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Aim: Vascular senescence, which is accelerated in individuals with chronic kidney disease (CKD), 
contributes to the development of cardio-renal syndrome, and various uremic toxins may play impor-
tant roles in the mechanisms underlying this phenomenon. We recently reported that indoxyl sulfate 
(IS), a uremic toxin, directly activates aryl hydrocarbon receptor (AhR) and generates oxidative stress 
through NADPH oxidase-4 in human umbilical vein endothelial cells (HUVECs). In the current 
study, we sought to examine whether IS regulates sirtuin 1 (Sirt1) and affects endothelial senescence 
via AhR activation.
Methods: HUVECs were incubated with 500 μmol/L of IS for the indicated time periods. In order 
to evaluate changes in the senescence of the HUVECs, the number of senescence-associated β-galac-
tosidase (SA β-gal)-positive cells was determined using an image analysis software program. The 
intracellular nicotinamide phosphoribosyltransferase (iNampt) activity, cellular NAD＋/NADPH ratio 
and Sirt1 activity were analyzed according to a colorimetric assay to determine the mechanism of cel-
lular senescence. Furthermore, we evaluated the involvement of AhR in the senescence-related 
changes induced by IS using AhR antagonists.
Results: IS decreased the iNampt activity, NAD＋/NADPH ratio and Sirt1 activity, resulting in an 
increase in the percentage of SA β-gal-positive cells. On the other hand, the AhR antagonists restored 
the IS-induced decrease in the NAD＋ content in association with an improvement in the iNampt 
activity and ameliorated the senescence-related changes. Taken together, these results indicate that IS 
impairs the iNampt-NAD＋-Sirt1 system via AhR activation, which in turn promotes endothelial 
senescence.
Conclusions: The IS-AhR pathway induces endothelial senescence. Therefore, blocking the effects of 
AhR in the endothelium may provide a new therapeutic tool for treating cardio-renal syndrome.

J Atheroscler Thromb, 2014; 21:000-000.
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Introduction

The correlation between chronic kidney disease 
(CKD) and cardiovascular disease (CVD) is termed 
“cardio-renal syndrome”1-3). Studies on the relation-
ship between CVD and CKD have shown that the 
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progression of renal dysfunction affects various factors 
that lead to atherosclerosis, such as those involving the 
renin-angiotensin system (RAS), sympathetic nervous 
system and oxidative stress4-6). Notably, oxidative stress 
has been shown to strongly contribute to the develop-
ment of atherosclerosis through the effects of vascular 
inflammation, dysfunction and senescence7-13). The 
occurrence of cellular senescence in the vasculature, 
namely vascular senescence, has been suggested to be 
an important process in the development of athero-
sclerosis based on reports showing that senescent vas-
cular cells are present in human atherosclerotic 
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ily of proteins, the activation of which by a variety of 
agonists, including dioxins, is involved in drug metab-
olism, promoting both cancer and fetal organ develop-
ment40, 41). Recently, the activation of AhR by dioxin, 
a representative AhR agonist, has been reported to 
impair the vascular system due to increased oxidative 
stress. In addition, subchronic exposure to 2,3,7,8-tet-
rachlorodibenzo-p-dioxin (TCDD) has been found to 
mediate endothelial dysfunction due to the produc-
tion of nitric oxide (NO) via the activation of AhR in 
the aorta in mice42). Furthermore, the enhancement of 
AhR by polychlorinated biphenyls (PCBs) has been 
demonstrated to cause endothelial inflammation in 
association with an increased expression of monocyte 
chemotactic protein-1 (MCP-1) and vascular cell 
adhesion protein-1 (VCAM-1)43). We previously 
found that IS activates AhR as its ligand, which in 
turn, induces the MCP-1 expression via the actions of 
mitogen-activated protein kinase (MAPK)/nuclear 
factor-kB (NF-kB) in HUVECs39, 44). These reports 
indicate that AhR is involved in the pathogenesis of 
endothelial dysfunction and inflammation; however, it 
remains unclear whether AhR activation causes cellu-
lar senescence in endothelial cells.

