ [n]. Set
(i0, j0) = (0, a). For k ≥ 1, set

ik =

ik−1 if k ∈ 2Z,

ik−1 + 1 if k ∈ 2Z + 1,

jk =

min{j ∈ [jk−1 + 1, n]Z | Uik−1,j > 0} if k ∈ 2Z,

jk−1 if k ∈ 2Z + 1.

Let N be the minimum k ∈ Z such that {j ∈ [jk−1 + 1, n]Z | Uik−1,j > 0} = ∅. Then set
jN = n + 1. Set pa,k = (ik, jk). Then we define

pa(H) = (pa,k)k=0,...,N .

Remark 4.10. Let λ ∈ P + and let H = (λ, µ, 0, (Uij)i<j) ∈ H(λ). Let a ∈ [n]. Let
pa(H) = (pa,m)m=0,...,N , where pa,m = (im, jm). Then, pa,m = (im, jm) for m 6= 0, N

represents the upright rhombus in Rim ∩ Ljm . Also, pa,0 = (0, a) represents the a-th
bottom boundary edge, and pa,N = (iN , n + 1) represents the iN -th right boundary edge.
Definition 4.11 defines an operator on H(λ) which is obtained by increasing or decreasing
the rhombus gradients and the boundary edge labels determined by pa(H).

Definition 4.11. Let λ ∈ P + and let H ∈ H(λ). Let a ∈ [n]. Let pa(H) = (pa,m)m=0,...,N ,
where pa,m = (im, jm). The operator ρa on H(λ) is defined by ρa(H) = (ν, ξ, 0, (Vkl)k<l),
where

νk =

λk + 1 if k = iN ,

λk otherwise,

ξk =

µk + 1 if k = j0,

µk otherwise,
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and for 1 ≤ k < l ≤ n,

Vkl =


Ukl − 1 if (k, l) = pa,m for some m ∈ 2Z,

Ukl + 1 if (k, l) = pa,m for some m ∈ 2Z + 1,

Ukl otherwise.

If iN = n, reduce νk, ξk(k ∈ [n]) by 1.

Remark 4.12. The operator ρa is considered as a path operator as follows. Let λ ∈ P +

and let H ∈ H(λ). Let a ∈ [n]. Then ρa(H) is obtained by increasing or decreasing
the boundary edge labels and the rhombus gradients specified by the path determined
by pa(H). Hence, ρa is a path operator. Note that ρa(H) is a K-hive according to
Proposition 4.18.

Example 4.13. Let n = 4 and λ = (6, 4, 1, 0) ∈ P +. Let H = (λ, µ, ν, (Uij)i<j) ∈ H(λ) as
shown on the left of FIGURE 12, and then the path on H specified by p3(H) is illustrated
in blue and red. Then the action of ρ3 for H is as shown in FIGURE 12.

H

0
0

0
0 6

4
1

0
3 4 2 2

2
0

1

1
1

0
ρ3−→

ρ3(H)

0
0

0
0 6

5
1

0
3 4 3 2

2
1

0

1
2

0

,

p3(H) = {(0, 3), (1, 3), (1, 4), (2, 4), (2, 5)}.

Figure 12. Action of ρ3

Example 4.14. Let n = 4 and λ = (6, 4, 1, 0) ∈ P +. Let H = (λ, µ, ν, (Uij)i<j) ∈ H(λ) as
shown on the left of FIGURE 12, and then the path on H specified by p1(H) is illustrated
in red and blue. Then the action of ρ1 for H is as shown in FIGURE 13.
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1
0

1

0
1

0

,

p1(H) = {(0, 1), (1, 1), (1, 2), (2, 2), (2, 3), (3, 3), (3, 5)}.

Figure 13. Action of ρ1
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In Examples 4.13, 4.14, we can confirm that the action of ρa generates a K-hive. As
we will see in the following, this observation holds in general.

Lemma 4.15. Let λ ∈ P + and H ∈ H(λ). Let a ∈ [n] and pa(H) = (pa,m)m=0,1,...,N ,
where pa,m = (im, jm). Suppose iN = n. Then ρa(H) is an integer hive.

Proof. Let λ ∈ P + and let H = (λ, µ, 0, (Uij)i<j) ∈ H(λ). Let a ∈ [n]. Let pa(H) =
(pa,m)m=0,...,N , where pa,m = (im, jm). Suppose iN = n. Let ρa(H) = (ν, ξ, 0, (Vij)i<j). We
show that

ξm −
m−1∑
k=1

Vkm = νm −
n∑

k=m+1
Vmk (m = 1, 2, . . . , n).(4.7)

By Definition 4.11, we have νk = λk if k = n, otherwise νk = λk − 1, and ξk = µk if
k = a, otherwise ξk = µk − 1. Since iN = n, ik = jk for k ∈ [0, N ]Z ∩ (2Z + 1), and
ik = jk − 1 for k ∈ [0, N ]Z ∩ 2Z by Definition 4.9. In particular, a = 1 holds. This implies
that ∑m−1

k=1 Vkm = ∑m−1
k=1 Ukm − 1 and ∑n

k=m+1 Vmk = ∑n
k=m+1 Umk − 1. Then we have

ξm −
m−1∑
k=1

Vkm = µm −
m−1∑
k=1

Ukm,

νm −
n∑

k=m+1
Vmk = λm −

n∑
k=m+1

Umk.

Since H ∈ H(λ), we have (4.7). □

Lemma 4.16. Let λ ∈ P + and H ∈ H(λ). Let a ∈ [n]. Let pa(H) = (pa,m)m=0,1,...,N ,
where pa,m = (im, jm). Suppose iN 6= n. Then ρa(H) is an integer hive.

Proof. Let λ ∈ P + and let H = (λ, µ, 0, (Uij)i<j) ∈ H(λ). Let a ∈ [n]. Let pa(H) =
(pa,m)m=0,...,N , where pa,m = (im, jm). Suppose iN 6= n. Let ρa(H) = (ν, ξ, 0, (Vij)i<j). We
show that

ξm −
m−1∑
k=1

Vkm = νm −
n∑

k=m+1
Vmk (m = 1, 2, . . . , n).(4.8)

By Definition 4.11, we have νk = λk + 1 if k = iN , otherwise νk = λk, and ξk = µk + 1
if k = a, otherwise ξk = µk. We first consider the left side of (4.8). If m = a, then

a−1∑
k=1

Vka =


∑a−1

k=1 Uka + 1 if a 6= 1,∑a−1
k=1 Uka otherwise

since V1a = U1a + 1 and Vka = Uka if k 6= 1. Suppose m 6= a. If there exists l ∈ [0, N ]Z
such that jl = m, let l0 be the smallest such l. It follows from Definition 4.9 that l0 ∈ 2Z,
(il0+1, jl0+1) = (il0 + 1, jl0), and jl 6= m if k 6= l0, l0 + 1. This implies that

m−1∑
k=1

Vkm =


∑m−1

k=1 Ukm − 1 if il0 = m − 1,∑m−1
k=1 Ukm otherwise.

Note that the case where m = a and a = 1 and the case where m 6= a and il0 = m − 1
means that there is l ∈ [0, N ]Z such that il = jl = m. Then we have

ξm −
m−1∑
k=1

Vkm =

µm −∑m−1
k=1 Ukm + 1 if there is l such that il = jl,

µm −∑m−1
k=1 Ukm otherwise.
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Then we consider the right side of (4.8). If m = iN , then
n∑

k=iN +1
ViN ,k =


∑n

k=iN +1 UiN ,k if jN−1 = iN ,∑n
k=iN +1 UiN ,k + 1 otherwise.

Note that iN−1 = iN holds by Definition 4.9. Suppose m 6= iN . If there exists k ∈ [0, N ]Z
such that ik = m, let k0 be the smallest such k. It follows from Definition 4.9 that
k0 ∈ 2Z + 1, (ik0+1, jk0+1) = (ik0 , jk0+1), and ik 6= m if k 6= k0, k0 + 1. This implies that

n∑
k=m+1

Vm,k =


∑n

k=m+1 Um,k − 1 if jk0 = m,∑n
k=m+1 Um,k otherwise.

Note that the case where m = iN and jN−1 = iN and the case where m 6= iN and jk0 = m

means that there is k ∈ [0, N ]Z such that ik = jk = m. Then we have

νm −
n∑

k=m+1
Vm,k =

λm −∑n
k=m+1 Um,k + 1 if there is k such that ik = jk = m,

λm −∑n
k=m+1 Um,k otherwise.

Thus, we have (4.8). □

By Lemmas 4.15, 4.16, we immediately obtain the following.

Lemma 4.17. Let λ ∈ P + and H ∈ H(λ). Let a ∈ [n]. Then ρa(H) is an integer hive.

Proposition 4.18. Let λ ∈ P +. Let a ∈ [n]. Then we have that ρa is a map from H(λ)
to ⊔ν∈P + H(ν).

Proof. Let λ = ∑
i∈I λiεi ∈ P +. Let a ∈ [n]. We show that for all H ∈ H(λ) there

exist ν ∈ P + such that ρa(H) ∈ H(ν). Fix H = (λ, µ, 0, (Uij)i<j) ∈ H(λ). Let pa(H) =
(pa,m)m=0,...,N , where pa,m = (im, jm). Let ρa(H) = (ν, ξ, 0, (Vij)i<j). By Lemma 4.26, we
know ρa(H) is an integer hive. Then we show that ρa(H) is a K-hive.

First, we show ν ∈ P +. If iN = n, then ν ∈ P + is trivial. Suppose iN 6= n. It suffices
to show that νiN −1 ≥ νiN

, which implies that λiN −1 > λiN
. Suppose λiN −1 = λiN

. By the
choice of pa,iN

, UiN ,j = 0 if j > jN−1. Then we have that

λiN
=

n∑
k=1

UiN ,j =
jN−1∑
k=1

UiN ,j.

Note that iN−1 = iN − 1 holds by Definition 4.9. For 1 ≤ i < j ≤ n, set Lij =∑j−1
k=1 Uik −∑j

k=1 Ui+1,k. It follows that

LiN−1,jN−1 =
jN−1−1∑

k=1
UiN−1,k −

jN−1∑
k=1

UiN−1+1,k

=
jN−1−1∑

k=1
UiN −1,k −

jN−1∑
k=1

UiN ,k

=
jN−1−1∑

k=1
UiN −1,k − λiN

< λiN −1 − λiN
= 0.

This is a contradiction for H ∈ H(λ). Then we obtain λiN −1 > λiN
, hence we have

νiN −1 ≥ νiN
. By Definition 4.9 and Definition 4.11, ξ ∈ P and Vij ≥ 0 is clear.
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For 1 ≤ i < j ≤ n, set L′
ij = ∑j−1

k=1 Vik − ∑j
k=1 Vi+1,k. Next, we show that L′

ij ≥ 0. If
i > iN , then Vij = Uij (i < j) by Definition 4.11, hence L′

ij = Lij (i < j). If i = iN , then∑j−1
k=1 ViN ,k = ∑j−1

k=1 UiN ,k +1 if j − 1 ≥ jN−1, otherwise ∑j−1
k=1 ViN ,k = ∑j−1

k=1 UiN ,k +1. Then
L′

iN ,j ≥ LiN ,j ≥ 0 holds. Suppose i < iN . In this case, from Definition 4.9 it follows that
there exists k ∈ [0, N ]Z such that ik = i. Let k0 be the smallest such k. For l = 1, 2, 3,
set kl = k0 + l. By Definition 4.11, k0 ∈ 2Z + 1, ik0 = ik1 = i, ik2 = ik3 = i + 1, and
jk0 < jk1 = jk2 < jk3 holds. Then we have the following.

j−1∑
k=1

Vik =


∑j−1

k=1 Uik + 1 if jk0 < j ≤ jk1 ,∑j−1
k=1 Uik otherwise,

j∑
k=1

Vi+1,k =


∑j−1

k=1 Uik + 1 if jk1 ≤ j < jk3 ,∑j−1
k=1 Uik otherwise.

Hence, L′
ij ≥ 0 is clear unless jk1 < j < jk3 . Suppose that jk1 < j < jk3 . In this case,

L′
ij = Lij − 1, and then we would like to show Lij > 0. By the construction of pa(H), we

know that Ui+1,j = 0 if jk1 < j < jk3 and Ui,jk1
> 0. It follows that

Lij =
j−1∑
k=1

Uik −
j∑

k=1
Ui+1,k

=
j−1∑
k=1

Uik −
jm1∑
k=1

Ui+1,k

> Li,jk1
≥ 0.

Thus, L′
ij ≥ 0 holds for 1 ≤ i < j ≤ n.

Finally, we show that ξm −∑m−1
k=1 Vkm ≥ 0 for m ∈ [n]. If iN 6= n, then ξm −∑m−1

k=1 Vkm ≥
µm − ∑m−1

k=1 Ukm holds by the proof of Lemma 4.17. If iN = n, then ik = jk holds for
k ∈ [0, N ]Z ∩ (2Z + 1) by Definition 4.9. In particular, a = 1 holds. It follows that
Umm = µm −∑m−1

k=1 Ukm > 0, hence Vmm = ξm −∑m−1
k=1 Vkm ≥ 0 holds. Therefore, ρa(H)

is a K-hive. □

Remark 4.19. By Remark 2.13, the operator ρa can be viewed as an analogue to the
operation for a semi-standard tableau which inserts a box with a into the 1st row, then
move the leftmost box in the 1st row containing a number greater than a to the 2nd row,
and so on. This means that ρa is an analogue of the insertion algorithm in K-hives.

