1	Molecular characterization of carbapenem-non-susceptible Acinetobacter spp. in
2	Japan; Predominance of multidrug-resistant Acinetobacter baumannii clonal
3	complex 92 and IMP-type metallo-8-lactamase-producing non-baumannii
4	Acinetobacter species
5	
6	
7	Yuichi Kouyama, Sohei Harada, Yoshikazu Ishii*, Tomoo Saga, Ayumi Yoshizumi,
8	Kazuhiro Tateda and Keizo Yamaguchi
9	
10	Department of Microbiology and Infectious Diseases, Toho University School of
11	Medicine, Tokyo, Japan
12	
13	Running title: Carbapenem-non susceptible Acinetobacter spp. in Japan
14	
15	Keywords: Acinetobacter spp., metallo-8-lactamase, carbapenem-hydrolyzing
16	class D &-lactamase, amplified ribosomal DNA restriction analysis (ARDRA)
17	
18	*Corresponding author: Yoshikazu Ishii, Ph. D.
19	Department of Microbiology and Infectious Diseases, Toho University School of

- 20 Medicine
- 21 Omori-nishi, Ota-ku, 1438540 Tokyo, Japan
- 22 TEL: +81-3-3762-4151
- 23 FAX: +81-3-5493-5415
- 24 E-mail: yishii@med.toho-u.ac.jp

25 Abstract

We conducted an epidemiological study concerning carbapenem-non-susceptible 2627clinical isolates of *Acinetobacter* spp. in Japan by molecular procedures including carbapenemase gene identification and amplified ribosomal DNA restriction 28analysis. Among 598 clinically isolated *Acinetobacter* spp. in 2007, 27 (4.5%) were 29non-susceptible to carbapenems. Most carbapenem-non-susceptible Acinetobacter 30 baumannii (13/14) belonged to clonal complex (CC) 92, harbored blaoxA-51-like 31genes, including novel blaoxA-206, downstream of ISAba1, and were recovered 3233 mainly from the Kanto region. Carbapenem-non-susceptible A. baumannii CC92 isolates were further divided by pulsed-field gel electrophoresis into two groups, 34one of which was characterized by the presence of blaoXA-23. One A. baumannii 35CC276 isolate carried *bla*_{IMP-1} and *bla*_{OXA-58}. Almost all non-*baumannii* 36 Acinetobacter isolates (12/13),including Acinetobacter pittii (formerly 37Acinetobacter genomic species 3) and Acintobacter nosocomialis (formerly 38Acinetobacter genomic species 13TU), produced IMP-type metallo-6-lactamases, 39and were recovered from various regions in Japan. This is the first report 40 describing the nationwide molecular epidemiology of carbapenem-non-susceptible 41Acinetobacter spp. with genomic species level identification in Japan. 42

43 Introduction

Among Acinetobacter species, Acinetobacter baumannii is the most important 44nosocomial pathogens, frequently resistant to multiple antimicrobials. 45Carbapenems play an important role for treatment of Acinetobacter infections, 46but carbapenem-resistant A. baumannii have spread worldwide rapidly in these 47two decades with multiple resistant means [1]; OXA-type class D carbapenemases, 48which are intrinsic or acquired, could be potentiated by promoter sequences 49located within ISAba insertion sequences [2, 3]. Metallo-B-lactamases (MBLs) 5051also confer carbapenem resistance on this pathogen. B-lactamases are shown to work synergistically with other mechanisms including alteration of drug 52permeability and efflux pumps [1]. 53

More generally, it is apparent that the population structure of *A*. *baumannii* comprises three major international lineages, named European clones I, II, and III [4, 5]. A subgroup of European clone II involving clonal complex (CC) 92, has spread globally [6], and is wide spread in China [7] and Korea [8]; it is also recorded in Australia [9].

59 While these strains remain relatively rare in Japan, it is a matter of 60 concern [10]. In the past reports about *Acinetobacter* spp. in Japan, *Acinetobacter* 61 *calcoaceticus-Acinetobacter baumannii* complex (ACB complex) including

62	Acinetobacter pittii (formerly Acinetobacter genomic species 3) and Acinetobacter
63	nosocomialis (formerly Acinetobacter genomic species 13 TU) had been mentioned
64	as "A. baumannii" and its mechanism of carbapenem resistance was explained by
65	MBLs; epidemiological information including genetic species identification and
66	class D carbapenemase is lacking [11, 12].
67	Here, we characterized the genetic mechanisms of carbapenem-
68	non-susceptibility in clinical Acinetobacter spp. from a nationwide surveillance
69	study in Japan, and analyzed the molecular epidemiology of
70	carbapenem-non-susceptible isolates.
71	
72	Materials and methods
73	
74	Bacterial strains
75	A total of 598 clinical isolates of $Acinetobacter$ spp. were collected from 72
76	hospitals and other healthcare institutions as part of a nationwide survey
77	between January and December 2007 by the Levofloxacin Surveillance Group

78 [13]. The maximum number of isolates collected per institution was 10. Only one

⁷⁹ isolate was accepted from each patient. Isolates with resistance to imipenem or

80 panipenem (MICs ≥ 8 mg/L) in the survey [13] were investigated further.

