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A B S T R A C T

Objectives: Podoplanin-positive cancer-associated fibroblasts [PDPN (+) CAFs] play an important role in cancer
progression in non-small-cell lung cancer. The aim of this study was to clarify the correlation between a fibrous
microenvironment containing PDPN (+) CAFs and an immune microenvironment.
Materials and methods: A total of 174 patients with pathological stage I lung adenocarcinoma were analyzed. We
evaluated PDPN (+) CAFs and immune-related cells, CD 204-positive tumor-associated macrophages [CD204
(+) TAMs], CD8-positive T cells, and FOXP3-positive T cells, in cancer stroma by using immunohistochemical
staining. We compared the expression levels of immune-regulatory cytokines between the PDPN high and low
expression groups by analyzing the gene expression profiles of lung adenocarcinoma (n=442).
Results: Presence of PDPN (+) CAFs was a risk factor for recurrence (P= 0.042). The number of CD204 (+)
TAMs was significantly higher (P < 0.001) and the CD8/FOXP3 T cell ratio was significantly lower in PDPN
(+) CAFs cases than in PDPN (-) CAFs cases (P= 0.027). Within the same tumor, the number of CD 204 (+)
TAMs was significantly higher (P < 0.001) and CD8/FOXP3 T cell ratio tended to be lower (P= 0.062) in
PDPN (+) CAF areas. Microarray analysis revealed that the PDPN expression-high group had significantly higher
gene expression levels of cytokines that inducing M2 macrophage polarization and suppressing immune-related
lymphocytes.
Conclusion: The current results show that lung adenocarcinoma with PDPN (+) CAFs is typified by the im-
munosuppressive microenvironment, suggesting a close link between the tumor-promoting fibrous micro-
environment and the immunosuppressive microenvironment.

1. Introduction

The prognosis of even early-stage non-small-cell lung cancer
(NSCLC) is critical due to local recurrence and distant metastasis fol-
lowing surgery [1]. Some meta-analyses and randomized trials have
shown that adjuvant chemotherapy improves survival in patients with

NSCLC compared to surgical intervention alone; however, this remains
a controversial issue [2,3]. Clarifying the process of cancer prognosis
and identification of risk factors for recurrence would help establish
effective therapeutic strategies for NSCLC treatment.

Cancer tissue consists not only of cancer cells, but of also several
kinds of stromal cells. Various types of stromal cells, mainly fibroblast,
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endothelial, and immune-related cells create a specific microenviron-
ment for tumor progression [4–6]. Several reports have demonstrated
that these stromal cells can influence biological behavior of cancer cells
through both direct and indirect mechanisms [6–8].

Fibroblasts in cancer tissue, known as cancer-associated fibroblasts
(CAFs), are a major component of stromal cells. CAFs are the main
source of collagen and other extracellular matrix proteins, and have
critical early influence in tumorigenesis and tumor development:
creating a specific fibrous microenvironment facilitating cancer pro-
gression [9–11]. Furthermore, CAFs directly interact with cancer cells,
which results in a phenotypic change of cancer cells. In particular,
podoplanin (PDPN), a glycoprotein also known as a marker for lym-
phatic vessels, is one of the functional molecules expressed by CAFs in
several types of cancer including NSCLC [12,13]. PDPN-positive CAFs
[PDPN (+) CAFs] contribute to cancer cell invasion and implantation
[14,15]. Moreover, retrospective studies have reported that the pre-
sence of PDPN (+) CAFs was a risk factor for prognosis in NSCLC
[16,17]. These results indicate that PDPN (+) CAFs are one of the
subpopulation of tumor-promoting CAFs.