There exists a path operator which can be viewed as a reverse operator of ρa defined
as follows.

Definition 4.20. Let λ ∈ P +. Let H = (λ, µ, 0, (Uij)i<j) ∈ H(λ). If λ 6= 0, then let
b ∈ {i ∈ I | λi 6= 0} ∪ {n}, otherwise let b = n. Set (̄i0, j̄0) = (b, n + 1). For k ≥ 1, set

īk =

īk−1 − 1 if k ∈ 2Z,

īk−1 if k ∈ 2Z + 1,

j̄k =

j̄k−1 if k ∈ 2Z,

max{j ∈ [1, j̄k−1 − 1]Z | Uīk−1,j > 0} if k ∈ 2Z + 1.
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Let M be the minimum k ∈ [0, M ]Z such that ik = 0. Set p̄b,k = (̄ik, j̄k). Then we define

p̄b(H) = (p̄b,k)k=0,...,M .

Remark 4.21. Let λ ∈ P +. Let H = (λ, µ, 0, (Uij)i<j) ∈ H(λ). If λ 6= 0, then let
b ∈ {i ∈ I | λi 6= 0} ∪ {n}, otherwise let b = n. Let p̄b(H) = (p̄b,m)m=0,1,...,M , where
p̄b,m = (̄im, j̄m). Then, p̄b,m = (̄im, j̄m) for m 6= 0, M represents the upright rhombus
in Rīm

∩ Lj̄m
. Also, p̄b,0 = (b, n + 1) represents the b-th right boundary edge, and

p̄b,M = (0, j̄M) represents the j̄M -th bottom boundary edge. Definition 4.22 defines an
operator on H(λ) which is obtained by increasing or decreasing the rhombus gradients
and the boundary edge labels determined by p̄b(H).

Definition 4.22. Let λ ∈ P +. Let H = (λ, µ, 0, (Uij)i<j) ∈ H(λ). If λ 6= 0, then let
b ∈ {i ∈ I | λi 6= 0} ∪ {n}, otherwise let b = n. If b = n, then increase λk, µk (k ∈ [n])
by 1. Let p̄b(H) = (p̄b,m)m=0,1,...,M , where p̄b,m = (̄im, j̄m). An operator ρ̄b on H ∈ H(λ)
is defined by ρ̄b(H) = (ν, ξ, 0, (Vkl)k<l) as follows. Then

νk =

λk − 1 if k = ī0,

λk otherwise,

ξk =

µk − 1 if k = j̄M ,

µk otherwise,

and for 1 ≤ k < l ≤ n,

Vkl =


Ukl + 1 if (k, l) = p̄b,m for some m ∈ 2Z,

Ukl − 1 if (k, l) = p̄b,m for some m ∈ 2Z + 1,

Ukl otherwise.

Remark 4.23. The operator ρ̄b is considered as a path operator as follows. Let λ ∈ P +

and let H ∈ H(λ). If λ 6= 0, then let b ∈ {i ∈ I | λi 6= 0}∪{n}, otherwise let b = n. Then
ρ̄b(H) is obtained by increasing or decreasing the boundary edge labels and the rhombus
gradients specified by the path determined by p̄b(H). Therefore, ρ̄b is a path operator if
ρ̄b(H) is a K-hive. Note that ρ̄b(H) is a K-hive under some conditions (Proposition 4.27).

Example 4.24. Let n = 4 and λ = (6, 5, 1, 0) ∈ P +. Let H = (λ, µ, ν, (Uij)i<j) ∈ H(λ) as
shown on the left of FIGURE 14, and then the path on H specified by p̄2(H) is illustrated
in blue and red in the figure. Then the action of ρ̄2 for H is as shown in FIGURE 14.
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p̄2(H) = {(2, 5), (2, 4), (1, 4), (1, 3), (0, 3)}.

Figure 14. Action of ρ̄2

Example 4.25. Let n = 4 and λ = (6, 4, 3, 0) ∈ P +. Let H = (λ, µ, ν, (Uij)i<j) ∈ H(λ) as
shown on the left of FIGURE 15, and then the path on H specified by p̄3(H) is illustrated
in blue in the figure. Then the action of ρ̄3 for H is as shown in FIGURE 15.
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p̄3(H) = {(3, 5), (3, 3), (2, 3), (2, 2), (1, 2), (1, 1), (0, 1)}.

Figure 15. Action of ρ̄3

In Example 4.24, 4.25, the action of ρ̄2 generates a K-hive. Moreover, this action can
be viewed as an inverse operator of ρa, see Example 4.13, 4.14. As we see in the following,
this observation generally holds under some conditions.

Lemma 4.26. Let λ ∈ P +. If λ 6= 0, then let b ∈ {i ∈ I | λi 6= 0} ∪ {n}, otherwise let
b = n. Then, ρ̄b(H) is an integer hive.

Proof. Let λ ∈ P + and H = (λ, µ, 0, (Uij)i<j) ∈ H(λ). If λ 6= 0, then let b ∈ {i ∈ I | λi 6=
0}∪{n}, otherwise let b = n. Let ρ̄b(H) = (ν, ξ, 0, (Vij)i<j) and let p̄b(H) = (p̄b,m)m=0,...,M ,
where p̄b,m = (̄im, j̄m). Note that if b = n, then we consider λk, µk (k ∈ [n]) by increasing
by 1. By Definition 4.20, νk = λk − 1 if k = b otherwise νk = λk, and ξk = µk − 1 if
k = j̄M otherwise ξk = µk. We need to show that

ξm −
m−1∑
k=1

Vkm = νm −
n∑

k=m+1
Vmk (m = 1, . . . , n).(4.9)
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We first consider the left side of (4.9). If m = j̄M , then
j̄M −1∑
k=1

Vk,j̄M
=


∑j̄M −1

k=1 Uk,j̄M
− 1 if j̄M 6= 1,∑j̄M −1

k=1 Uk,j̄M
otherwise

since V1,j̄M
= U1,j̄M

− 1 and Vk,j̄M
= Uk,j̄M

if k 6= 1. Suppose m 6= jM . If there exists
l ∈ [0, M ]Z such that j̄l = m, let l0 be the smallest such l. It follows from Definition 4.20
that l0 ∈ 2Z+ 1, (̄il0+1, j̄l0+1) = (̄il0 − 1, j̄l0), and j̄l 6= m if l 6= l0, l0 + 1. This implies that

m−1∑
k=1

Vkm =


∑m−1

k=1 Ukm + 1 if īl0 = m,∑m−1
k=1 Ukm otherwise.

Note that the case where m = j̄M and j̄M = 1 and the case where m 6= j̄M and īl0 = m

implies that there is l ∈ [0, M ]Z such that īl = j̄l = m. Then we have

ξm −
m−1∑
k=1

Vkm =

µm −∑m−1
k=1 Ukm − 1 if there is l such that īl = j̄l = m,

µm −∑m−1
k=1 Ukm otherwise.

Then we consider the right side of (4.9). If m = b, then
n∑

k=m+1
Vbk =


∑n

k=b+1 Ubk + 1 if j̄1 = b,∑n
k=b+1 Ubk otherwise

since Vb,j̄1 = Ub,j̄1 − 1 and Vbl = Ubl if l 6= j̄1. Suppose m 6= b. If there exists k ∈ [0, M ]Z
such that īk = m, let k0 be the smallest such k. It follows from Definition 4.20 that
k0 ∈ 2Z, (̄ik0+1, j̄k0+1) = (̄ik0 , j̄k0+1), and j̄k 6= m if k = k0, k0 + 1. This implies that

n∑
k=m+1

Vmk =


∑n

k=m+1 Vmk + 1 if j̄k0+1 = m,∑n
k=m+1 Vmk otherwise.

Note that the case where m = b and j1 = b and the case where m 6= b, j̄k0+1 = m implies
that there is k ∈ [0, M ]Z such that ik = jk = m. Then we have

νm −
n∑

k=m+1
Vmk =

λm −∑n
k=m+1 Vmk − 1 if there is k such that ik = jk = m,

λm −∑n
k=m+1 Vmk otherwise.

Thus, we have Lemma 4.26. □

Proposition 4.27. Let λ = ∑
i∈I λiεi ∈ P +. If λ 6= 0, then let b ∈ {i ∈ I | λi 6= 0}∪{n},

otherwise let b = n. If b = n, consider λk (k ∈ [n]) by increasing by 1. Let ν = ∑
i∈I νiεi ∈

P +, where νb = λb − 1, νk = λk if k 6= b. Suppose that λb > λb+1. Then ρ̄b is a map from
H(λ) to H(ν).

Proof. Let ∑i∈I λiεi ∈ P + and let H = (λ, µ, 0, (Uij)i<j) ∈ H(λ). If λ 6= 0, then let
b ∈ {i ∈ I | λi 6= 0} ∪ {n}, otherwise let b = n. Let ρ̄b(H) = (ν, ξ, 0, (Vij)i<j) and let
p̄b(H) = (p̄b,m)m=0,...,M , where p̄b,m = (̄im, j̄m). Note that if b = n, then we consider
λk, µk (k ∈ [n]) by increasing by 1. Let ν = ∑

i∈I νiεi, then it follows from Definition 4.22
that νb = λb − 1 and νk = λk if k 6= b.

By Lemma 4.26, ρ̄b(H) is an integer hive. Suppose that λb > λb+1. Then we show that
ρ̄b(H) is a K-hive.

Since λ ∈ P + and λb > λb+1, we have ν ∈ P +. It follows from Definition 4.22 that
ξ ∈ P and Vij ≥ 0.
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For 1 ≤ k < l ≤ n, set Lkl = ∑l−1
m=1 Uml − ∑l

m=1 Uk+1,m, and L′
kl = ∑l−1

m=1 Vml −∑l
m=1 Vk+1,m. We would like to show L′

kl ≥ 0. If k > ī0, then Vkl = Ukl holds for k < l

by Definition 4.22. Then we see L′
kl = Lkl ≥ 0. Suppose k = ī0. By Definition 4.22, we

have that Vī0,j̄1 = Uī0,j̄1 − 1 and Vī0,l = Uī0,l if l 6= j̄1. Note that ī0 = ī1 by Definition 4.20.
Then we obtain the following.

L′
ī0,l =

l−1∑
m=1

Vī0,m −
l∑

m=1
Vī0+1,m

=


∑l−1

m=1 Uī0,m −∑l
m=1 Uī0+1,m if l − 1 < j̄1,∑l−1

m 6=j̄1
Uī0,m + (Uī0,j̄1 − 1) −∑l

m=1 Uī0+1,m if l − 1 ≥ j̄1,

=

Lī0,l if l − 1 < j̄1,

Lī0,l − 1 if l − 1 ≥ j̄1.

Since Uī0,m = 0 holds for m > j̄1 by the choice of j̄1,

λī0 =
n∑

m=1
Uī0,m =

j̄1∑
m=1

Uī0,m.

Then if l − 1 ≥ j̄1,

Lī0,l =
l−1∑

m=1
Uī0,m −

l∑
m=1

Uī0+1,m

=
j̄1∑

m=1
Uī0,m −

l∑
m=1

Uī0+1,m

= λī0 −
l∑

m=1
Uī0+1,m

> λī0 − λī0+1 > 0.

This implies L′
ī0,l ≥ 0. Suppose k < ī0. By construction of p̄b(H), there exists m ∈ Z

such that īm = k, let m0 be the smallest such m. For l = −2, −1, 1, set ml = m0 + l. By
Definition 4.20, m0 ∈ 2Z, īm0 = īm1 = k, īm−1 = īm−2 = k + 1, j̄m1 < j̄m0 = j̄m−1 < j̄m−2 .
By Definition 4.22, we have the following.

l−1∑
m=1

Vkm =


∑l−1

k=1 Uik − 1 if j̄m1 < l ≤ j̄m0 ,∑l−1
k=1 Uik otherwise,

l∑
m=1

Vk+1,m =


∑l

m=1 Uk+1,m − 1 if j̄m0 ≤ l < j̄m−2 ,∑l
m=1 Uk+1,m otherwise.

Therefore, L′
kl ≥ 0 is clear unless j̄m1 < l < j̄m0 . Suppose j̄m1 < l < j̄m0 . In this case,

L′
kl = Lkl − 1 holds, then it suffices to show that Lkl > 0. By the choice of j̄m0 , we know

that Ukl = 0 for j̄m1 < l < j̄m0 . Then we obtain

Lkl =
l−1∑

m=1
Ukm −

l∑
m=1

Uk+1,m

=
j̄m1∑
m=1

Ukm −
l∑

m=1
Uk+1,m.
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This implies that Lkl ≥ Lk,l′ if j̄m1 < l ≤ l′ ≤ j̄m0 . In particular, since Uk+1,j̄m0
> 0 by

the choice of m0, Lk,j̄m0 −1 > Lk,j̄m0
. Thus, we have Lkl ≥ 0 for 1 ≤ k < l ≤ n.

By the proof of Lemma 4.26, it suffices to check the case where there exists l ∈ [0, N ]Z
such that īl = j̄l = m. In this case, m ∈ 2Z + 1 holds by Definition 4.22, and hence
Umm > 0. Then µm − ∑m−1

k=1 Ukm > 0, which implies ξm − ∑m−1
k=1 Vkm ≥ 0. Therefore,

ρ̄b(H) is a K-hive. □

The relation between ρa and ρ̄b can be viewed as an inverse operator under some
conditions, as we see in the following. See Examples 4.13, 4.14, 4.24, 4.25.