The aim of the present study was therefore to 
examine whether the activation of AhR by IS pro-
motes cellular senescence in HUVECs. The results 
demonstrated that IS-induced AhR activation impairs 
the iNampt-NAD＋-Sirt1 system due to increased oxi-
dative stress, thus resulting in the induction of cellular 
senescence.

Materials and Methods

Reagents
Medium 199, endothelial cell growth supplement, 

IS, α-naphthoflavone (ANF), CH223191 (CH), apoc-
ynin (apo) and nicotinamide (NAM) were purchased 
from Sigma-Aldrich (St. Louis, MO, USA). H2O2 was 
purchased from Wako Pure Chemical Industries 
(Osaka, Japan). Fetal bovine serum (FBS) was pur-
chased from Biological Industries (Haemek, Israel).

Cell Culture
HUVECs were purchased from Lonza Walkers-

ville, Inc. (Walkersville, MD, USA) and cultured in a 
type Ⅰ collagen-coated plate (Asahi Glass Tokyo, 
Japan) at 37℃ and 5% CO2 in medium 199 supple-
mented with 10% FBS, 10 mmol/L of glutamine, 100 
μg/mL of heparin, 20 μg/mL of endothelial growth 
factor, 100 μg/mL of gentamicin and 100 μg/mL of 
amphotericin B. The cells were used for the experi-
ments between passages 4 and 7. In order to examine 

lesions14-16). Furthermore, Muteliefu et al. reported 
that oxidative stress mediates atherosclerosis in the 
aorta via the process of vascular senescence in rats with 
renal failure, suggesting that the onset of premature 
vascular senescence in the setting of CKD is deeply 
related to the pathogenesis of cardio-renal syn-
drome13).

Sirtuin 1 (Sirt1), the closest homologue of silent 
information regulator2 (Sir2), has been identified to 
be a NAD＋-dependent deacetylase whose activity 
plays a significant role in the processes of senescence, 
apoptosis and cell cycle modulation by regulating the 
acetylation of lysine groups of many transcriptional 
factors and proteins, such as histones, p53 and FOXO 
transcriptional factors17-19). In addition, oxidative 
stress has been shown to reduce the cellular NAD＋ 
content by suppressing the activation of intracellular 
nicotinamide phosphoribosyltransferase (iNampt), the 
rate-limiting enzyme for NAD＋ biosynthesis derived 
from nicotinamide (NAM), and decreasing the Sirt1 
activity10, 20-22). Therefore, Sirt1 is considered to be a 
key player in the promotion of oxidative stress-medi-
ated cellular senescence23).

Uremic toxins, accumulate in association with 
the progression of renal dysfunction, have been dem-
onstrated to augment oxidative stress in CKD 
patients9, 24-26). Indoxyl sulfate (IS), a protein-bound 
uremic toxin, is metabolized in the liver by trypto-
phan-derived indole, which is produced by tryptopha-
nase in intestinal bacteria and normally excreted into 
the urine27). However, a reduced renal clearance due 
to the progression of CKD elevates the serum level of 
IS, which is known to enhance oxidative stress in both 
humans and rats.27-31). Yu et al. demonstrated that the 
enhancement of oxidative stress in erythrocytes and 
plasma in CKD patients is correlated with the serum 
levels of IS32). Studies using animal models of renal 
failure indicate that an elevated IS induces oxidative 
stress in the aorta and kidney in rats.13, 33). It has been 
reported that the mechanism by which IS induces oxi-
dative stress involves the transport of IS into the cell 
via organic anion transporters (OAT1, OAT3), where 
it then activates nicotinamide adenine dinucleotide 
phosphate (NADPH) oxidase in endothelial, renal 
tubular and glomerular mesangial cells34-38). Although 
it is unknown how IS activates NADPH oxidase, we 
recently found that aryl hydrocarbon receptor (AhR), 
which is expressed in human umbilical vein endothe-
lial cells (HUVECs), is involved in the upregulation of 
NADPH oxidase-4 induced by IS39).