The immune microenvironment had a major impact on cancer
prognosis in NSCLC [18–20]. Immune-related cells, such as tumor-as-
sociated macrophages (TAMs) and tumor-infiltrated lymphocytes
(TILs), in cancer stroma regulate cancer progression in various ways.
TAMs, mainly M2 TAMs, promote cancer progression by producing
cytokines involved in angiogenesis, tumorigenesis, matrix remodeling,
and immunosuppression [21–23]. TILs such as cytotoxic T cells, helper
T cells, natural killer cells, and regulatory T cells regulate cancer pro-
gression by playing two conflicting roles: suppressing tumor growth
and promoting tumor progression [24]. Recent studies have shown that
regulatory T cells in cancer stroma could inhibit cytotoxic T cells and
induce an immunosuppressive environment allowing cancer cells to
escape host immune surveillance in several cancers [25–27].

Costa et al., revealed that a special subpopulation of CAFs; CAF-S1,
which express five fibroblast markers; fibroblast activation protein-
alpha (FAP), integrinβ1/CD29, αSMA, S100-A4/FSP1 (fibroblast-spe-
cific protein 1), and PDGFRβ (platelet-derived growth factor receptor-
β) produce the immunosuppressive microenvironment via secretion of
immunoregulatory cytokines in triple-negative breast cancer [28]. This
result implies that CAF-S1 affects the immune microenvironment.

Investigating the correlation between the tumor-promoting fibrous
microenvironment and immunosuppressive microenvironment is im-
portant for understanding cancer progression processes as well as to
develop a microenvironment-targeted therapy. In the current study, we
aimed to clarify the correlation between the fibrous microenvironment,
containing PDPN (+) CAFs, and the immune microenvironment.

2. Materials and methods

2.1. Subjects

We retrospectively reviewed our database for patients who under-
went complete surgical resection and lobectomy for their pathological
stage I primary lung adenocarcinoma in Department of Thoracic
Surgery, National Cancer Center Hospital East between January 2011
and December 2012. We excluded patients who were diagnosed with
pathologically minimally invasive adenocarcinoma, variants of adeno-
carcinoma, usual interstitial pneumonia, multiple lung carcinomas, and
had undergone preoperative chemotherapy and/or radiation therapy.
The remaining 174 patients were included in this analysis. We obtained
comprehensive informed consent from all the patients before this study
(National Cancer Center Hospital IRB approval number; 2017-356).

2.2. Clinicopathological evaluation

All surgical specimens were fixed using 10% formalin, and em-
bedded in paraffin. All tumors were cut at 5-mm intervals, and 4 μm-

thick-sections were stained using the hematoxylin and eosin (HE)
method. The Verhoeff-van-Gieson (VVG) method was also performed
for visualizing elastic fibers. Lymphovascular and pleural invasion were
identified using both HE and VVG, respectively. The diagnosis of his-
tological type was based on the 2015 World Health Organization clas-
sification of lung tumors [29], and pathological stage was determined
according to the 8th edition of TNM classification for lung cancer [30].

We reviewed the regularly updated clinicopathological database
from the division of thoracic surgery, National Cancer Center Hospital
East, Japan. We extracted patient information, including age, sex,
smoking status, tumor size (total size and invasive size), lymphovas-
cular and pleural invasion, pathological stage, subtype predominant,
EGFR mutation status, recurrence, and survival status.

2.3. Patient follow-up

All patients were followed at 6-month intervals for 5 years after
surgery. The follow-up evaluation included a physical examination,
chest radiography, and blood examination. Computed tomography was
performed at 1-year intervals. After recurrence was detected, all pa-
tients underwent anti-cancer therapies including chemotherapy,
radiotherapy, immunotherapy, and molecular targeted therapy.

2.4. Immunohistochemistry

We performed immunohistochemical staining using 4 antibodies
according to previously published methods [17]. We used anti-PDPN
(mouse monoclonal, diluted at 1:200, D-40; Acris Antibodies Inc., San
Diego, CA, USA) as a CAF marker, anti-CD204 (mouse monoclonal,
diluted at 1:400, SRA-E5; Trans Genic Inc., Fukuoka, Japan) as the
TAMs marker, and anti-CD8 (rabbit monoclonal, diluted at 1:800, P17-
V; DB Biotech Inc., Kosice, Slovakia) and FOXP3 (rabbit monoclonal,
diluted at 1:100, SP97; Acris Antibodies Inc., San Diego, CA, USA) to
identify the lymphocyte subpopulation.