Proposition 4.28. (1) Let λ ∈ P + and H ∈ H(λ). Let a ∈ [n] and pa(H) =
(pa,m)m=0,...,N , where pa,m = (im, jm). Set b = iN and K = ρa(H). Then, we
obtain ρ̄b(K) = H.

(2) Let ν ∈ P + and K ∈ H(ν). If λ 6= 0, then let b ∈ {i ∈ I | λi 6= 0} ∪ {n},
otherwise let b = n. Set H = ρ̄b(K), and let p̄b(K) = (p̄b,m)m=0,...,M , where
p̄b,m = (̄im, j̄m). Set a = j̄M . Suppose that H ∈ H(λ) for some λ ∈ P +. Then, we
obtain ρa(H) = K.

Proof. (1) Let λ ∈ P + and H = (λ, µ, 0, (Ukl)k<l) ∈ H(λ). Let a ∈ [n] and pa(H) =
(pa,m)m=0,...,N , where pa,m = (im, jm). Set K = ρa(H) and b = iN . Let K = (ν, ξ, 0, (Vkl)k<l) ∈
H(ν). Let p̄b(K) = (p̄b,m)m=1,...,M , where p̄b,m = (̄im, j̄m).

By Definition 4.11, we have νb = λb+1, νk = λk (k 6= b). We would like to show ρb(K) =
H, then it suffices to show that pa(H) = p̄b(K) by Definition 4.11 and Definition 4.22.
Note that if b = n, then we consider νk, ξk (k ∈ [n]) by increasing by 1. By the construction
of pa(H) and p̄b(K), we have N = 2iN and M = 2̄i0. By the choice of b, iN = ī0 = b

holds, and hence N = M . We claim pa,N−m = p̄b,m for m = 0, 1, . . . , N , and show this
by induction on m. By the definition of pa(H) and p̄b(K), jN = j̄0 = 0, and hence
pa,N = p̄b,0.

Suppose m ∈ 2Z>0 \ {N}. Note that N − m ∈ 2Z>0. By the induction hypothesis and
Definition 4.20,

iN−m = iN−m+1 − 1 = īm−1 − 1 = īm,

jN−m = jN−m+1 = j̄m−1 = j̄m.

Then pa,N−m = p̄b,m holds for m ∈ 2Z>0 \ {N}. If m = N , then

i0 = īN = 0,

j0 = j1 = j̄N−1 = j̄N

holds by the definition of pa(H) and p̄b(H). Then pa,0 = p̄b,N holds.
Assume that m ∈ 2Z≥0 + 1. In this case, N − m ∈ 2Z≥0 + 1. Also, note that im = im+1

and Uim+1,j = 0 if jm < j < jm+1 hold, and hence

jm = max{j ∈ [1, jm+1 − 1]Z | Uim+1,j 6= 0}.
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Then, by the induction hypothesis and Definition 4.20,

iN−m = iN−m+1 = īm−1 = īm,

jN−m = max{j ∈ [1, jN−m+1 − 1]Z | UiN−m+1,j 6= 0}
= max{j ∈ [1, j̄m−1 − 1]Z | Uīm−1,j 6= 0}
= j̄m.

Then we have pa,N−m = p̄b,m for m ∈ 2Z≥0 + 1, thus the claim holds for m = 0, 1, . . . , N .
Thus, pa(H) = p̄b(H) holds, and hence ρ̄b(K) = H.

(2) Let ν ∈ P + and K = (ν, ξ, 0, (Vkl)k<l) ∈ H(ν). If ν 6= 0, then let b ∈ {i ∈ I | νi 6=
0} ∪ {n}, otherwise let b = n. Set H = ρ̄b(K), and let p̄b(K) = (p̄b,m)m=0,...,M , where
p̄b,m = (̄im, j̄m). Note that if b = n, then we consider νk, ξk (k ∈ [n]) by increasing by 1.
Suppose H ∈ H(λ) for some λ ∈ P +. By Definition 4.22, we know that λb = νb − 1 and
λk = νk if k 6= b. Set a = j̄M . Let H = (λ, µ, 0, (Ukl)k<l). Let pa(H) = (pa,m)m=1,...,N ,
where pa,m = (im, jm).

To show ρa(H) = K, it suffices to show that p̄b(K) = pa(H) by Definition 4.11 and
Definition 4.22. Set L = min{M, N}. We claim that p̄b,M−m = pa,m for m = 0, 1, . . . , L.
By the construction of p̄b(K), pa(H) and the choice of a,

p̄b,M = (0, a) = pa,0.

Also, we have

īM−1 = īM + 1 = i0 + 1 = i1,

j̄M−1 = j̄M = j0 = j1,

hence we have p̄b,M−1 = pa,1.
Suppose m ∈ 2Z>0 \ {L}. Note that L − m ∈ 2Z>0. By the induction hypothesis, we

have im = im−1 = īN−m+1 = īN−m and

jm = max{j ∈ [jm−1 + 1, n]Z | Uim−1,j 6= 0}
= max{j ∈ [j̄N−m+1 + 1, n]Z | UīN−m+1,j 6= 0}
= j̄N−m.

Then p̄b,N−m = pa,m.
Suppose m ∈ 2Z>0 + 1. Note that N − m ∈ 2Z>0. By the induction hypothesis,

im = im−1 + 1 = īN−m+1 + 1 = īN−m,

jm = jm−1 = j̄N−m+1 = j̄N−m.

Then p̄b,M−m = pa,m holds for m = 0, 1, . . . , L − 1. By the definition of L, j̄M−L = n + 1
or jL = n + 1 holds. Since p̄b,M−m = pa,m for m = 0, 1, . . . , L − 1, we have j̄M−L =
jL = n + 1. This implies M = N . Thus, we have p̄b(K) = pa(H). Therefore, we obtain
ρa(H) = K. □

Now, we investigate the relation between path operators and the crystal structure of
H(λ).
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Lemma 4.29. Let λ ∈ P + with λ 6= 0. Let H ∈ H(λ). For i ∈ I and j ∈ [i], set
ϕ̂

(j)
i (H) = Uj,i − Uj+1,i+1 + ϕ

(j−1)
i (H). Then we have the following.

ϕi(ι(H)) =


ϕi(H) − 1 if jι(H) = i,

ϕi(H) + 1 if jι(H) = i + 1, ϕ̂
(`(λ)−1)
i (H) ≥ 0,

ϕi(H) otherwise.

Proof. Let λ ∈ P + with λ 6= 0 and let H = (λ, µ, 0, (Ukl)k<l) ∈ H(λ). Let ν ∈ P + and
let ι(H) = (ν, ξ, 0, (Vkl)k<l) ∈ H(ν). Fix i ∈ I. Note that it follows from Remark 2.11
that ϕi(H) = ϕ

(`(λ))
i (H) and ϕi(ι(H)) = ϕ

(`(λ))
i (ι(H)) since `(ν) ≤ `(λ). Since Vkl = Ukl

if (k, l) 6= (`(λ), jι(H)), we obtain ϕ
(k)
i (H) = ϕ

(k)
i (ι(H)) for k < `(λ) − 1.

Suppose jι(H) = i. In this case, U`(λ),i > 0 and U`(λ),i+1 = 0. Then the following holds.

ϕi(H) = max{U`(λ),i − U`(λ)+1,i+1 + ϕ
(`(λ)−1)
i (H), 0}

= U`(λ),i + ϕ
(`(λ)−1)
i (H) > 0.

Since jι(H) = i, we have ϕ
(`(λ)−1)
i (ι(H)) = ϕ

(`(λ)−1)
i (H). Then we obtain

ϕi(ι(H)) = max{V`(λ),i − V`(λ)+1,i+1 + ϕ
(`(λ)−1)
i (ι(H)), 0}

= max{U`(λ),i − 1 + ϕ
(`(λ)−1)
i (H), 0}

= U`(λ),i − 1 + ϕ
(`(λ)−1)
i (H).

Thus, ϕi(ι(H)) = ϕi(H) − 1 holds.
Suppose jι(H) = i + 1. In this case, U`(λ),i − U`(λ)+1,i+1 = 0 holds. Then we have

ϕi(H) = max{U`(λ)−1,i − U`(λ),i+1 + ϕ
(`(λ)−2)
i (H), 0}.

Also, the following holds.

ϕi(ι(H)) = max{V`(λ)−1,i − V`(λ),i+1 + ϕ
(`(λ)−2)
i (ι(H)), 0}

= max{U`(λ)−1,i − (U`(λ),i+1 − 1) + ϕ
(`(λ)−2)
i (H), 0}.

For i ∈ I and j ∈ [i], set ϕ̂
(j)
i (H) = Uj,i − Uj+1,i+1 + ϕ

(j−1)
i (H). Then we have ϕi(ι(H)) =

ϕi(H) + 1 if ϕ̂
(`(λ)−1)
i ≥ 0 otherwise ϕi(ι(H)) = ϕi(H).

Suppose jι(H) 6= i, i + 1. By Definition 4.3, Vki = Uki, Vk,i+1 = Uk,i+1 holds for k ∈ [n].
Thus, we have ϕi(H) = ϕi(ι(H)). □

Remark 4.30. Suppose jι(H) = i + 1. In this case, U`(λ),i = 0. Then ϕi(H) =
max{U`(λ)−1,i − U`(λ),i+1 + ϕ

(`(λ)−2)
i (H), 0}. Thus, if jι(H) = i + 1 and ϕi(ι(H)) = ϕi(H),

then ϕi(H) = 0 holds.

Lemma 4.31. Let λ ∈ P + with λ 6= 0. Let H ∈ H(λ). For i ∈ I and j ∈ [i], Set
ϕ̂

(j)
i (H) = Uj,i − Uj+1,i+1 + ϕ

(j−1)
i (H). Then we have the following.

εi(ι(H)) =

εi(H) + 1 if jι(H) = i + 1, ϕ̂
(`(λ)−1)
i (H) < 0,

εi(H) otherwise.
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Proof. Let λ ∈ P + with λ 6= 0 and let H ∈ H(λ). By Definition 4.3, we have

〈hi, wt(ι(H))〉 =


〈hi, wtH〉 − 1 if jι(H) = i,

〈hi, wtH〉 + 1 if jι(H) = i + 1,

〈hi, wtH〉 otherwise.

Then the statement follows from Definition 2.1 and Lemma 4.29. □

Lemma 4.32. Let λ ∈ P + and let H ∈ H(λ). Let a ∈ [n]. Then, for i ∈ I, we have the
following.

εi(ρa(H)) =


εi(H) + 1 if a = i + 1,

εi(H) − 1 if a = i, εi(H) > 0,

εi(H) otherwise.

Proof. Let λ ∈ P + and let H = (λ, µ, 0, (Ukl)k<l) ∈ H(λ). Let a ∈ [n] and let pa(H) =
(pa,m)m=0,1,...,N , where pa,m = (ik, jk). Let ρa(H) = (ν, ξ, 0, (Vkl)k<l) ∈ H(ν) for ν ∈ P +.

Suppose a = i + 1. By Definition 4.11, Vki = Uki for k ∈ [n]. Also, if k = 1 then
Vk,i+1 = Uk,i+1 +1 otherwise Vk,i+1 = Uk,i+1 holds. It follows that ε

(k)
i (ρi+1(H)) = ε

(k)
i (H)

for k ≤ i. Then we have

εi(ρi+1(H)) = ε
(i+1)
i (ρi+1(H))

= max{V1,i+1 + ε
(i)
i (ρi+1(H)), 0}

= max{U1,i+1 + 1 + ε
(i)
i (H), 0}

= U1,i+1 + ε
(i)
i (H) + 1

= εi(H) + 1.

Suppose that a = i and εi(H) > 0. By Definition 4.11, if k = 1 then Vk,i = Uk,i + 1
otherwise Vk,i = Uk,i holds. Suppose U1,i+1 = 0. In this case, Vk,i+1 = Uk,i+1 for k ∈ [n]
by Definition 4.11. It follows that ε

(k)
i (ρi(H)) = ε

(k)
i (H) if k ≤ i − 1. Since εi(H) > 0,

εi(H) = U2,i+1 − U1,i + ε
(i−1)
i (H) holds. Then we have

εi(ρi(H)) = max{V1,i+1 + ε
(i)
i (ρi(H)), 0}

= max{V2,i+1 − V1,i + ε
(i−1)
i (ρi(H)), 0}

= max{U2,i+1 − (U1,i + 1) + ε
(i−1)
i (H), 0}

= U2,i+1 − U1,i + ε
(i−1)
i (H) − 1

= εi(H) − 1.

Suppose U1,i+1 > 0. By Definition 4.11, we have

Vk,i+1 =


U1,i+1 − 1 if k = 1,

U2,i+1 + 1 if k = 2,

Uk,i+1 otherwise.
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Then ε
(k)
i (ρi+1(H)) = ε

(k)
i (H) holds if k ≤ i − 1. Moreover, the following holds.

ε
(i)
i (ρi(H)) = max{V2,i+1 − V1,i + ε

(i−1)
i (ρi(H)), 0}

= max{U2,i+1 − U1,i + ε
(i−1)
i (H), 0}

= ε
(i)
i (H).

It follows that

εi(ρa(H)) = max{V1,a+1 + ε
(i)
i (ρa(H)), 0}

= max{U1,a+1 − 1 + ε
(i)
i (H), 0}

= εi(H) − 1.