AhR is a ligand-activated nuclear receptor/tran-
scription factor belonging to the basic helix-loop-
helix/per-AhR nuclear translocator (ARNT)-Sim fam-
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mined using a Nampt colorimetric assay kit (CycLex) 
according to the manufacturer’s instructions.

Immunoblotting
To obtain proteins, HUVECs were homogenized 

in ice-cold lysis buffer [1% Triton X-100, 50 mM of 
HEPES (pH 7.4), 100 mM of sodium pyrophosphate, 
100 mM of sodium fluoride, 10 mM of EDTA, 10 
mM of sodium vanadate, 1 mM of PMSF, 1 μg/mL 
of aprotinin and 5 μg/mL of leupeptin], and the 
supernatant was collected, including the total proteins, 
after centrifugation (15,000 rpm, 30 min, 4℃). The 
lysed protein concentration in each sample was mea-
sured using a Bio-Rad detergent-compatible protein 
assay. A protein sample (2 or 5 μg) of each fraction 
was electrophoretically blotted onto a polyvinylidene 
fluoride (PVDF) membrane (GE Healthcare, UK) 
using 10% sodium dodecyl sulphate (SDS)-polyacryl-
amide gel electrophoresis (PAGE) and then detected 
with an anti-Sirt1 antibody (Merck Millipore, Biller-
ica, MA, USA), anti Nampt antibody (Abgent Inc., 
San Diego CA, USA), anti-acetyl p53 antibody 
(Merck Millipore, Billerica, MA, USA), anti-total p53 
antibody (Merck Millipore, Billerica, MA, USA) and 
anti β-actin antibody (Santa Cruz Biotechnology, 
Santa Cruz, CA, USA). Images were acquired using a 
ChemiDoc XRS System (Bio-Rad) and analyzed with 
the PDQuest software package (Bio-Rad). The expres-
sion levels of specific proteins were normalized to that 
of β-actin in all cases. The respective fold increase 
over the control was then determined.

Statistical Analysis
The results are expressed as the mean±standard 

error of the mean (SEM). Comparisons between 
groups were made using a one-way ANOVA analysis. 
P values of ＜0.05 were considered to be statistically 
significant.

Results

IS Induces Cellular Senescence by Impairing the 
iNampt-NAD＋-Sirt1 System in HUVECs

First, we examined whether IS accelerates cellular 
senescence in HUVECs. HUVECs were incubated 
with IS for 24 hours at a concentration of 500 μmol/
L, which is often used in many studies to enhance oxi-
dative stress in these cells13, 45, 46), after which we 
detected cellular senescence using SA β-gal staining. 
As shown in Fig.1A, IS significantly increased the 
percentage of SA β-gal-positive cells, as scored by 
counting the numbers of blue and total cells, com-
pared to that observed in the control cells at 24 hours, 

cellular senescence and senescence-related changes, the 
HUVECs were incubated in 60-mm dishes with IS 
(500 μmol/L) or H2O2 (200 μmol/L) for the indi-
cated time periods. To determine the underlying 
mechanism, the cells were preincubated with ANF (10 
μmol/L), CH (10 μmol/L), apo (600 μmol/L), NAM 
(5 mmol/L) and nothing for one hour and then stim-
ulated with IS for 24 hours.