2.5. Calculation of immunohistochemical scores

All stained slides were scanned and captured using a digital slide
scanner; Aperio VERSA SL200 (Leica Biosystems, Nußloch, Germany)
and NanoZoomer-XR C12000-03 (Hamamatsu Photonics, Shizuoka,
Japan), and reviewed by two different pathologists (TS and GI) who did
not know the clinicopathological information of each slide. For anti-
PDPN staining, spindle cells in cancer stroma were identified morpho-
logically as CAFs, and classified as negative (-; stained at less than
10%), and positive (+; more than 10%). We also divided cases into 3
groups according to the expression grade of PDPN in CAFs: grade 0
(PDPN (+) CAF area/stromal area< 10%, n=131), grade 1 (PDPN
(+) CAF area/stromal area=10–50%; n=29), and grade 2 (PDPN
(+) CAF area/stromal area>50%; n=14). The cut-off on PDPN-CAFs
was set based on the previous study [16]. For anti-CD204, anti-CD8 and
anti-FOXP3 staining, we selected 5 areas where the macrophages or
lymphocytes most infiltrated the cancer stroma, enclosed them in high
power fields (0.0625mm2 /field), counted and averaged the number for
each case (Supplementary Figure S1).

2.6. Analysis of microarray data

We analyzed a messenger RNA expression dataset including 442
patients with primary lung adenocarcinoma (GSE 68465) by using the
Affymetrix Human Genome U133 A 2.0 Array (Thermo Fisher Inc.,
Waltham, MD, USA) [31]. We identified the podoplanin gene
(204879_at) and divided samples into either the group of high-expres-
sion level or the group of low-expression level, based on the median.
We extracted the genes of cytokine polarizing M2 macrophages; mac-
rophage colony-stimulating factor (M-CSF), interleukin (IL)-4, IL-10, IL-
14 and cytokines related to immunosuppression; indoleamine 2,3-
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dioxygenase (IDO), transforming growth factor-β1 (TGFβ1), vascular
endothelial growth factor A precursor (VEGFA), and galectin family,
and analyzed them in relation to PDPN expression [32–37].

2.7. Statistical analysis

Differences in categorical variables were analyzed by using Fisher’s
exact test, and continuous variables were analyzed by using
Mann–Whitney’s U test and Kruskal-Wallis test. Calculation of the re-
currence-free survival (RFS) was performed using the Kaplan–Meier
method, and compared using the log-rank test. Multivariate analysis
was performed using the Cox-proportional hazard model. P -values
were determined using two-sided analyses, and the statistical sig-
nificance level was set at< 0.05. All statistical analyses were per-
formed using JMP® ver.13.2.1 (SAS Institute Inc., Cary, NC, USA).

3. Results

3.1. Relationship between PDPN expression status and clinicopathological
features

Fig. 1 shows representative PDPN staining in CAFs. All patients
(n=174) were classified into two groups according to the expression
status of PDPN antibody, either negative (PDPN (-) CAFs; n= 131) or
positive (PDPN (+) CAFs; n= 43). Univariate analysis of clin-
icopathological features for recurrence showed that pack-year smoking
(HR=1.01; 95% CI=1.00–1.02; P= 0.037), invasive size (HR =
1.10; 95% CI = 1.05–1.16; P < 0.001), lymphatic permeation (HR =
3.594; 95% CI = 1.39–8.36; P= 0.004), vascular invasion (HR =
4.98; 95% CI = 2.23–11.56; P < 0.001), pleural invasion (HR= 2.87;
95% CI = 1.24–6.42; P= 0.011), and positivity of PDPN (+) CAFs
(HR = 2.48; 95% CI = 1.07–5.54; P= 0.029) were risk factors
(Supplementary Table S1). Invasive size (HR=1.06; 95%
CI=1.00–1.12; P= 0.039) and vascular invasion (HR = 4.98; 95% CI
= 1.07–7.05; P= 0.035) were independent prognostic factors for re-
currence based on the multivariate analysis (Supplementary Table
S2).