Suppose that a = i and εi(H) = 0. By the above discussion, we have εi(ρa(H)) =
max{U2,a+1−U1,a+ε

(i−1)
i (H)−1, 0}. Since εi(H) = 0, we obtain U2,a+1−U1,a+ε

(i−1)
i (H) ≥

0. Thus, εi(ρa(H)) = 0 = εi(H).
Suppose that a 6= i, i + 1. If a > i + 1, then Vki = Uki, Vk,i+1 = Uk,i+1 holds for k ∈ [n].

Thus, we have εi(ρa(H)) = εi(H). Suppose that a < i. In this case, there are four cases
as follows.

(1) There is no k ∈ [0, N ]Z such that jk ∈ {i, i + 1},
(2) there exists k, l ∈ [0, N ]Z such that jk = i, jl = i + 1,
(3) there exists k ∈ [0, N ]Z such that jk = i and there is no l ∈ [0, N ]Z such that

jl = i + 1,
(4) there is no k ∈ [0, N ]Z such that jk = i and there exists l ∈ [0, N ]Z such that

jl = i + 1.
In case (1), Vki = Uki, Vk,i+1 = Uk,i+1 for k ∈ [n] by Definition 4.11. Thus, we have
εi(ρa(H)) = εi(H).

In case (2), let k0 be the smallest k ∈ [0, N ]Z such that jk = i. For l = 1, 2, 3, 4, set
kl = k0 + l. By Definition 4.9, we have that k0 ∈ 2Z, pa,k0 = (ik0 , i), pa,k1 = (ik0 + 1, i),
pa,k2 = (ik0 + 1, i + 1), pa,k3 = (ik0 + 2, i + 1), and jk4 > i + 1. By Definition 4.11,
Vkl = Ukl − 1 if (k, l) = pa,k0 , pa,k2 , and Vkl = Ukl + 1 if (k, l) = pa,k1 , pa,k3 . Then
Vk+1,i+1 − Vk,i = Uk+1,i+1 − Uk,i holds for k = 0, 1 . . . , i. Thus, εi(ρa(H)) = εi(H).

In case (3), let k0 be the smallest k ∈ [0, N ]Z such that jk = i. By Definition 4.9,
k0 ∈ 2Z, pa,k0 = (ik0 , i), pa,k0+1 = (ik0 + 1, i), and jk0+2 > i + 1. Note that jk0+2 > i + 1
means Uik0 +1,i+1 = 0 by Definition 4.9. Also, Uik0 ,i > 0 holds by the choice of k0. Then
we have

Vik0 +1,i+1 − Vik0 ,i = Uik0 +1,i+1 − (Uik0 ,i − 1)
= −Uik0 ,i + 1 ≤ 0.

Also, we have

Vik0 +2,i+1 − Vik0 +1,i = Uik0 +2,i+1 − (Uik0 +1,i + 1)
= Uik0 +2,i+1 − Uik0 +1,i − 1.

Note that ε
(k)
i (ρa(H)) = ε

(k)
i (H) if k < i − ik0 by Definition 4.11. Then we obtain

ε
(i−ik0 )
i (ρa(H)) ≤ ε

(i−ik0 )
i (H), and hence ε

(i+1−ik0 )
i (ρa(H)) = ε

(i+1−ik0 )
i (H). By Defini-

tion 4.11, we have εi(ρa(H)) = εi(H).
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In case (4), let l0 be the smallest l ∈ [0, N ]Z such that jl = i + 1. By Definition 4.9,
l0 ∈ 2Z+ 1, jl0−1 < i, pa,l0 = (il0 , i + 1), pa,l0+1 = (il0 + 1, i + 1), and jl0+2 > i + 1. By the
choice of l0, we have Uil0 ,i = 0. Then

Vil0+1,i+1 − Vil0 ,i = Uil0+1,i+1 + 1 − Uil0 ,i

= Uil0 ,i+1 + 1 > 1.

Note that ε
(l)
i (ρa(H)) = ε

(l)
i (H) if l < i + 1 − il0 by Definition 4.11. Then we obtain

ε
(i+1−il0 )
i (ρa(H)) ≥ ε

(i+1−il0 )
i (H) > 0. Also, we have

Vil0 ,i+1 − Vil0 −1,i = Uil0+1,i+1 − Uil0 ,i − 1.

Hence, ε
(i+2−il0 )
i (ρa(H)) = ε

(i+2−il0 )
i (H). Thus, by Definition 4.11, we have εi(ρa(H)) =

εi(H). □

Lemma 4.33. Let λ ∈ P + and let H ∈ H(λ). Let a ∈ [n]. Then, for i ∈ I, we have the
following.

ϕi(ρa(H)) =

ϕi(H) + 1 if a = i, εi(H) = 0,

ϕi(H) otherwise.

Proof. Let λ ∈ P + and let H ∈ H(λ). Let a ∈ [n]. By Definition 4.11,

〈hi, wt(ρa(H))〉 =


〈hi, wtH〉 + 1 if a = i,

〈hi, wtH〉 − 1 if a = i + 1,

〈hi, wtH〉 otherwise.

Thus, the statement holds from Definition 2.1 and Lemma 4.32. □

Remark 4.34. Since εi(H) = 0 implies that ∑m
k=1(Ui+2−k,i+1 − Ui+1−k,i) ≤ 0 for m ∈

[i + 1], we have ∑i
k=m(Uk,i − Uk+1,i+1) ≥ 0 for m ∈ [i + 1]. Also, we have U1,i+1 = 0. Then

if εi(H) = 0 and a = i, then ∑m
k=1(Uk,i −Uk+1,i+1) > 0 holds for m ∈ [i] by Definition 4.11.

This means kfiρa(H) = 1.

4.2. The tensor product decomposition. In this subsection, we define an operator Θ
on the tensor product of a set of K-hives and show that Θ is a crystal embedding. Then
we give the decomposition theorem.

Definition 4.35. Let λ, µ ∈ P + with λ 6= 0. Let H ⊗ K ∈ H(λ) ⊗ H(µ). Then Θ is
defined as an operator on H(λ) ⊗ H(µ) by Θ(H ⊗ K) = ι(H) ⊗ ρjι(H)(K).

Example 4.36. Let n = 4. Let λ = (3, 2, 1, 0), µ = (6, 4, 1, 0) ∈ P +. Let H ⊗ K ∈
H(λ) ⊗ H(µ) as shown in FIGURE 16. We have jι(H) = 3. Then the action of Θ for
H ⊗ K is as shown in FIGURE 16.
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Figure 16. Action of Θ

Proposition 4.37. Let λ, µ ∈ P + with λ 6= 0. Let ν ∈ P +, where νk = λk −1 if k = `(λ)
otherwise νk = λk. Then we obtain

Θ: H(λ) ⊗ H(µ) →
⊔

ξ∈P +

H(ν) ⊗ H(ξ).

Proof. Let λ, µ ∈ P + with λ 6= 0. Let ν ∈ P +, where νk = λk − 1 if k = `(λ) otherwise
νk = λk. Let H1 ⊗ H2 ∈ H(λ) ⊗H(µ). It follows from Proposition 4.8 that ι(H1) ∈ H(ν).
Set a = jι(H1). By Proposition 4.18, ρa(H2) ∈ H(ξ) for some ξ ∈ P +. Then Θ(H1 ⊗H2) ∈
H(ν) ⊗ H(ξ) holds. Since ξ ∈ P + is determined by the choice of H1 ⊗ H2, we have that
Θ is a map from H(λ) ⊗ H(µ) to ⊔ξ∈P + H(ν) ⊗ H(ξ). □

In the following, we show that Θ is a crystal embedding (Proposition 4.42).

Proposition 4.38. Let λ, µ ∈ P + with λ 6= 0. Let H1 ⊗ H2 ∈ H(λ) ⊗ H(µ). Then, the
following holds.

〈hi, wt(Θ(H1 ⊗ H2))〉 = 〈hi, wt(H1 ⊗ H2)〉 (i ∈ I)(4.10)

Proof. Let λ(1), λ(2) ∈ P + with λ(1) 6= 0 and let H1 ⊗ H2 ∈ H(λ(1)) ⊗ H(λ(2)). Set
K1 ⊗ K2 = Θ(H1 ⊗ H2). For ν(1), ν(2) ∈ P +, let K1 ⊗ K2 ∈ H(ν(1)) ⊗ H(ν(2)). Let
Hm = (λ(m), µ(m), 0, (U (m)

ij )i<j), Km = (ν(m), ξ(m), 0, (V (m)
ij )i<j). By Definition 4.3,

〈hi, wtK1〉 =


〈hi, wtH1〉 + 1 if i = jι(H1) − 1,

〈hi, wtH1〉 − 1 if i = jι(H1),

〈hi, wtH1〉 otherwise.

On the other hand,

〈hi, wtK2〉 =


〈hi, wtH2〉 − 1 if i = jι(H1) − 1,

〈hi, wtH2〉 + 1 if i = jι(H1),

〈hi, wtH2〉 otherwise.

Thus we have the following.

〈hi, wt(K1 ⊗ K2)〉 = 〈hi, wtK1〉 + 〈hi, wtK2〉
= 〈hi, wtH1〉 + 〈hi, wtH2〉
= 〈hi, wt(H1 ⊗ H2)〉.

□
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Proposition 4.39. Let λ, µ ∈ P + with λ 6= 0. Let H1 ⊗ H2 ∈ H(λ) ⊗ H(µ). Then the
following holds.

ϕi(H1 ⊗ H2) = ϕi(Θ(H1 ⊗ H2)) (i ∈ I),(4.11)
εi(H1 ⊗ H2) = εi(Θ(H1 ⊗ H2)) (i ∈ I).(4.12)

Proof. Let λ(m), ν(m) ∈ P + (m = 1, 2) with λ(1), ν(1) 6= 0. Let H1 ⊗H2 ∈ H(λ(1))⊗H(λ(2)),
and let Θ(H1 ⊗ H2) ∈ H(ν(1)) ⊗ H(ν(2)). Set K1 ⊗ K2 = Θ(H1 ⊗ H2). For m = 1, 2,
let Hm = (λ(m), µ(m), 0, (U (m)

ij )i<j), Km = (ν(m), ξ(m), 0, (V (m)
ij )i<j). If ϕi(H1 ⊗ H2) =

ϕi(K1 ⊗ K2) holds, then it follows from Proposition 4.38 that εi(H1 ⊗ H2) = εi(K1 ⊗ K2)
since

εi(K1 ⊗ K2) = ϕi(K1 ⊗ K2) − 〈hi, wt(K1 ⊗ K2)〉
= ϕi(H1 ⊗ H2) − 〈hi, wt(H1 ⊗ H2)〉
= εi(H1 ⊗ H2).

Then it suffices to show that ϕi(H1 ⊗ H2) = ϕi(K1 ⊗ K2).
First, we consider the case where i < jι(H1) − 1. By Definitions 4.11, 4.3, V

(m)
kl =

U
(m)
kl (m = 1, 2) if l = i, i + 1. Then we have ϕi(Hm) = ϕi(Km) (m = 1, 2). Thus, (4.11)

holds by Proposition 4.38.
Next, we consider the case where i = jι(H1) − 1. In this case, we have ϕi(K2) = ϕi(H2)

by Lemma 4.33. Suppose that ϕi(K1) = ϕi(H1) + 1. By Definitions 4.3, 4.11,

ϕi(K1) + 〈hi, wtK2〉 = ϕi(H1) + 1 + 〈hi, wtH2〉 − 1
= ϕi(H1) + 〈hi, wtH2〉.

Thus, (4.11) holds. Suppose that ϕi(K1) = ϕi(H1). By Remark 4.30, we have ϕi(H1) = 0.
This means

µ
(1)
i − µ

(1)
i+1 =

i∑
k=1

(U (1)
ki − U

(1)
k+1,i+1) < 0.

Then ξ
(1)
i − ξ

(1)
i+1 ≤ 0 holds by Definition 4.3. Then we have 〈hi, wtH1〉, 〈hi, wtK1〉 ≤ 0.

Hence, (4.11) holds since

ϕi(H1 ⊗ H2) = ϕi(H2) = ϕi(K2) = ϕi(K1 ⊗ K2).

Next, we consider the case where i = jι(H1). By Lemma 4.29, ϕi(K1) = ϕi(H1) − 1. By
Definition 4.3, 〈hi, wt(K2)〉 = 〈hi, wt(H2)〉 + 1. Then we have

ϕi(H1) + 〈hi, wt(H2)〉 = ϕi(K1) + 〈hi, wt(K2)〉.

If ϕi(K2) = ϕi(H2), then (4.11) is trivial. Suppose that ϕi(K2) = ϕi(H2) + 1. By
Lemma 4.33, we have εi(H2) = 0. Then ϕi(H2) = µ

(2)
i − µ

(2)
i+1 holds by Definition 2.1. It

follows that

ϕi(H1) + 〈hi, wtH2〉 = ϕi(H1) + µ
(2)
i − µ

(2)
i+1 > ϕi(H2).

Then ϕi(K1) + 〈hi, wtK2〉 ≥ ϕi(K2). Thus, we obtain

ϕi(H1 ⊗ H2) = ϕi(H1) + 〈hi, wtH2〉 = ϕi(K1) + 〈hi, wtK2〉 = ϕi(K1 ⊗ K2).
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Finally, we consider the case where i > jι(H1). In this case, ϕi(H1) = ϕi(K1) holds
by Lemma 4.29. By Definition 4.11, we have 〈hi, wt(H2)〉 = 〈hi, wt(K2)〉. Also, by
Lemma 4.33, ϕi(H2) = ϕi(K2) holds. Then we have ϕi(H1 ⊗ H2) = ϕi(K1 ⊗ K2). □

From Lemma 4.29, Lemma 4.32, and Definition 2.3, we can investigate the relation
between Θ and fi, ei.