Senescence-Associated β-Galactosidase (SA β-gal) 
Staining

In order to assess the senescent changes in the 
phenotype of HUVECs, staining for SA β-gal, a well-
established biomarker of cellular senescence, was per-
formed. The HUVECs were incubated for 24 hours at 
37℃ in freshly prepared β-gal staining solution (pH 
6.0) containing 1 mg/mL of 5-bromo-4-chrolo-3-ind-
lyl β-D-galactopyranoside (X-gal), 5 mmol/L of potas-
sium ferrocyanide, 5 mmol/L of potassium ferricya-
nide, 150 mmol/L of NaCl, 2 mmol/L of MgCl2, 
0.01% sodium deoxycholate and 0.02% Nonidet-40. 
The percentage of SA β-gal-positive cells was deter-
mined by counting the number of blue cells and total 
cells within two different fields observed under a 
microscope (x100) per sample. The number of cells 
was calculated using an image analysis software pro-
gram (WinROOF; Mitani Corporation, Japan). As a 
positive control, H2O2 was used to induce the transi-
tion to a senescent phenotype among the HUVECs.

Sirt1 Activity Assay
HUVECs were homogenized in an ice-cold lysis 

buffer [50 mmol/L Tris-HCl (pH 7.4), 150 mmol/L 
of NaCl, 1 mmol/L of phenylmethylsulfonyl fluoride 
(FMSF), 5 μg/mL of leupeptin and 1 μg/mL of apro-
tinin], and the total proteins in the supernatant were 
extracted following centrifugation (15,000 rpm, 10 
min, 4℃). The Sirt1 activity in the total protein sam-
ples was determined using a histone deacetylase 
(HDAC) colorimetric assay kit (Enzo Life Sciences, 
Inc.) according to the manufacturer’s instructions.

Measurement of Cellular NAD＋

The cellular NAD＋ expression was measured using 
the NAD＋/NADH Quantification Kit (Bio Vision) 
according to the manufacturer’s instructions. This kit 
is designed to specifically detect NAD＋ and NADH 
based on an enzyme cycling reaction and provides a 
convenient method for obtaining sensitive measure-
ments of the NAD＋ and NADH levels and their ratio.

iNampt Activity Assay
The iNampt activity in the HUVECs was deter-
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Fig.1. IS induces cellular senescence by impairing the iNampt-NAD＋-Sirt1 system in HUVECs.

HUVECs were treated with or without IS (500 μmol/L) for 24 hours. (A) Cellular senescence was detected using SA β-gal staining, and the 
percentage of SA β-gal positive cells was scored by counting the number of blue and total cells within two different fields observed under a 
microscope per sample. The values are presented as the mean±standard error of the mean (SEM) of each samples (n=3). ＊＊＊p＜0.001 vs. 
Control. HUVECs were treated with IS (500 μmol/L) for the indicated time periods. (B) The Sirt1 protein expression was analyzed using 
immunoblotting. (C) The Sirt1 activity was detected using an HDAC colorimetric assay. (D) The NAD＋/NADH ratio was measured using a 
colorimetric assay. (E) The iNampt activity was analyzed using a colorimetric assay. The values are presented as the mean±standard error of 
the mean (SEM) of three independent experiments for B-E (n=4 or 10). �p＜0.05, ��p＜0.01 vs. 0min. IS, indoxyl sulfate; Sirt1, sirtuin 1; 
iNampt, intracellular nicotinamide phosphoribosyltransferase; NAD, nicotinamide adenine dinucleotide; HUVECs, human umbilical vein 
endothelial cells; SA β-gal, senescence-associated β-galactosidase; HDAC, histone deacetylase.
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acetylated p53 protein expression was significantly 
enhanced by IS at 24 hours, indicating the reduced 
enzymatic activity of Sirt1 as a protein deacetylase. 
With respect to the effects of apocynin on the 
iNampt-NAD＋-Sirt1 system, as shown in Fig.2B-(1) 
(2), 2C and 2D, the addition of apocynin restored the 
Sirt1 activity, as detected in the HDAC colorimetric 
assay, as well as the protein expression of acetylated 
p53 and ameliorated both the NAD＋/NADH ratio 
and iNampt activity at 24 hours after IS treatment. 
Taken together, these results indicate that IS-enhanced 
oxidative stress impairs the iNampt-NAD＋-Sirt1 sys-
tem, thus accelerating cellular senescence in HUVECs.