Pack-year smoking (20.5 ± 36.7 vs. 32.0 ± 36.2; P= 0.034),
invasive size (1.6± 0.7 vs. 2.0± 0.8; P < 0.001), positivity of vas-
cular invasion (17.7% vs. 43.2%; P= 0.010), and positivity of lym-
phatic permeation (8.5% vs. 22.7%; P= 0.002) were significantly
higher in PDPN (+) CAFs cases (Table 1). With a median follow-up
period of 5.5 years, PDPN (+) CAFs cases had significantly shorter RFS
than PDPN (-) CAFs cases (66.7% vs. 84.1%, P= 0.042) (Supple-
mentary Figure S2).

3.2. Relationship between PDPN expression status in CAFs and immune
cells

Representative cases of immunohistochemical staining with CD204
antibody are　shown in Fig. 2A and B. The number of CD204 (+)
TAMs in PDPN (+) CAFs cases was significantly higher than in PDPN
(-) CAFs cases (11.7 vs. 33.1; P < 0.001) (Fig. 2C).

To clarify the relationship between PDPN expression levels and
immune cells for further confirmation, we divided cases into 3 groups
according to the expression grade of PDPN in CAFs: grade 0 (PDPN (+)

Fig. 1. Immunohistochemical staining of pa-
thological stage I lung adenocarcinoma with
PDPN antibody in CAFs.
A; Case with PDPN (-) CAFs at lower magnifi-
cation.
B; Higher magnification of the square area of
Figure A.
C; Case with PDPN (+) CAFs at lower magni-
fication.
D; Higher magnification of the square area of
Figure C.

Table 1
Relationship between podoplanin expression status and clinicopathological
features.

Variables Podoplanin (-)
(N=131)

Podoplanin (+)
(N=43)

p value

Age (y) mean ± SD 67.8 ± 9.8 68.3 ± 7.9 0.70
Sex: Male number (%) 69 (53.1) 28 (63.6) 0.28
Pack Year Smoking mean ± SD 20.5 ± 26.7 32.0 ± 36.2 0.034
Invasive size (cm) mean ± SD 1.6 ± 0.7 2.0 ± 0.8 < 0.001
Lymphatic

invasion (+)
number (%) 11 (8.5) 10 (22.7) 0.010

Vascular invasion
(+)

number (%) 23 (17.7) 19 (43.2) 0.002

Pleural invasion
(+)

number (%) 25 (19.2) 14 (31.8) 0.16

EGFR mutation
(+)

number (%) 30 / 59 (50.8) 9 / 22 (40.9) 0.56
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CAF area/stromal area<10%, n=131), grade 1 (PDPN (+) CAF
area/stromal area=10–50%; n= 29), and grade 2 (PDPN (+) CAF
area/stromal area> 50%; n= 14). The number of CD204 (+) TAMs
was significantly higher as the expression rate of PDPN increased (11.7
vs. 30.2 vs. 39.2; P < 0.001) (Supplementary Figure S3).

Next, we examined the number of CD8-positive T cells [CD8 (+) T
cells] and FOXP3-positive T cells [FOXP3 (+) T cells] according to
PDPN expression status (Fig. 3A–D). The number of FOXP3 (+) T cells
in PDPN (+) CAFs cases was significantly higher than in PDPN (-) CAFs
cases (17.4 vs. 22.3; P= 0.010), but the number of CD8 (+) T cells
showed no significant difference according to PDPN expression in CAFs
(48.4 vs. 52.0; P= 0.30) (Supplementary Figure S4). CD8/FOXP3 T
cell ratio in PDPN (+) CAFs cases was significantly lower than in PDPN
(-) CAFs cases (3.8 vs. 2.8; P= 0.027, Fig. 3E). The number of FOXP3
(+) T cells was significantly higher as the expression grade of PDPN in
CAFs increased (17.4 vs. 20.5 vs. 26.1; P= 0.010), however; CD8 (+)
T cells showed no significant difference according to PDPN expression
grade (48.4 vs. 52.3 vs. 51.5; P= 0.59). The CD8/FOXP3 ratio tended
to be lower as the expression grade of PDPN increased (3.8 vs. 2.9 vs.
2.6; P= 0.081) (Supplementary Figure S3).