Lemma 4.40. Let λ, µ ∈ P + with λ 6= 0. Let H1 ⊗ H2 ∈ H(λ) ⊗ H(µ). Then we have
the following.

(1) If fi(H1 ⊗ H2) = fiH1 ⊗ H2, then

fi

(
ι(H1) ⊗ ρjι(H1)(H2)

)
=

ι(H1) ⊗ fiρjι(H1)(H2) if jι(Hi) = i, ϕi(H1) = 1,

fiι(H1) ⊗ ρjι(H1)(H2) otherwise.

(2) If fi(H1 ⊗ H2) = H1 ⊗ fiH2, then

fi

(
ι(H1) ⊗ ρjι(H1)(H2)

)
= ι(H1) ⊗ fiρjι(H1)(H2).

(3) If ei(H1 ⊗ H2) = eiH1 ⊗ H2, then

ei

(
ι(H1) ⊗ ρjι(H1)(H2)

)
=

ι(H1) ⊗ eiρjι(H1)(H2) if jι(H1) = i + 1, ϕi(ι(H1)) = 0,

eiι(H1) ⊗ ρjι(H1)(H2) otherwise.

(4) If ei(H1 ⊗ H2) = H1 ⊗ eiH2, then

ei

(
ι(H1) ⊗ ρjι(H1)(H2)

)
= ι(H1) ⊗ eiρjι(H1)(H2).

Proof. Let λ(1) ∈ P + with λ(1) 6= 0 and let H1 = (λ(1), µ(1), 0, (U (1)
ij )i<j) ∈ H(λ(1)). Let

λ(2) ∈ P + and let H2 = (λ(2), µ(2), 0, (U (1)
ij )i<j) ∈ H(λ(2)).

(1) Suppose fi(H1 ⊗ H2) = fiH1 ⊗ H2. By Definition 2.3, ϕi(H1) > εi(H2) holds. If
jι(H1) = i and ϕi(H1) = 1, then ϕi(ι(H1)) = 0 ≤ εi(ρjι(H1)(H2)) holds.

Suppose jι(H1) 6= i. If jι(H1) 6= i + 1, ϕi(ι(H1)) = ϕi(H1) > εi(H2) = εi(ρjι(H1)(H2)). If
jι(H1) = i + 1, then ϕi(H1) = U

(1)
`(λ)−1,i − U

(1)
`(λ),i+1 + ϕ

(`(λ)−2)
i (H1) > 0. Then ϕi(ι(H1)) =

ϕi(H1) + 1 > εi(H2) + 1 = εi(ρjι(H1)(H2)).
Suppose ϕi(H1) 6= 1. Then we have ϕi(H1) > 1. It suffices to consider the case where

jι(H1) = i. In this case, ϕi(ι(H1)) = ϕi(H1) − 1. If εi(H2) > 0, then εi(ρjι(H1)(H2)) =
εi(H2) − 1, otherwise εi(ρjι(H1)(H2)) = εi(H2). Then ϕi(ι(H1)) > εi(ρjι(H1)(H2)) holds.
Thus, the statement holds by Definition 2.3.

(2) Suppose fi(H1 ⊗ H2) = H1 ⊗ fiH2. By Definition 2.3, ϕi(H1) ≤ εi(H2) holds.
By Lemmas 4.29, 4.32, we immediately obtain ϕi(ι(H1)) ≤ εi(ρjι(H1)(H2)). Thus, the
statement holds by Definition 2.3.

(3) Suppose ei(H1 ⊗ H2) = eiH1 ⊗ H2. By Definition 2.3, ϕi(H1) ≥ εi(H2) holds.
Suppose that jι(H1) = i + 1 and ϕi(ι(H1)) = 0. Since jι(H1) = i + 1, then we have
εi(ρjι(H1)(H2)) = εi(H2) + 1 and ϕi(ι(H1)) ≥ ϕi(H1) from Lemma 4.32 and Lemma 4.29.
Since ϕi(ι(H1)) = 0, we have ϕi(H) = 0. Hence, we obtain ϕi(ι(H1)) = ϕi(H1) = 0 <

εi(H2) + 1 = εi(ρjι(H1)(H2)).
If jι(H1) 6= i+1, then ϕi(ι(H1)) ≥ εi(ρjι(H1)(H2)) is clear by Lemmas 4.29, 4.32. Suppose

ϕi(ι(H1)) > 0. It suffices to consider the case where jι(H1) = i + 1. In this case, by
Lemma 4.29, ϕi(ι(H1)) = ϕi(H1) + 1. Then we have ϕi(ι(H1)) ≥ εi(ρjι(H1)(H2)) by
Lemmas 4.29, 4.32. Thus, the statement holds by Definition 2.3.
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(4) Suppose that ei(H1 ⊗ H2) = H1 ⊗ eiH2. By Definition 2.3, ϕi(H1) < εi(H2) holds.
By Lemmas 4.29, 4.32, we immediately obtain ϕi(ι(H1)) < εi(ρjι(H1)(H2)). Thus, the
statement holds by Definition 2.3. □

Proposition 4.41. Let λ(1), λ(2) ∈ P + with λ(1) 6= 0 and let H1 ⊗H2 ∈ H(λ(1))⊗H(λ(2)).
Then the following holds.

(Θ ◦ fi)(H1 ⊗ H2)) = (fi ◦ Θ)(H1 ⊗ H2)) (i ∈ I),(4.13)
(Θ ◦ ei)(H1 ⊗ H2)) = (ei ◦ Θ)(H1 ⊗ H2)) (i ∈ I).(4.14)

Proof. Let λ(m), ν(m) ∈ P + (m = 1, 2) with λ(1), ν(1) 6= 0. Let H1 ⊗H2 ∈ H(λ(1))⊗H(λ(2)),
and let Θ(H1 ⊗ H2) = H(ν(1)) ⊗ H(ν(2)).

If we show (Θ◦fi)(H1⊗H2) = (fi◦Θ)(H1⊗H2), then we can obtain (Θ◦ei)(H1⊗H2) =
(ei◦Θ)(H1⊗H2) as follows. Since (fi◦Θ)(ei(H1⊗H2)) = Θ(fi(ei(H1⊗H2)) = Θ(H1⊗H2)
and ei(fi(Θ(ei(H1 ⊗H2)))) = Θ(ei(H1 ⊗H2)), we have Θ(ei(H1 ⊗H2)) = ei(Θ(H1 ⊗H2)).
Then it suffices to show that (Θ ◦ fi)(H1 ⊗ H2) = (fi ◦ Θ)(H1 ⊗ H2).

Set K1 ⊗ K2 = Θ(H1 ⊗ H2). For m = 1, 2, let Hm = (λ(m), µ(m), 0, (U (m)
ij )), Km =

(ν(m), ξ(m), 0, (V (m)
ij )).

Suppose that (Θ ◦ fi)(H1 ⊗ H2) = ι(fiH1) ⊗ ρjι(fiH1)(H2). Note that ϕi(H1) > εi(H2)
by Definition 2.3. By Lemma 4.40, we have

(fi ◦ Θ)(H1 ⊗ H2) =

K1 ⊗ fiK2 if jK1 = i, ϕi(H1) = 1,

fiK1 ⊗ K2 otherwise.

Then we consider the case where (fi◦Θ)(H1⊗H2) = K1⊗fiK2. In this case, we have that
jK1 = i and ϕi(H1) = 1, and hence ϕi(K1) = 0 holds by Lemma 4.29. Since jK1 = i and
ϕi(H1) = 1, we have that ϕi(H1) = U

(1)
`(λ(1)),i = 1. This means kfiH1 = `(λ(1)), and hence

jι(fiH1) = i+1. Thus, we have K1 = ι(fiH1) by Definition 4.3. Let pi(H2) = (pi,k)k=1,...,N ,
where pi,k = (ik, jk). Let pi+1(H2) = (pi+1,k)k=1,...,M , where pi+1,k = (sk, tk). Then we
have

pi,0 = (0, i), pi,1 = (1, i), pi,2 = (1, j2),
pi+1,0 = (0, i + 1), pi+1,1 = (1, i + 1), pi+1,2 = (1, t2).

Since ϕi(H1) = 1, we have εi(H2) = 0 and, in particular, U
(2)
1,i+1 = 0. Then we obtain

j2 = min{j ∈ [i + 1, n]Z | U
(2)
1,j 6= 0}

= min{j ∈ [i + 2, n]Z | U
(2)
1,j 6= 0}

= t2.

Then we have pi,k = pi+1,k for k ≥ 2. It means M = N . Let ρi+1(H2) = (π(2), o(2), 0, (W (2)
kl )k<l).

Since pi,k = pi+1,k for k ≥ 2, we have that π(2) = ν(2) and W
(2)
kl = V

(2)
kl unless (k, l) =

(1, i), (1, i + 1). Thus, to show that fiK2 = ρi+1(H2), it suffices to show that kfiK2 = 1.
Since εi(H2) = 0, we have

i+1∑
k=m

(U (2)
i+2−k,i+1 − U

(2)
i+1−k,i) ≤ 0 (m = 1, 2, . . . , i + 1).
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This implies that
m∑

k=0
(U (2)

k+1,i+1 − U
(2)
k,i ) ≤ 0 (m = 0, 1, . . . , i).

Since U
(2)
1,i+1 = 0, we have

m∑
k=1

(U (2)
k,i − U

(2)
k+1,i+1) ≥ 0 (m = 1, 2, . . . , i).

Since εi(H2) = 0 and jι(H1) = i, we have εi(K2) = 0 by Lemma 4.32. Since U
(2)
1,i+1 = 0

and j2 > i + 1, we obtain V
(2)

1,i+1 = 0. Then we also have
m∑

k=1
(V (2)

k,i − V
(2)

k+1,i+1) ≥ 0 (m = 1, 2, . . . , i).

By Definition 4.11, we have V
(2)

1,i −V
(2)

2+1,i+1 = U
(2)
1,i −U

(2)
2+1,i+1 +1 > 0 and V

(2)
k,i −V

(2)
k+1,i+1 =

U
(2)
k,i − U

(2)
k+1,i+1 for k > 1. It follows that

m∑
k=1

(V (2)
k,i − V

(2)
k+1,i+1) > 0 (m = 1, 2, . . . , i).

This implies ϕ
(k)
i (K2) > 0 for k ≥ 1, then we have kfiK2 = 1. Hence, fiρjι(H1)(H2) =

ρjι(fiH)(H2) holds.
Next, we consider the case where (fi ◦ Θ)(H1 ⊗ H2) = fiK1 ⊗ K2. In this case,

ϕi(K1) > 0 holds. If jι(H1) 6= jι(fiH1), then jι(H1) = i, kfiH1 = `(λ(1)), and U
(1)
`(λ(1)),i = 1

hold by Theorem 3.36 and Definition 4.3. However, this leads to

ϕi(K1) = ϕi(H1) − 1 = U
(1)
`(λ(1)),i − 1 = 0.

Then we have jι(H1) = jι(fiH1). Hence, we obtain K2 = ρjι(fiH)(H2). To show that
fiK1 = ι(fiH1), it suffices to show that kfiH1 = kfiι(H1). Since jι(H1) = jι(fiH1), we have
jι(H1) 6= i, kfiH 6= `(λ(1)), or U

(1)
`(λ(1)),i 6= 1. Note that

ϕ
(k)
i (H1) = ϕ

(k)
i (ι(H1)) (k ∈ [`(λ(1)) − 2])

holds by Definition 4.3. If jι(H1) 6= i, we have

V
(1)

`(λ(1))−1,i
− V

(1)
`(λ(1)),i+1 ≥ U

(1)
`(λ(1))−1,i

− U
(1)
`(λ(1)),i+1,

V
(1)

`(λ(1)),i − V
(1)

`(λ(1))+1,i+1 = U
(1)
`(λ(1)),i − U

(1)
`(λ(1))+1,i+1.

Then ϕ
(k)
i (ι(H1)) ≥ ϕ

(k)
i (H1) holds for k ∈ [i]. If jι(H1) = i and U

(1)
`(λ(1)),i 6= 1, then we have

U
(1)
`(λ(1)),i > 1 by the choice of jι(H1). Then we obtain that

ϕ
(`(λ(1))−1)
i (ι(H1)) = ϕ

(`(λ(1))−1)
i (H1), ϕ

(`(λ(1)))
i (ι(H1)) = U

(1)
`(λ(1)),i − 1 > 0.

If jι(H1) = i, U
(1)
`(λ(1)),i = 1, and kfiH1 6= `(λ(1)), then ϕ

(`(λ(1))−1)
i (ι(H1)) = ϕ

(`(λ(1))−1)
i (H1) >

0. Also, we have

ϕ
(`(λ(1)))
i (ι(H1)) = U

(1)
`(λ(1)),i − 1 + ϕ

(`(λ(1))−1)
i (H1)

= ϕ
(`(λ(1))−1)
i (H1) > 0.

Hence, we have kfiH1 = kfiι(H1). Thus, fiK1 = ι(fiH1) holds by Definition 4.3.
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Suppose (Θ ◦ fi)(H1 ⊗ H2) = ι(H1) ⊗ ρjι(H1)(fiH2). By Lemma 4.40, we have (fi ◦
Θ)(H1 ⊗ H2) = K1 ⊗ fiK2. Note that ϕi(H1) ≤ εi(H2), ϕi(K1) ≤ εi(K2) holds by
Definition 2.3.