IS-Induced Endothelial Senescence is AhR-
Dependent

We recently reported that the mechanism by 
which IS increases oxidative stress in HUVECs is 
AhR-dependent39). We therefore examined the effects 
of AhR blockade on cellular senescence. Pretreatment 
with ANF (10 μmol/L) or CH223191 (10 μmol/L)39), 
AhR inhibitors, for one hour rescued the IS-induced 
cellular senescence in the HUVECs (Fig.3A). Fur-
thermore, we analyzed whether AhR is involved in the 
IS-induced impairment of the iNampt-NAD＋-Sirt1 
system using AhR inhibitors. At 24 hours after IS 
treatment, the addition of either ANF or CH223191 
significantly abolished the reduction in the iNampt 
activity and NAD＋/NADH ratio, which in turn 
restored both the Sirt1 activity determined on the 
HDAC colorimetric assay and the protein expression 
of acetylated p53 to the control levels (Fig.3B-(1) (2), 
3C and 3D). Taken together, these findings clearly 
demonstrate that IS-induced endothelial senescence is 
AhR-dependent.

The Addition of NAM Improves IS-Induced 
Senescence-Related Changes in HUVECs

Furthermore, in order to confirm that cellular 
NAD＋ depletion by IS plays a role in the pathogenesis 
of cellular senescence, we evaluated the effects of 
NAM, a substrate of NAD, on the IS-induced senes-
cence-related changes. As shown in Fig.4A, 4B-(1) (2) 
and 4C, the addition of NAM at a concentration of 5 
mmol/L, which is often used in many investigations, 
with beneficial effects in cardiovascular cells47, 48), clearly 
restored the IS-induced changes observed in the NAD＋ 
content and Sirt1 activity, resulting in the ameliora-
tion of cellular senescence. These results therefore 
demonstrate that the reduction in the NAD＋ content 
induced by IS deteriorates the Sirt1 activity, thereby 
leading to the induction of cellular senescence in 
HUVECs.

indicating that IS accelerates cellular senescence in 
HUVECs. Next, we examined whether Sirt1, a key 
player in cellular senescence, is involved in the process 
of IS-induced cellular senescence in HUVECs. As 
shown in Fig.1B, there were no significant changes in 
the Sirt1 protein expression, as determined on an 
immunoblotting analysis, among the IS-treated 
HUVECs; however, the Sirt1 activity detected using 
an HDAC colorimetric assay was significantly sup-
pressed at 24 hours (Fig.1C). It is well known that 
the Sirt1 activity is dependent on the cellular NAD＋ 
content10, 17-20). Therefore, in order to assess whether 
the IS-induced decrease in the Sirt1 activity is caused 
by NAD＋ depletion, we evaluated the effects of IS on 
the NAD＋ content using a colorimetric assay. As dem-
onstrated in Fig.1D, the NAD＋/NADH ratio 
decreased significantly from six to 24 hours after IS 
treatment. Furthermore, we examined the effects of IS 
on iNampt, the rate-limiting enzyme in the biosynthe-
sis of cellular NAD＋, in order to investigate the mech-
anism underlying the NAD＋ depletion induced by IS. 
As shown in Fig.1E, the iNampt activity analyzed 
using the colorimetric assay, as well as the NAD＋/
NAPH ratio, significantly decreased in a time-depen-
dent manner. Taken together, these results suggest that 
IS suppresses the Sirt1 activity by decreasing the 
iNampt activity and cellular NAD＋ contents and that 
Sirt1 is involved in the process of cellular senescence 
induced by IS in HUVECs.