3.3. Anatomical correlation between PDPN (+) CAFs and immune cells

To validate the anatomical correlation between PDPN (+) CAFs and
immune cells, we examined CD204, CD8, and FOXP3 positive cells
within PDPN-CAF (+) areas and PDPN-CAF (−) areas within the same
tumor cases (Supplementary Figure S5). The number of CD 204 (+)
TAMs was significantly higher in the PDPN (+) CAF areas than in
PDPN (-) CAF areas (P < 0.001), and the CD8/FOXP3 T cell ratio
tended to be lower in PDPN (+) CAF areas than in PDPN (-) CAFs areas
(P= 0.062) (Fig. 4).

3.4. Relationships between gene expression levels of PDPN and immune-
regulatory cytokines

To investigate gene expression of immune-regulatory cytokines ac-
cording to expressions level of PDPN, we analyzed a messenger RNA
expression dataset including 442 patients with primary lung adeno-
carcinoma (public database; GSE 68,465) [31]. We identified the gene
of PDPN and divided samples into two groups, either PDPN expression-
high group or the PDPN expression-low group, based on the median.
We extracted cytokine genes which are involved in polarizing M2
macrophages; M-CSF, IL-4, IL-10, IL-14, and suppressing immune re-
lated lymphocytes; IDO, TGFβ1, VEGFA, galectin1, and galectin 9. In

Fig. 2. Immunohistochemical staining with CD204 antibody.
A; Case with a low number of CD204 (+) TAMs.
B; Case with a high number of CD204 (+) TAMs.
C; Comparison of the number of CD204 (+) TAMs according to the expression status of PDPN in CAFs.
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the cytokine genes polarizing M2 macrophages, PDPN expression-high
group had a significantly higher level of M-CSF than PDPN expression-
low group (P < 0.001). In the cytokine genes suppressing immune
related lymphocytes, the PDPN expression-high group had a sig-
nificantly higher level of TGFβ1 (P < 0.001), IDO (P < 0.001),
VEGFA (P= 0.048), and galectin 1 (P < 0.001) than the PDPN ex-
pression-low group, and had a higher level of galectin 9 (P = 0.10)
(Fig. 5).

4. Discussion

In this study, we clarified that pathological Stage I lung adeno-
carcinoma with PDPN (+) CAFs display both a high number of CD204
(+) TAMs and a low ratio of CD8/FOXP3 T cells in the cancer stroma.
These consequences were also confirmed by comparing the number of
CD204 (+) TAMs and the CD8/FOXP3 T cell ratio between PDPN (+)
CAF areas and PDPN (-) CAF areas within the same tumor. Moreover,
PDPN-high lung adenocarcinoma had higher gene expression level of

Fig. 3. Immunohistochemical staining with CD8 and FOXP3 antibody.
A; CD8 expression in PDPN (-) CAFs case.
B; CD8 expression in PDPN (+) CAFs case.
C; FOXP3 expression in PDPN (-) CAFs case.
D; FOXP3 expression in PDPN (+) CAFs case.
E, Comparison of CD8/FOXP3 T cell ratio according to the expression status of PDPN in CAFs.
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cytokines, polarizing M2 macrophage polarization, and im-
munosuppression according to the microarray data analysis. This is the
first report elucidating that the tumor-promoting fibrous micro-
environment containing PDPN (+) CAFs correlates with the im-
munosuppressive microenvironment in NSCLC.