Suppose fiH2 = 0. If jι(H1) 6= i, then ϕi(K2) = ϕi(H2) = 0 holds by Lemma 4.33. If
jι(H1) = i, then ϕi(H1) > 0 holds. This implies that εi(H2) > 0 by Definition 2.3, and
hence ϕi(K2) = ϕi(H2) = 0 holds from Lemma 4.33. Then we obtain fiK2 = 0.

Suppose fiH2 6= 0. It suffices to show that ρjι(H1)(fiH2) = fiK2. Let pjι(H1)(H2) =
(pjι(H1),m)m=0,1,...,N , where pjι(H1),m = (im, jm). Let pjι(H1)(fiH2) = (p′

jι(H1),m)m=0,1,...,M ,
where p′

jι(H1),m = (i′
m, j′

m). Let fiH2 = (λ(2), µ(i,2), 0, (U (i,2)
kl )k<l). Note that it follows from

Theorem 3.36 that

U
(i,2)
kl = U

(2)
kl if (k, l) 6= (kfiH2 , i), (kfiH2 , i + 1).(4.15)

Suppose jι(H1) < i. Let m0 be the largest m ∈ [0, N ]Z such that jm < i. We have
pjι(H1),m = p′

jι(H1),m for m ∈ [0, m0]Z from (4.15). By Lemma 4.33, we know that

ϕi(K2) = ϕi(H2).(4.16)

Suppose im0 6= kfiH2 , kfiH2 − 1. By Definition 4.11, pjι(H1)(H2) = pjι(H1)(fiH2) holds.
Also, by Definition 4.11 and the choice of im0 , we have that

n∑
k=kfiH2

(V (2)
ki − V

(2)
k+1,i+1) =

n∑
k=kfiH2

(U (2)
ki − U

(2)
k+1,i+1).(4.17)

In particular, we obtain

V
(2)

kfiH2 ,i − V
(2)

kfiH2 +1,i+1 = U
(2)
kfiH2 ,i − U

(2)
kfiH2 +1,i+1 > 0.

Then it follows from (4.16) that kfiH2 = kfiK2 . Then fiK2 = ρjι(H1)(fiH2) holds.
Suppose im0 = kfiH2 − 1. By the definition of kfiH2 , U

(2)
kfiH2 −1,i − U

(2)
kfiH2 ,i+1 ≤ 0. If

U
(2)
kfiH2 −1,i = 0, then pjι(H1)(H2) = pjι(H1)(fiH2) is clear by Definition 4.11 and Theorem

3.36. If U
(2)
kfiH2 −1,i > 0, then U

(2)
kfiH2 ,i+1 > 0 holds. Also, we have U

(i,2)
kfiH2 −1,i, U

(i,2)
kfiH2 ,i+1 > 0

by Theorem 3.36. Then we obtain that

pjι(H1),m0+1 = p′
jι(H1),m0+1 = (kfiH2 − 1, i),

pjι(H1),m0+2 = p′
jι(H1),m0+2 = (kfiH2 , i),

pjι(H1),m0+3 = p′
jι(H1),m0+3 = (kfiH2 , i + 1),

pjι(H1),m0+4 = p′
jι(H1),m0+4 = (kfiH2 + 1, i + 1).

It follows that pjι(H1)(H2) = pjι(H1)(fiH2). Also, by Definition 4.11, we have that V
(2)

kfiH2 ,i −
V

(2)
kfiH2 +1,i+1 = U

(2)
kfiH2 ,i − U

(2)
kfiH2 +1,i+1 and (4.17). Hence, kfiH2 = kfiK2 holds from (4.16).

Then ρjι(H1)(fiH2) = fiK2 holds.
Suppose im0 = kfiH2 . If U

(i,2)
kfiH2 ,i > 0, pjι(H1)(H2) = pjι(H1)(fiH2) and (4.17) hold by

Definition 4.11. Also, U
(i,2)
kfiH2 ,i > 0 implies U

(2)
kfiH2 ,i > 1. By Definition 4.11, we have

V
(2)

kfiH2 ,i − V
(2)

kfiH2 +1,i+1 =

U
(2)
kfiH2 ,i − U

(2)
kfiH2 +1,i+1 if U

(2)
kfiH2 +1,i+1 > 0,

U
(2)
kfiH2 ,i − U

(2)
kfiH2 +1,i+1 − 1 otherwise.
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Then we have V
(2)

kfiH2 ,i − V
(2)

kfiH2 +1,i+1 > 0. It follows from (4.16) and (4.17) that kfiH2 =
kfiK2 . Thus, ρjι(H1)(fiH2) = fiK2. Suppose U

(i,2)
kfiH2 ,i = 0. This means U

(2)
kfiH2 ,i = 1, and

hence U
(2)
kfiH2 +1,i+1 = 0 holds by the definition of kfiH2 . Then we have

pjι(H1),m0+1 = (kfiH2 , i),
pjι(H1),m0+2 = (kfiH2 + 1, i),

pjι(H1),m0+3 = (kfiH2 + 1, jm0+3),

and

p′
jι(H1),m0+1 = (kfiH2 , i + 1),

p′
jι(H1),m0+2 = (kfiH2 + 1, i + 1),

p′
jι(H1),m0+3 = (kfiH2 + 1, j′

m0+3),

where jm0+3, j′
m0+3 > i + 1. From (4.15), jm0+3 = j′

m0+3 holds. In particular, we have
pjι(H1),m = p′

jι(H1),m for m ≥ m0 + 3. Since

ϕ
(kfiH2 )
i (H2) = U

(2)
kfiH2 ,i − U

(2)
kfiH2 +1,i+1 = 1

and ϕ
(kfiH2 )+1
i (H2) > 0, we have U

(2)
kfiH2 +1,i − U

(2)
kfiH2 +2,i+1 ≥ 0. It follows that

V
(2)

kfiH2 ,i − V
(2)

kfiH2 +1,i+1 = U
(2)
kfiH2 ,i − 1 − U

(2)
kfiH2 +1,i+1 = 0,

V
(2)

kfiH2 +1,i − V
(2)

kfiH2 +2,i+1 = U
(2)
kfiH2 +1,i + 1 − U

(2)
kfiH2 +2,i+1 > 0.

This implies kfiK2 = kfiH2 + 1. Then ρjι(H1)(fiH2) = fiK2 holds by Theorem 3.36 and
Definition 4.11.

Suppose jι(H1) = i. In this case, we have ϕi(H1) > 0, and hence εi(H2) > 0 holds. If
U

(2)
1,i+1 > 0, then pjι(H1)(H2) = pjι(H1)(fiH2) holds from U

(i,2)
1,i+1 > 0. By Definition 4.11,

ϕ
(k)
i (K2) = ϕ

(k)
i (H2) holds for k ∈ [i], and hence we have that (4.16) and kfiK2 = kfiH2 .

Then, we have ρjι(H1)(fiH2) = fiK2.
Suppose U

(2)
1,i+1 = 0, then keiH2 < i + 1. By the definition of keiH2 , we have

i+1−keiH2∑
k=m

(U (2)
ki − U

(2)
k+1,i+1) < 0 (m ∈ [0, i + 1 − keiH2 ]Z).

By Definition 4.11, we have that

V
(2)

k,i − V
(2)

k+1,i+1 =

U
(2)
1,i − U

(2)
2,i+1 + 1 if k = 1,

U
(2)
k,i − U

(2)
k+1,i+1 otherwise,

then we obtain that
i+1−keiH2∑

k=m

(V (2)
ki − V

(2)
k+1,i+1) ≤ 0 (m ∈ [0, i + 1 − keiH2 ]Z).

This implies ϕ(i+1−keiH2 )(K2) = ϕ
(i+1−keiH2 )
i (H2) = 0, and hence ϕ

(k)
i (K2) = ϕ

(k)
i (H2)

holds for k > i+1−keiH2 . By the definition of kfiH2 , we have kfiH2 ≥ i+1−keiH2 . Thus,
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kfiK2 = kfiH2 > 1. Then pjι(H1)(H2) = pjι(H1)(fiH2). Therefore, ρjι(H1)(fiH2) = fiK2
holds.

Suppose jι(H1) ≥ i + 1. By Definition 4.11 and (4.15), pjι(H1)(H2) = pjι(H1)(fiH2) holds.
Also, we have kfiK2 = kfiH2 . Thus, ρjι(H1)(fiH2) = fiK2 holds. □

From Propositions 4.38, 4.39, and 4.41, we know that Θ is a crystal morphism. Fur-
thermore, we have the following proposition.

Proposition 4.42. Θ is a crystal embedding.

Proof. From Propositions 4.38, 4.39, and 4.41, Θ is a crystal morphism. It then suffices to
show that Θ: H(λ)⊗H(µ)∪{0} → ⊔

ξ∈P + H(ν)⊗H(ξ)∪{0} is an embedding. For i = 1, 2,
let Hi = (λ(i), µ(i), 0, (U (i)

kl )k<l) ∈ H(λ(i)), Ki = (λ(i), ξ(i), 0, (V (i)
kl )k<l) ∈ H(λ(i)). Set a =

jι(H1) and b = jι(K1). Suppose that Θ(H1⊗H2) = Θ(K1⊗K2). Let Θ(H1⊗H2) ∈ H(ν(1))⊗
H(ν(2)). Then we have ι(H1) = ι(K1), ρa(H2) = ρb(K2). Let pa(H2) = (pa,m)m=0,1,...,N ,
where pa,m = (im, jm). Let pb(K2) = (pb,m)m=0,1,...,M , where pb,m = (sm, tm).

Suppose iN 6= n. By Definition 4.11, there exists c ∈ I such that ν(2)
c = λ(2)

c + 1,
ν

(2)
k = λ

(2)
k (k 6= c). It follows from Proposition 4.28 that ρ̄cρa(H2) = H2 and ρ̄cρb(K2) =

K2. Since ρa(H2) = ρb(K2), H2 = K2 holds. Suppose iN = n. By Definition 4.11,
ν

(2)
k = λ

(2)
k − 1 for k ∈ I. Let L = (λ, µ, 0, (Ukl)k<l), where λk = λ

(2)
k + 1, µk = µ

(2)
k + 1

for k ∈ [n], and Ukl = U
(2)
kl for 1 ≤ k < l ≤ n. Let L′ = (ν, ξ, 0, (Vkl)k<l), where

νk = λ
(2)
k + 1, ξk = ξ

(2)
k + 1 for k ∈ [n], and Vkl = V

(2)
kl for 1 ≤ k < l ≤ n. By the proof

of Proposition 4.28, ρ̄n(L) = H2 and ρ̄n(L′) = K2. Since ρa(H2) = ρb(K2), L = L′ holds.
Hence, we have H2 = K2. In particular, a = b holds.

Since ι(H1) = ι(K1), we have U
(1)
kl = V

(1)
kl if (k, l) 6= (`(λ(1)), jι(H1)), (`(λ(1)), jι(K1)).

Since a = b, we obtain U
(1)
kl = V

(1)
kl for 1 ≤ k < l ≤ n, and therefore µ(1) = ξ(1) holds.

This implies H1 = K1. Thus, we have H1 ⊗ H2 = K1 ⊗ K2. □

For H ⊗ K ∈ H(λ) ⊗ H(µ), let H ⊗ K be the highest weight vector of the connected
component that contains H ⊗ K. Let be a map from H(λ) ⊗ H(µ) to H(λ) ⊗ H(µ)
that maps H ⊗ K to H ⊗ K.

Theorem 4.43. Let λ, µ ∈ P + with λ 6= 0. Set N = ∑
i∈I λi. Let M(λ, µ) be the set of

highest weight vectors in H(λ) ⊗ H(µ). Then

( , ΘN) : H(λ) ⊗ H(µ) −→
⊔

L∈M(λ,µ)
H(wt(L))

H ⊗ K 7−→ (H ⊗ K, ΘN(H ⊗ K)).

is a crystal isomorphism. Note that the elements of the disjoint union are denoted by
pairs (L, H ′), where L ∈ M(λ, µ) and H ′ ∈ H(wt(L)).

Proof. Let λ, µ ∈ P +. Set N = ∑
i∈I λi. For H ⊗ K ∈ H(λ) ⊗ H(µ), let Θ(H ⊗ K) ∈

H(ν) ⊗ H(ξ). Let ν ∈ P +. By Definition 4.35, we have ∑i∈I νi = N − 1. Then we can
assume ΘN(H⊗K) ∈ H(0)⊗H(ξ). Then ΘN(H⊗K) can be viewed as ΘN(H⊗K) ∈ H(ξ).
In particular, the highest weight vector in H(ξ) is obtained by ΘN(H ⊗ K). Thus, by
Lemma 3.32 and Proposition 4.42, the statement holds. □
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5. Algorithms and Implementations for the Crystal of K-hives

In this section, we give a set of algorithms to compute the crystal structure on H(λ)
defined in Section 3 and show examples of the execution of the implementations of these
algorithms. In 5.1, a set of algorithms for computing the crystal structure on H(λ) is
given. In 5.2, examples of the execution of these algorithms by the Python implementation
named khive-crystal are shown. The main reference is [15].

5.1. Algorithms for crystal of K-hives. In this subsection, we give a set of algo-
rithms to compute the components of the crystal structure on H(λ) (λ ∈ P +) using two
approaches. One approach is based on Definition 3.26, which implies that the crystal
structure on H(λ) is regarded as a submodule of a tensor product of crystals of the form
H(Λk). The other approach is based on Theorem 3.36, which is a more direct combina-
torial description.