IS-Enhanced Oxidative Stress Impairs the iNampt-
NAD＋-Sirt1 System, Leading to the Acceleration of 
Cellular Senescence in HUVECs

Previously, we reported that IS activates NADPH 
oxidase-4, resulting in the induction of oxidative stress 
in HUVECs44). Since oxidative stress has been dem-
onstrated to cause cellular senescence due to impair-
ment of the iNampt-NAD＋-Sirt1 system10, 20-23), we 
examined the effects of apocynin (600 μmol/L)44), a 
specific NADPH oxidase inhibitor, on IS-induced cel-
lular senescence in HUVECs. As shown in Fig.2A, IS 
induced cellular senescence at 24 hours in a similar 
pattern to that induced by 200 μmol/L of H2O2, 
while pretreatment with apocynin for one hour res-
cued the IS-induced cellular senescence, suggesting 
that the enhancement of oxidative stress following IS-
induced NADPH oxidase-4 activation results in cellu-
lar senescence in HUVECs. Furthermore, we exam-
ined whether IS impairs the iNampt-NAD＋-Sirt1 sys-
tem by increasing oxidative stress in HUVECs using 
apocynin. As demonstrated in Fig.2B-(1), there were 
no significant changes in the total p53 protein expres-
sion on the immunoblotting analysis; however, the 
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Fig.2. IS-enhanced oxidative stress impairs the iNampt-NAD＋-Sirt1 system, leading to the acceleration of cellular senescence in 
HUVECs.

HUVECs were pretreated with or without apo (600 μmol/L) for one hour and then incubated with or without IS (500 μmol/L) for 24 
hours. HUVECs treated with H2O2 (200 μmol/L) for 24 hours were used as a positive control. (A) Cellular senescence was analyzed using SA 
β-gal staining, and the percentage of SA β-gal-positive cells was scored by counting the number of blue and total cells within two different 
fields which under a microscope per sample. The values are presented as the mean±standard error of the mean (SEM) of each sample (n=3). 
(B) (1) The protein expression of acetylated p53 was analyzed using immunoblotting. (2) The Sirt1 activity was detected using an HDAC col-
orimetric assay. (C) The NAD＋/NADH ratio was measured using a colorimetric assay. (D) The iNampt activity was analyzed using a colori-
metric assay. The values are presented as the mean±standard error of the mean (SEM) of three independent experiments for B-D (n=4 or 
10). ＊p＜0.05, ＊＊p＜0.01, ＊＊＊p＜0.001 vs. Control; ��p＜0.01 vs. IS. IS, indoxyl sulfate; iNampt, intracellular nicotinamide phosphoribosyl-
transferase; NAD, nicotinamide adenine dinucleotide; Sirt1, sirtuin 1; HUVECs, human umbilical vein endothelial cells; apo, apocynin; SA 
β-gal, senescence-associated β-galactosidase; HDAC, histone deacetylase.
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Fig.3. IS-induced endothelial senescence is AhR-dependent.

HUVECs pretreated with or without ANF (10 μmol/L) or CH (10 μmol/L) for one hour were incubated with or without IS (500 μmol/L) 
for 24 hours. (A) Cellular senescence was detected using SA β-gal staining, and the percentage of SA β-gal-positive cells was scored by count-
ing the number of blue and total cells within two different fields observed under a microscope per sample. The values are presented as the 
mean±standard error of the mean (SEM) of each sample (n=3). (B) (1) The protein expression of acetylated p53 was analyzed using immu-
noblotting. (2) The Sirt1 activity was detected using an HDAC colorimetric assay. (C) The NAD＋/NADH ratio was measured using a colori-
metric assay. (D) The iNampt activity was analyzed using a colorimetric assay. The values are presented as the mean±standard error of the 
mean (SEM) of three independent experiments for B-D (n=4 or 10). ＊＊p＜0.01, ＊＊＊p＜0.001 vs. Control; �p＜0.05, ��p＜0.01 vs. IS. IS, 
indoxyl sulfate; AhR, aryl hydrocarbon receptor; HUVECs, human umbilical vein endothelial cells; ANF, α-naphthoflavone; CH, 
CH223191; SA β-gal, senescence-associated β-galactosidase; Sirt1, sirtuin 1; HDAC, histone deacetylase; NAD, nicotinamide adenine dinu-
cleotide; iNampt, intracellular nicotinamide phosphoribosyltransferase.
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ultimately leads to the development of cardio-renal 
syndrome.