82 Identification at the level of species/genomic species

83	Biochemical identification was performed in 27 carbapenems
84	non-susceptible isolates by the BD Phoenix automated system (BD Diagnostic
85	Systems, Sparks, MD, USA). Amplified ribosomal DNA restriction analysis
86	(ARDRA) was performed to identify species and genomic species [14]. Reference of
87	ARDRA patterns were obtained from website
88	(http://users.ugent.be/~mvaneech/ARDRA/Acinetobacter.html). PCR
89	amplification and nucleotide sequencing of intrinsic <i>bla</i> OXA-51-like gene were
90	performed to confirm identification of A. baumannii (Table 1). Nucleotide
91	sequences of the amplified products were determined using an ABI 310 genetic
92	analyzer with Big Dye terminator Ver.3.1 cycle Sequencing kit (Applied
93	Biosystems, Foster City, CA, USA).

94

95 Antimicrobial susceptibility testing

Minimum inhibitory concentrations were measured by the broth microdilution method of the Clinical and Laboratory Standards Institute [15]. Antimicrobial agents tested were as follows: ampicillin, ceftazidime, imipenem, meropenem and minocycline (Sigma Chemical Co. St Louis, MO, USA),

100	gentamicin and sulbactam (Wako Pure Chemical, Osaka, Japan), ciprofloxacin
101	(MP Biomedicals, Solon, OH, USA), and cefepime (Bristol-Myers Squibb, Tokyo,
102	Japan).
103	
104	Phenotypic and genotypic tests for MBLs
105	Production of MBLs was screened by the double-disk synergy test using
106	ceftazidime (30 μg) and sodium mercaptoacetate (30 μg) discs (Eiken Chemical,
107	Inc., Tokyo, Japan) [16]. Genes for IMP-1, IMP-2, VIM-1, and VIM-2
108	carbapenemases were sought by PCR (Table 1) [12].
109	
110	Detection of class D carbapenemase genes and associated ISAba
111	bla_{OXA} genes were sought by multiplex PCR (Table 1) [17]. The presence of
112	an ISAba-type insertion sequence upstream of bla_{OXA} genes was investigated by
113	PCR and nucleotide sequencing, using combinations of the forward primers for
114	ISAba and the reverse primer for the relevant bla_{OXA} gene.
115	
116	Molecular typing by pulsed-field gel electrophoresis (PFGE)
117	Agarose gel plugs containing Apa I-digested genomic DNA were prepared
118	with the CHEF Bacterial Genomic DNA Plug Kit (Bio-Rad, Hercules, CA). The

119	DNA fragments were separated with a CHEF MAPPER (Bio-Rad) for 18.5 h at
120	14 °C with a 1 to 17s linear ramp of 6V/cm. Restriction patterns were analyzed
121	with Fingerprinting II software (Bio-Rad) and cluster analysis was performed by
122	the unweighted pair-group method with mathematical averaging. Position
123	tolerance and optimization were set at 1.5% and 1.5%, respectively. Only
124	restriction fragments larger than 50 kb were used for analysis. Isolates with
125	>85% similarity were assigned to the same strain subgroup.
126	
127	Multilocus sequence typing (MLST)
128	Sequence types (STs) of <i>A. baumannii</i> isolates were determined according
129	to the MLST scheme (http://pubmlst.org/abaumannii/) [18, 19]. Clonal complexes
130	(CCs) were determined by eBURST version 3 (http://eburst.mlst.net/) with
131	definition of the groups by sharing alleles at ≥ 6 of 7 loci and bootstrap values of
132	1000 [20].
133	
134	Statistical analysis
135	Distribution of drug resistance, as well as resistance determinants, was
136	estimated by Fisher's exact test. A p value <0.05 was considered as a statistically
137	significant difference.

- 139 Nucleotide sequence accession number
- 140 The nucleotide sequence of *bla*_{OXA-206} was assigned accession number
- 141 AB634250.

142 **Results**

143 Isolates with reduced susceptibilities to carbapenems

144	Acinetobacter spp. were isolated as follows; 182 isolates were from Kanto
145	region, 26 isolates were from Hokkaido, 77 isolates were from Tohoku region, 86
146	isolates were from Tokai and Hokuriku region, 134 isolates were from Kansai and
147	Chugoku region, and 93 isolates were from Kyusyu region.
148	Among the 598 clinical isolates of <i>Acinetobacter</i> spp. (333 from respiratory
149	tract, 45 from urinary tract, 79 from blood, 74 from pus, and 67 from other sites),
150	27 isolates (4.5%) were resistant to either or both imipenem and panipenem (17
151	from respiratory tract, 2 from urinary tract, 2 from blood, 2 from pus, and 4 from
152	other sites).
153	These 27 carbapenem-non-susceptible isolates were further identified at
154	species/genomic species level by ARDRA identification; 51.9% (14/27) of tested
155	Acinetobacter species was identified as A. baumannii. In agreement with
156	ARDRA-based idenitification, all 14 <i>A. baumannii</i> isolates were detected <i>bla</i> OXA-51
157	_{like} gene by PCR, a hallmark of this species.