To consider algorithms, we regard H = (λ, µ, 0, (Uij)i<j) ∈ H(λ) as a hash table with
keys λ, µ, γ, and (Uij)i<j, where the value of λ is an array [λ1, λ2, . . . , λn], the value of µ

is an array [µ1, µ2, . . . , µn], the value of γ is an array [0, 0, . . . , 0], and the value of (Uij)i<j

is a two-dimensional array [[U12, U13, . . . ], [U23, . . . ], . . . , [Un−1,n]].
To give algorithms for the crystal structure on H(λ) based on Definition 3.26, we first

consider algorithms for the crystal structure on H(Λk) (k ∈ I). The maps fi (resp. ei)
(I ∈ I) for H(Λk) (k ∈ I) are computed by Algorithm 1 (resp. Algorithm 2). Note that
the maps wt, ϕi, εi (i ∈ I) are simply computed by Definition 3.2 as ∑k∈I(µk − µk+1)Λk,
max(µi − µi+1, 0), max(µi+1 − µi, 0), respectively for H = (Λk, µ, 0, (Uij)i<j) ∈ H(Λk).

Algorithm 1 Algorithm for fi on H(Λk)
Require: H = (Λk, µ, 0, (Uij)i<j) ∈ H(Λk), i ∈ I

Ensure: fiH

1: if max(µi − µi+1, 0) = 0 then
2: return 0
3: end if
4: Take k0 from {k ∈ [i] | Uk,i > 0}
5: µi := µi − 1
6: µi+1 := µi+1 + 1
7: Uk0,i := Uk0,i − 1
8: Uk0,i+1 := Uk0,i+1 + 1
9: return (Λk, µ, 0, (Uij)i<j)

Let us give an example of the execution of Algorithm 1.

Example 5.1. The action of fi on the Uq(sl4)-crystal H(Λ3) is computed as follows by
Algorithm 1. Let H = (Λ3, Λ3, (Ukl)k<l) ∈ H(Λ3), where Ukl = 0 for 1 ≤ k < l ≤ 4. Set
µ = Λ3. Note that Λ3 corresponds to the partition (1, 1, 1, 0). For i = 1, we have f1H = 0
since max(µ1 − µ2, 0) = 0. Also, for i = 2, we have f2H = 0 since max(µ2 − µ3, 0) = 0.
Let i = 3. In this case, max(µ3 − µ4, 0) = 1. Then we can proceed to the next step.
Since {k ∈ [3] | Uk,3 > 0} = {3}, k0 is uniquely determined to 3. Then, set ξ = µ, then
set ξ3 = µ3 − 1 = 0 and ξ4 = µ4 + 1 = 1. Also, set Vij = Uij, and set V3,3 = U3,3 − 1 = 0
and V3,4 = U3,4 + 1 = 1. Then we have fiH = (Λ3, ξ, 0, (Vij)i<j). See Fig. 17.
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Algorithm 2 Algorithm for ei on H(Λk)
Require: H = (Λ, µ, 0, (Uij)i<j) ∈ H(Λk), i ∈ I

Ensure: eiH

1: if max(µi+1 − µi, 0) = 0 then
2: return 0
3: end if
4: Take k0 from {k ∈ [i + 1] | Uk,i+1 > 0}
5: µi := µi + 1
6: µi+1 := µi+1 − 1
7: Uk0,i := Uk0,i + 1
8: Uk0,i+1 := Uk0,i+1 − 1
9: return (λ, µ, 0, (Uij)i<j)

0
0

0
0 1

1
1

0
1 1 1 0

0
0

0

0
0

0
3−→

0
0

0
0 1

1
1

0
1 1 0 1

0
0

0

0
0

1

Figure 17. Action of f3 on the Uq(sl4)-crystal H(Λ3)

Algorithms 1 and 2 generate results that correspond to Definition 3.2 as follows.

Proposition 5.2. For k ∈ I, let H ∈ H(Λk). Let i ∈ I.
(1) Let K be the result of Algorithm 1 with inputs H and i. Then, K = fiH,
(2) Let K be the result of Algorithm 2 with inputs H and i. Then, K = eiH.

Proof. For k ∈ I, let H ∈ H(Λk). Let i ∈ I. (1) Let K be the result of Algorithm 1 with
inputs H and i. By Lemma 3.1, k0 in Algorithm 1 is uniquely determined. Then we have
K = fiH from Definition 3.2. Similarly, (2) can be shown. □

For λ ∈ P +, the map Ψλ is computed by Algorithm 3.
The following is an example of the execution of Algorithm 3.

Example 5.3. Let n = 4, λ = (3, 2, 1, 0), and µ = (2, 3, 1, 0). Let H = (λ, µ, 0, (Uij)i<j) ∈
H(λ), where U12 = 1 and Uij = 0 if (i, j) 6= (1, 2) and i < j. Then Ψλ(H) is computed by
Algorithm 3 as follows. Set ν = `(λ) = 3. Let λ(2) = (λ(2)

1 , λ
(2)
2 , . . . , λ(2)

n ), where λ
(2)
k = 1

if k ∈ [ν] else λ
(2)
k = 0. Set U

(2)
ij = Uij for 1 ≤ i < j ≤ 4. Since min{l ∈ [4] | U1l > 0} = 1,

set U
(2)
11 = 1 and U

(2)
12 = U

(2)
13 = U

(2)
14 = 0. Since min{l ∈ [4] | U2l > 0} = 2, set U

(2)
22 = 1

and U
(2)
23 = U

(2)
24 = 0. Since min{l ∈ [4] | U3l > 0} = 3, set U

(2)
33 = 1 and U

(2)
34 = 0. Set

µ
(2)
1 = U

(2)
11 = 1, µ

(2)
2 = U

(2)
12 + U

(2)
22 = 1,

µ
(2)
2 = U

(2)
13 + U

(2)
23 + U

(2)
33 = 1, µ

(2)
4 = U

(2)
14 + U

(2)
24 + U

(2)
34 + U

(2)
44 = 0.
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Algorithm 3 Algorithm for Ψλ

Require: H = (λ, µ, 0, (Uij)i<j) ∈ H(λ)
Ensure: Ψλ(H)

1: for k = 1, 2, . . . , n do . Compute λ(2)

2: if k ∈ [1, `(λ)]Z then
3: λ

(2)
k = 1

4: else
5: λ

(2)
k = 0

6: end if
7: end for
8: λ(2) := (λ(2)

1 , λ
(2)
2 , . . . , λ(2)

n )
9: (U (2)

ij )i<j := (Uij)i<j . Compute (U (2)
ij )i<j

10: for i = 1, 2, . . . , n − 1 do
11: for j = i + 1, i + 2, . . . , n do
12: if j = min{l ∈ [n] | Uil > 0} then
13: U

(2)
ij := 1

14: else
15: U

(2)
ij := 0

16: end if
17: end for
18: end for
19: for k = 1, 2, . . . , n do . Compute µ(2)

20: µ
(2)
k := ∑i

l=1 U
(2)
li

21: end for
22: µ(2) := (µ(2)

1 , µ
(2)
2 , . . . , µ(2)

n )
23: for k = 1, 2, . . . , n do . Compute λ(1)

24: λ
(1)
k := λk − λ

(2)
k

25: end for
26: λ(1) := (λ(1)

1 , λ
(1)
2 , . . . , λ(1)

n )
27: (U (1)

ij )i<j := (Uij)i<j . Compute (U (1)
ij )i<j

28: for i = 1, 2, . . . , n − 1 do
29: for j = i + 1, i + 2, . . . , n do
30: U

(1)
ij := Uij − U

(2)
ij

31: end for
32: end for
33: for i = 1, 2, . . . , n do . Compute µ(1)

34: µ
(1)
i = ∑i

l=1 U
(1)
li

35: end for
36: return (λ(1), µ(1), 0, (U (1)

ij )i<j) ⊗ (λ(2), µ(2), 0, (U (2
ij )i<j)

Set

λ
(1)
1 = λ1 − λ

(2)
1 = 2, λ

(1)
2 = λ2 − λ

(2)
2 = 1,

λ
(1)
3 = λ3 − λ

(2)
3 = 0, λ

(1)
4 = λ4 − λ

(2)
4 = 0.
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Set U
(1)
ij = Uij − U

(2)
ij for 1 ≤ i ≤ j ≤ 4. Set

µ
(1)
1 = U

(1)
11 = 1, µ

(1)
2 = U

(1)
12 + U

(1)
22 = 2,

µ
(1)
2 = U

(1)
13 + U

(1)
23 + U

(1)
33 = 0, µ

(1)
4 = U

(1)
14 + U

(1)
24 + U

(1)
34 + U

(1)
44 = 0.

Then Ψλ = (λ(1), µ(1), 0, (U (1)
ij )) ⊗ (λ(2), µ(2), 0, (U (2)

ij )). See Fig. 18
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Figure 18. Action of Ψλ on H(λ)

Algorithm 3 generates a result corresponding to an image of Ψλ.

Proposition 5.4. For λ ∈ P +, let H ∈ H(λ). Let K be the result of Algorithm 3 with
input H. Then, K = Ψλ(H).

Proof. The statement immediately follows from Definition 3.14. □

The map Ψ is defined to apply Ψλ (λ ∈ P +) repeatedly, and note that the algorithm
for Ψλ is given by Algorithm 3. Then, the map Ψ is computed using Algorithm 4.

Algorithm 4 Algorithm for Ψ
Require: H = (λ, µ, 0, (Uij)i<j) ∈ H(λ)
Ensure: Ψ(H)

1: H1 ⊗ H2 := Ψλ(H)
2: N = 2
3: while H1 6∈ H(Λk) for any k ∈ I do
4: K1 ⊗ K2 := Ψ(H1)
5: H := K1 ⊗ K2 ⊗ H2 ⊗ · · · ⊗ HN

6: N = N + 1
7: Rename H as H = H1 ⊗ H2 ⊗ · · · ⊗ HN

8: end while
9: return ⊗

k∈N Hk

The following is an example of the execution of Algorithm 4.

Example 5.5. Let n = 4, λ = (3, 2, 1, 0) and µ = (2, 3, 1, 0). Let H = (λ, µ, 0, (Uij)i<j) ∈
H(λ), where U12 = 0 and Uij = 0 if (i, j) 6= (1, 2) and i < j. By Algorithm 3,

Ψλ(H) = ((2, 1, 0, 0), (1, 2, 0, 0), (04), (U (1)
ij )) ⊗ ((1, 1, 1, 0), (1, 1, 1, 0), (04), (U (2)

ij ))
:= H1 ⊗ H2,
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where

U
(1)
ij =

1 if (i, j) = (1, 2),
0 otherwise,

U
(2)
ij = 0 (1 ≤ i < j ≤ 4).

Since H1 ∈ H((2, 1, 0, 0)), we proceed with the algorithm.

Ψλ(H1) = ((1, 0, 0, 0), (0, 1, 0, 0), (04), (V 1
ij)) ⊗ ((1, 1, 0, 0), (1, 1, 0, 0), (04), (V 1

ij))
:= K1 ⊗ K2,

where

V
(1)

ij =

1 if (i, j) = (1, 2),
0 otherwise,

V
(2)

ij = 0 (1 ≤ i < j ≤ 4).

Then rename K1 ⊗ K2 ⊗ H2 as H1 ⊗ H2 ⊗ H3. Then, we have

Ψ(H) = H1 ⊗ H2 ⊗ H3.

See Fig. 19.
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Figure 19. Action of Ψ on H(λ)

The result of Algorithm 4 corresponds to the image of Ψ.

Proposition 5.6. For λ ∈ P +, let H ∈ H(λ). Let K be the result of Algorithm 4 for
input H. Then, K = Ψ(H).

Proof. By Proposition 3.19, it is clear that Algorithm 4 yields the image of Ψ if the while
statement stops. For λ ∈ P +, let H ∈ H(λ). Suppose that H1 ⊗ H2 ⊗ · · · ⊗ Hk+2 is
obtained at the k-th step of the while statement in Algorithm 4, and H1 6∈ H(Λi) for all
i ∈ I. Assume H1 ∈ H(λ(1)) for λ(1) ∈ P +, where λ(1) 6= Λi for all i ∈ I. This means that
there exists m ∈ [n] such that λ(1)

m > 1, especially λ
(1)
1 > 1. Set λ′ = λ(1) and m0 = λ

(1)
1 .

Then at the k + m0 − 1 step in the while statement, we have

H1 ⊗ H2 ⊗ · · · ⊗ Hk+m0+1.

Assume H1 ∈ H(λ(1)). Note that, since the indices are renamed, we retake H1 and λ(1).
By Algorithm 4, we have λ(1)

m = max(λ(k)
m − (m0 − 1), 0) for m ∈ [n]. Since λ′ ∈ P + and

m0 = λ′
1, λ(1)

m ∈ {0, 1}. Therefore, H1 ∈ H(Λν) for ν ∈ I. Thus, the while statement
stops. □
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To compute fi, ei (i ∈ I) on H(λ), we need the algorithm of Ψ−1 for the image of Ψ.
Algorithm 5 computes Ψ−1 for H ∈ Ψ(H(λ).