Vascular senescence, which is induced by 
enhanced oxidative stress in association with the pro-
gression of renal failure, is believed to be deeply 
involved in the onset and progression of cardio-renal 
syndrome4-13). Sirt1 is a key player in cellular senes-
cence, and the decrease in the iNampt activity and cel-
lular NAD＋ content induced by oxidative stress has 
been shown to impair the Sirt1 activity10, 17-23). IS, 

Discussion

The present study shows for the first time that IS 
suppresses the Sirt1 activity in association with a 
decrease in the iNampt activity and NAD＋ content, 
resulting in the acceleration of cellular senescence due 
to oxidative stress and that IS-induced cellular senes-
cence in HUVECs is AhR-dependent. These findings 
suggest that the IS-AhR pathway plays an important 
role in the pathogenesis of vascular senescence, which 

Fig.4. The addition of NAM improves IS-induced senescence-related changes in HUVECs.

HUVECs were pretreated with or without NAM (5 μmol/L) for one hour and then incubated with or without IS (500 μmol/L) for 24 hours. 
(A) The NAD＋/NADH ratio was measured using a colorimetric assay. (B) (1) The protein expression of acetylated p53 was analyzed using 
immunoblotting. (2) The Sirt1 activity was detected using an HDAC colorimetric assay. The values are presented as the mean±standard error 
of the mean (SEM) of three independent experiments for A and B (n=4 or 10). (C) Cellular senescence was detected using SA β-gal staining, 
and the percentage of SA β-gal-positive cells was scored by counting the number of blue and total cells within two different fields observed 
under a microscope per sample. The values are presented as the mean±standard error of the mean (SEM) of each sample (n=3). ＊＊p＜
0.01, ＊＊＊p＜0.001 vs. Control; �p＜0.05, ��p＜0.01, ���p＜0.001 vs. IS. IS, indoxyl sulfate; NAM, nicotinamide; HUVECs, human umbilical 
vein endothelial cells; NAD, nicotinamide adenine dinucleotide; Sirt1, sirtuin 1; HDAC, histone deacetylase; SA β-gal, senescence-associated 
β-galactosidase.
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NAD＋ content brings about beneficial effects on the 
cardiovascular system10, 47, 54, 55). For example, Tong et 
al. reported that NAM pretreatment increases the cel-
lular NAD＋ content in cardiomyocytes, thus prevent-
ing impairment by hypoxia-induced oxidative stress in 
these cells48). In agreement with these reports, we 
found that the addition of NAM to IS-treated 
HUVECs markedly reversed the observed decrease in 
the NAD＋ content and Sirt1 activity, thereby amelio-
rating cellular senescence. These results suggest the 
possibility that supplementation with NAM may pre-
vent the development of CVD induced by IS in CKD 
patients. Many dialysis patients exhibit a lack of NAM 
due to its removal during dialysis and limits on the 
intake of foods containing NAM in medical diets. 
However, the European Best Practice Guidelines 
(EBPG) on nutrition advise that high doses of NAM 
should be prescribed with great caution in dialysis 
patients when used for the purpose of reducing car-
diovascular risks, since there is no evidence that the 
addition of NAM suppresses cardiovascular events in 
dialysis patients at the present time56).