TILs constitute an immune suppressing microenvironment by se-
lecting the cancer cells that can evade immune surveillance through a
multistep process: elimination, equilibrium, and escape [24,27]. Reg-
ulatory T cells have been known to play an important role in suppres-
sing the immune microenvironment involving T cells. Forkhead box P3
(FOXP3) is a member of the forkhead/winged-helix family of tran-
scriptional regulators, and some studies have shown that FOXP3 (+)
regulatory T cells are related to prognosis in NSCLC [38,39]. Recent
studies have shown that CAFs indirectly induce an immunosuppressing
microenvironment via secretion of immunoregulatory cytokines
[40,41]. Kinoshita et al., showed that culture supernatant of CAFs from
FOXP3 (+) T cells-high lung adenocarcinoma expressed higher mRNA
levels of TGFβ and VEGF; cytokines that involve in inducing regulatory
T cells [42]. These results suggested that a subpopulation of CAFs might
produce immunosuppressing cytokines and create a tumor-promoting
microenvironment in lung adenocarcinoma. Besides, Costa et al., re-
vealed that one of subpopulations of CAFs, CAF-S1, creates the im-
munosuppressing microenvironment via secretion of im-
munoregulatory cytokines in triple-negative breast cancer [28]. In a

murine cancer model, FAP-positive CAFs create the immunosuppressing
microenvironment by attracting myeloid-derived suppressor cells via
STAT3–CCL2 signaling [43,44]. We have already demonstrated that
PDPN (+) CAFs directly promote cancer cell invasion using an in vitro
model [45] and implantations in animal models [46,47], our present
study raises the possibility that PDPN (+) CAFs might promote cancer
progression via indirect mechanisms, to alter the host immune sur-
veillance system, as well as direct mechanisms.

We previously reported that solid predominant lung adenocarci-
noma displayed a higher number of PDPN (+) CAFs, CD204 (+) TAMs
and FOXP3 (+) T cells. Saruwatari et al. reported that solid pre-
dominant lung adenocarcinoma displayed higher levels of PDPN (+)
CAFs and CD204 (+) TAMs significantly than non-solid predominant
lung adenocarcinoma, and Kinoshita et al. reported that the number of
FOXP3 (+) T cells in solid predominant tumors was significantly higher
than in non-solid predominant tumors in lung adenocarcinoma [42,48].
In this study, pathological Stage I lung adenocarcinoma with solid
predominant displayed a higher number of PDPN (+) CAFs and CD204
(+) TAMs significantly, and tended to display a higher number of
FOXP3 T cells than with non-solid predominant (Supplementary Table
S3). These results also confirm the previous reports that solid pre-
dominant adenocarcinomas display higher levels of PDPN (+) CAFs
and immune cells related to immunosuppression.

There are some limitations in this study. This study was

Fig. 4. Comparison of the immune-related cells according to the PDPN (+) CAFs area vs. PDPN (-) area in the same cases.
A; The number of CD204 (+) TAMs.
B; The number of CD8 (+) T cells.
C; The number of FOXP3 (+) T cells.
D; CD8/FOXP3 T cell ratio.
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retrospective and was a single-center study. Prospective and multi-
center studies with more cases will be required in the future.
Furthermore, it is also important to investigate whether the sub-
population of PDPN (+) CAFs can secrete high levels of im-
munosuppressive cytokines and affect the immune microenvironment.
Alternatively, cancer cells might secrete master-regulatory factors,
which result in the recruitment of PDPN (+) CAFs, CD204 (+) TAMs,
and FOXP3 T cells.

In conclusion, we showed the close link between the tumor-pro-
moting fibrous microenvironment and the immunosuppressive micro-
environment of NSCLC, for the first time. Immunotherapy using an
immune checkpoint inhibitor has been incorporated in a treatment
strategy for NSCLC with excellent results in clinical trials [49]. How-
ever, as the features of TILs differ in clinicopathological factors espe-
cially for adenocarcinoma, it may influence the efficiency of im-
munotherapy [20]. The current study suggests the possibility that PDPN
(+) CAFs could be a novel biomarker for predicting the effect of

immunotherapy in NSCLC.
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