Algorithm 5 Algorithm for Ψ−1

Require: H = H1 ⊗ H2 ⊗ · · · ⊗ HN ∈ ⊗
k H(Λk), Hk = (λ(k), µ(k), 0, (U (k)

ij )i<j) ∈ H(λ(k)).
Ensure: Ψ−1(H) ∈ H(λ)

1: for i = 1, 2, . . . , n do
2: λi := ∑N

k=1 λ
(k)
i

3: end for
4: λ := (λ1, λ2, . . . , λn)
5: for i = 1, 2, . . . , n do
6: µi := ∑N

k=1 µ
(k)
i

7: end for
8: µ := (µ1, µ2, . . . , µn)
9: for i = 1, 2, . . . , n − 1 do

10: for j = i + 1, i + 2, . . . , n do
11: Uij := ∑N

k=1 U
(k)
ij

12: end for
13: end for
14: return (λ, µ, (0n), (Uij)i<j)

Proposition 5.7. For λ ∈ P +, let H ∈ H(λ). Let Ψ(H) = H1 ⊗ H2 ⊗ · · · ⊗ HN . Let K

be the result of Algorithm 5 with input H1 ⊗ H2 ⊗ · · · ⊗ HN . Then, K = H.

Proof. For λ ∈ P +, let H ∈ H(λ). Let Ψ(H) = H1 ⊗ H2 ⊗ · · · ⊗ HN . Let K be the
result of Algorithm 5 with input H1 ⊗ H2 ⊗ · · · ⊗ HN . Assume that H = (λ, µ, 0, (Uij)i<j)
and Hk = (λ(k), µ(k), 0, (U (k)

ij )i<j) for k = 1, 2, . . . , N . Let Ψλ(H) = K1 ⊗ K2. Assume
Km = (ν(m), ξ(m), 0, (V (k)

ij )). By Definition 3.14, we have λk = ν
(1)
k + ν

(2)
k , µk = ξ

(1)
k + ξ

(2)
k

for k = 1, 2, . . . , N and Uij = U
(1)
ij + U

(2)
ij for 1 ≤ i < j ≤ n. By the construction of Ψ, we

obtain

λk = λ
(1)
k + · · · + λ

(N)
k (k = 1, 2, . . . , N),

µk = µ
(1)
k + · · · + µ

(N)
k (k = 1, 2, . . . , N),

Uij = U
(1)
ij + · · · + U

(N)
ij (1 ≤ i < j ≤ n).

Thus, we have K = H. □

By Definition 3.26, the crystal structure on H(λ) is defined by considering H(λ) as a
submodule of tensor products of H(Λk). In detail, embed H ∈ H(λ) into ⊗k H(Λk) by
Ψ, then compute the maps wt, ϕi, εi, fi, ei (i ∈ I) by Definition 2.3, then pull it back into
H(λ). Then, the maps wt, ϕi, εi, fi, ei (i ∈ I) are computed by the following algorithms.
For λ ∈ P +, let H ∈ H(λ). Let Ψ(H) = H1 ⊗ H2 ⊗ · · · ⊗ HN , which is computed
by Algorithm 4. Then wt(H) is computed by wt(H) = ∑N

k=1 wt(Hk), where wt(Hk) is
computed by an algorithm of wt for H(Λk′) for some k′ ∈ I. Then ϕi(H) is computed
by ϕi(H) = ϕi(H1 ⊗ H2 ⊗ · · · ⊗ HN), where ϕi(H1 ⊗ H2 ⊗ · · · ⊗ HN) is computed by
Definition 2.3 and ϕi for H(Λk) (k ∈ I). Similarly, εi(H) can be computed. Also, fi(H)
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is computed by Ψ−1(fi(H1 ⊗H2 ⊗· · ·⊗HN)), where fi(H1 ⊗H2 ⊗· · ·⊗HN)) is computed
by Definition 2.3 and Algorithm 1. Similarly, ei(H) can be computed.

Proposition 5.8. Let λ ∈ P +. Let wt, ϕi, εi, fi, ei (i ∈ I) be computed using the above
algorithms for H(λ). Then, the crystal structure on H(λ) determined by these maps
corresponds to the crystal structure defined by Definition 3.26.

Proof. By Definition 3.26, Proposition 5.6, and Proposition 5.2, the statement follows. □
The crystal structure on H(λ) (λ ∈ P +) is also directly computed by Theorem 3.36.

The following algorithms compute the maps ϕi, εi, fi, ei (i ∈ I) based on Theorem 3.36.
Note that the map wt is simply computed by∑k∈I(µk−µk+1)Λk for H = (λ, µ, 0, (Uij)i<j).

Algorithm 6 Algorithm for ϕi on H(λ)
Require: H = (λ, µ, 0, (Uij)i<j) ∈ H(λ), i ∈ I

Ensure: ϕi(H)
ϕi(H) := 0
for k = 1, 2, . . . , i do

ϕi(H) := max(Uki − Uk+1,i+1 + ϕi(H), 0)
end for
return ϕi(H)

Algorithm 7 Algorithm for εi on H(λ)
Require: H = (λ, µ, 0, (Uij)i<j) ∈ H(λ), i ∈ I

Ensure: εi(H)
εi(H) := 0
for k = 1, 2, . . . , i do

εi(H) := max(Ui+2−k,i+1 − Ui+1−k,i + εi(H), 0)
end for
εi(H) = max(U1,i+1 + εi(H), 0) . For k = i + 1
return εi(H)

The following is an example of the execution of Algorithm 8.

Example 5.9. Let n = 4, λ = µ = Λ1 + Λ3. Note that Λ1 + Λ3 corresponds to the
partition (2, 1, 1, 0). Let H = (λ, µ, 0, (Ukl)k<l) ∈ H(λ), where Ukl = 0 for 1 ≤ k < l ≤ 4.
The action of f1 on H(λ) is computed as follows by Algorithm 8. Let i = 1. Set F = [0].
Since U11 − U22 + F [0] = 1, set F = [0, 1]. Set kfiH = 1. Since F [1] = 1 > 0, we
have kfiH = 1. Then set µ1 = µ1 − 1 = 1, µ2 = µ2 + 1 = 2, U11 = U11 − 1 = 1, and
U12 = U12 + 1 = 1. Then we have f1H = (λ, µ, 0, (Uij)i<j). See Fig. 20.

Algorithms 6, 7, 8, and 9 compute ϕi, εi, fi, ei, (i ∈ I) according to Theorem 3.36.

Proposition 5.10. For λ ∈ P +, let H ∈ H(λ). Let i ∈ I.
(1) Algorithm 6 with inputs H and i yields ϕi(H).
(2) Algorithm 7 with inputs H and i yields εi(H).
(3) Let K be the result of Algorithm 8 with inputs H and i. Then, K = fiH.
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Algorithm 8 Algorithm for fi on H(λ)
Require: H = (λ, µ, 0, (Uij)i<j) ∈ H(λ), i ∈ I

Ensure: fiH

1: if ϕi(H) = 0 then
2: return 0
3: end if
4: F := [0] . Set an array
5: for k = 1, 2, . . . , i do
6: F := F .append(max(Uki − Uk+1,i+1 + F [k − 1], 0))
7: end for
8: kfiH := 1
9: for k = i, i − 1, . . . , 1 do

10: if F [k] < 0 then
11: kfiH := k − 1
12: break
13: end if
14: end for
15: µi := µi − 1
16: µi+1 := µi+1 + 1
17: Ukfi

,i := Ukfi
,i − 1

18: Ukfi
,i+1 := Ukfi

,i+1 + 1
19: return (λ, µ, 0, (Uij)i<j)
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Figure 20. Action of f3 on the Uq(sl4)-crystal H(Λ1 + Λ3)

(4) Let K be the result of Algorithm 9 with inputs H and i. Then, K = eiH.

Proof. (1) and (2) immediately follow from Theorem 3.36. (3) is proved if kfiH in Algo-
rithm 8 corresponds to the one in Theorem 3.36.

For λ ∈ P +, let H = (λ, µ, 0, (Uij)i<j) ∈ H(λ). We can assume ϕi(H) > 0. This means
that kfiH is defined and

ϕi(H) =
n∑

k=kfiH

(Uki − Uk+1,i+1).
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Algorithm 9 Algorithm for ei on H(λ)
Require: H = (λ, µ, 0, (Uij)i<j) ∈ H(λ), i ∈ I

Ensure: eiH

if εi(H) = 0 then
return 0

end if
E := [0]
for k = 1, 2, . . . , i + 1 do

E := E.append(max(Ui+2−k,i − Ui+1−k,i+1 + E[k − 1], 0))
end for
keiH := 1
for k = i + 1, i, . . . , 1 do

if E[k] < 0 then
keiH := k − 1
break

end if
end for
µi := µi + 1
µi+1 := µi+1 − 1
Uk+2−kei ,i := Uk+2−kei ,i + 1
Uk+2−kei ,i+1 := Uk+2−kei ,i+1 − 1
return (λ, µ, 0, (Uij)i<j)

In particular, ϕ
(kfiH−1)
i (H) = 0 and ϕ

(kfiH)
i (H) = UkfiH ,i − UkfiH+1,i > 0 hold by the

definition of kfiH . Then we have

ϕ
(m)
i (H) =

m∑
k=kfiH

(Uki − Uk+1,i+1) > 0 (m = kfiH , kfiH + 1, . . . , i).

By Theorem 3.36, F in Algorithm 8 is an array of ϕ
(l)
i (H) such that F [l] = ϕ

(l)
i (H) for

l ∈ [i]. Then max{k ∈ [i] | F [k] < 0} = kfiH − 1 holds, and hence kfiH in Algorithm 8
corresponds to the one in Theorem 3.36. Similarly, (4) can be shown. □

5.2. Implementations and examples by khive-crystal. In this subsection, we show
some examples of executing the algorithms given in Section 5.1. These examples are
computed using the Python package originally implemented named khive-crystal [22].
Then we also provide examples of the usage of khive-crystal.

In khive-crystal, K-hive can be declared by the function khive. Furthermore, we can
show a K-hive as an image using the function view. The following code is an example of
functions of khive and view.

>> from khive_crystal import khive, view
>> H = khive(
.. n=4, alpha=[3, 2, 1, 0], beta=[3, 2, 1, 0], gamma=[0, 0, 0, 0], Uij=[[0, 0, 0], [0, 0], [0]]
.. )
>> H
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KHive(n=4, alpha=[3, 2, 1, 0], beta=[3, 2, 1, 0], gamma=[0, 0, 0, 0], Uij=[[0, 0, 0], [0, 0], [0]])

>> view(H)

The following codes compute the crystal structure on Uq(sl3)-crystal H(Λ2) by Algo-
rithms 1 and 2.

>> from khive_crystal import e, epsilon, f, khive, phi, view
>> H = khive(n=3, alpha=[1, 1, 0], beta=[1, 1, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]])
>> view(H)

>> f(i=1)(H)
# None
>> view(f(i=2)(H))
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The crystal graph of H(Λ2) can be shown by the function called crystal_graph, where
the function khives is the function to declare H(Λ2).

>> from khive_crystal import khives, crystal_graph
>> crystal_graph(khives(n=3, alpha=[1, 1, 0]))

Note that the crystal graph is realized by the open source graph visualization software
called Graphviz.

The crystal structure on H(λ) (λ ∈ P +) is defined by algorithms of the crystal structure
of H(Λk) (k ∈ I), Ψλ, Ψ, and Ψ−1. Then we first show an example for Algorithms 3, 4,
and 5, which are implemented as functions psi_lambda, psi, and psi_inv, respectively.
The following code is an example for Ψ(3,3,0) and Ψ for H((3, 3, 0)).

>> from khive_crystal import khive, psi, psi_lambda, view
>> H = khive(n=3, alpha=[3, 3, 0], beta=[3, 3, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]])
>> psi_lambda(H)
[

KHive(n=3, alpha=[2, 2, 0], beta=[2, 2, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]]),
KHive(n=3, alpha=[1, 1, 0], beta=[1, 1, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]])

]
>> view(psi_lambda(H))
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>> psi(H)
[

KHive(n=3, alpha=[1, 1, 0], beta=[1, 0, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]]),
KHive(n=3, alpha=[1, 1, 0], beta=[1, 0, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]]),
KHive(n=3, alpha=[1, 1, 0], beta=[1, 1, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]])

]
>> view(psi(H))

Then we show examples of algorithms of fi for H(λ). The following code is an example
of f2 for H((3, 3, 0)).

>> from khive_crystal import khive, psi, psi_inv, view
>> H = khive(n=3, alpha=[3, 3, 0], beta=[3, 3, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]])
>> psi_inv(f(i=2)(psi(H))) # = fi(H)
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The crystal structure on H(λ) (λ ∈ P +) is also computed by Algorithms 8 and 9.

>> from khive_crystal import khive, e, epsilon, f, phi
>> H = khive(n=3, alpha=[3, 3, 0], beta=[3, 1, 0], gamma=[0, 0, 0], Uij=[[0, 0], [0]])
>> phi(i=2)(H)
3
>> view(f(i=2)(H))

The crystal graph of H((3, 3, 0)) is the following.

>> from khive_crystal import khives, crystal_graph
>> crystal_graph(khives(n=3, alpha=[3, 3, 0]))
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6. Concluding Remarks

In this thesis, we study the theory of An−1-crystal bases and K-hives. This thesis has
three themes. The first theme is a combinatorial realization of crystal bases of highest
weight modules over the quantized enveloping algebra of type A by K-hives. The second
theme is the combinatorial tensor product decomposition rule of crystal bases by K-hives.
The last theme is a set of algorithms for computing the crystal structure on K-hives and
the implementation of these algorithms as a Python package.

We have obtained the results in the case of type A. The extension to other types is
a remaining problem. In addition, affine crystal structures on K-hives should also be
determined. It may also be possible to consider the Robinson-Schensted correspondence
by K-hives using the tensor product decomposition map. In any case, the realization of
the crystal structures is useful for considering these problems.
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