Based on the fact that IS causes a variety of 
adverse effects, such as vascular senescence, inflamma-
tion and dysfunction, it is important to reduce the cir-
culating IS level and/or block the actions of IS in 
order to prevent the development of CVD in CKD 
patients. The use of AST-120 (Kremezin, Kureha Cor-
poration, Tokyo, Japan), a charcoal sorbent, currently 
accepted to be an effective therapy for CKD, is 
reported to slow the progression of CKD and delay 
the initiation of dialysis in humans57-59). The beneficial 
effects of AST-120 on the vasculature have also been 
frequently reported. For example, Yu et al. reported 
that IS-induced endothelial dysfunction can be 
reversed by AST120 in CKD patients32), while Mute-
liefu et al. demonstrated that treatment with AST-120 
prevents cellular senescence and calcification of the 
aorta induced by IS in renal failure rats13), suggesting 
that reducing the circulating IS level may be an effec-
tive therapy, not only for CKD, but also CVD. In the 
present study, we found that the IS-AhR pathway 
induces cellular senescence by increasing oxidative 
stress in endothelial cells, suggesting that blocking this 
pathway may prevent IS-induced vascular senescence. 
However, the molecular mechanisms of AhR-NF-E2-
related factor-2 (Nrf2) cross-talk should be taken into 
account. Yeager et al. reported that AhR plays a role in 
Nrf2 activation in the liver in mice administered 
TCDD60), and Tsuji et al. demonstrated that the anti-
inflammatory effects of ketoconazole, a widely used 
imidazole antifungal agent, via Nrf2 activation require 
AhR signaling in normal human epidermal keratino-

which accumulates as renal dysfunction progresses, 
enhances oxidative stress in the setting of CKD. Fur-
thermore, the mechanism by which IS enhances oxi-
dative stress has been reported to involve the transpor-
tation of IS into the cell via OAT1 and 3, where it 
subsequently generates superoxide by activating 
NADPH oxidase in endothelial, renal tubular and glo-
merular mesangial cells34-38). Although IS is known to 
induce endothelial senescence due to oxidative 
stress49-51), no previous reports have investigated 
whether Sirt1 is involved in the pathogenesis of IS-
induced endothelial senescence. In the present study, 
we therefore examined the effects of IS on the iNampt 
activity, cellular NAD＋ content and Sirt1 activity by 
adding IS to HUVECs and found that IS decreases 
both the iNampt activity and NAD＋ content, result-
ing in the suppression of the Sirt1 activity. Further-
more, we investigated whether the increased oxidative 
stress induced by IS plays a role in the impairment of 
the iNampt-NAD＋-Sirt1 system using an NADPH 
oxidase inhibitor. Pretreatment with the NADPH oxi-
dase inhibitor clearly restored the iNampt activity, 
NAD＋ content and Sirt1 activity, as detected on an 
HDAC colorimetric assay, as well as the protein 
expression of acetylated p53 and cellular senescence in 
the HUVECs. These results suggest, for the first time, 
that IS-enhanced oxidative stress impairs the iNampt-
NAD＋-Sirt1 system, leading to the acceleration of 
endothelial senescence.

We previously revealed that the mechanism by 
which IS increases oxidative stress in HUVECs is 
AhR-dependent39). AhR, a ligand-activated nuclear 
receptor/transcription factor, is known to mediate drug 
metabolism, thereby promoting both cancer and fetal 
organ development. Recently, the activation of AhR 
by its ligands, including TCDD and PCBs, has been 
demonstrated to cause endothelial dysfunction and 
inflammation by increasing oxidative stress42, 43, 52, 53). 
We also previously reported that IS-induced AhR acti-
vation stimulates the MCP-1 expression via the 
actions of MAPK/NF-kB in HUVECs, suggesting 
that endothelial AhR plays an important role in vascu-
lar damage39, 44), although it is unclear whether AhR is 
involved in the pathogenesis of cellular senescence in 
endothelial cells. We therefore examined whether AhR 
mediates IS-induced endothelial senescence using 
AhR inhibitors. The blockade of AhR by its inhibitors 
canceled the observed cellular senescence in associa-
tion with the restoration of the iNampt activity, NAD＋ 
content and Sirt1 activity in the HUVECs. These 
results clearly indicate, for the first time, that IS-
induced endothelial senescence is AhR-dependent.

Many studies have shown that an increase in the 
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activity in endothelial cells. Therefore, in view of the 
involvement of vascular senescence in the develop-
ment of CVD, our results suggest that blocking the 
IS-AhR pathway may provide a novel therapeutic 
strategy for treating cardio-renal syndrome.
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