158 Carbapenem-non-susceptible *A. baumannii* were isolated in two areas. Of 159 the 14 *A. baumannii* isolates, 13 were from five different hospitals in Kanto 160 region (13/182), and one was from Kyushu (1/93). In contrast, the non-*baumannii*

161	isolates were from more diverse areas; Kanto, Tokai, Kyushu, Hokkaido and
162	Hokuriku (Table 2).
163	
164	Antimicrobial susceptibility
165	Antibiogram data are described in Table 2. Compared with
166	non-baumannii Acinetobacter spp., A. baumannii was more frequently
167	non-susceptible to other classes of drug, namely, ampicillin/sulbactam (71% in A.
168	baumannii vs. 0% in non-baumannii, p<0.01) and ciprofloxacin (93% vs. 31%,
169	<i>p</i> <0.01).
170	
171	MBL-producing isolates
172	Thirteen of the 27 isolates were determined to have MBLs by phenotypic
173	testing and PCR showed 12 of these to carry bla_{IMP-1} . All of them except one were
174	non-baumannii Acitetobacter isolates. The bla_{IMP-2} was detected in one A.
175	nosocomialis isolate. No MBL genes were found in isolates negative by the
176	phenotypic test.
177	
178	Class D carbapenemases and ISAba

179 Sequencing of the PCR products revealed that the $bla_{OXA-51-like}$ gene harbored by

180	12/14 <i>A. baumannii</i> isolates was <i>bla</i> _{OXA-66} and one isolate harbored <i>bla</i> _{OXA-64} ,
181	while one isolate harbored $bla_{OXA-206}$, a new variant gene. The isolate with
182	bla_{OXA-64} also had ISAba3-like- bla_{OXA-58} and the isolate with $bla_{OXA-206}$, a single
183	amino acid variant of OXA-66 carried ISAba1-blaoXA-23. Of these 14, six carried
184	bla _{OXA-23} and one had bla _{OXA-58} . One A. lwoffii isolate and the three A. pittii
185	isolates harbored bla_{0XA-58} . ISAba1 was located 34-bp upstream of the bla_{0XA-66}
186	and $bla_{OXA-206}$ genes, or 8-bp upstream of the bla_{OXA-23} gene. ISAba3-like was
187	located 17-bp upstream of <i>bla</i> OXA-58. ISAba1 was not detected upstream of
188	bla_{OXA-66} in TUM10629 and upstream of bla_{OXA-64} in TUM 10635, and ISAba3-like
189	was not found upstream of <i>bla</i> OXA-58 in <i>A. lwoffii</i> TUM 10655.
190	Genetic relatedness of A. baumannii isolates
191	The A. baumannii isolates were classified into 3 subgroups by PFGE
191 192	The <i>A. baumannii</i> isolates were classified into 3 subgroups by PFGE (Figure). PFGE subgroups A and B comprised 7 and 6 isolates, respectively,
191 192 193	The <i>A. baumannii</i> isolates were classified into 3 subgroups by PFGE (Figure). PFGE subgroups A and B comprised 7 and 6 isolates, respectively, whereas one isolate was unique. PFGE subgroup A consisted of five isolates,
191 192 193 194	The <i>A. baumannii</i> isolates were classified into 3 subgroups by PFGE (Figure). PFGE subgroups A and B comprised 7 and 6 isolates, respectively, whereas one isolate was unique. PFGE subgroup A consisted of five isolates, TUM10629 to TUM10633 (Table 2), carrying both <i>bla</i> _{OXA-66} and <i>bla</i> _{OXA-23} from one
191 192 193 194 195	The <i>A. baumannii</i> isolates were classified into 3 subgroups by PFGE (Figure). PFGE subgroups A and B comprised 7 and 6 isolates, respectively, whereas one isolate was unique. PFGE subgroup A consisted of five isolates, TUM10629 to TUM10633 (Table 2), carrying both <i>bla</i> _{OXA-66} and <i>bla</i> _{OXA-23} from one hospital in the Kanto region, TUM10641 carrying <i>bla</i> _{OXA-206} and <i>bla</i> _{OXA-23} , and
 191 192 193 194 195 196 	The <i>A. baumannii</i> isolates were classified into 3 subgroups by PFGE (Figure). PFGE subgroups A and B comprised 7 and 6 isolates, respectively, whereas one isolate was unique. PFGE subgroup A consisted of five isolates, TUM10629 to TUM10633 (Table 2), carrying both <i>bla</i> _{0XA-66} and <i>bla</i> _{0XA-23} from one hospital in the Kanto region, TUM10641 carrying <i>bla</i> _{0XA-206} and <i>bla</i> _{0XA-23} , and TUM10642 from outside Kanto region. All isolates from Kanto region with only
 191 192 193 194 195 196 197 	The <i>A. baumannii</i> isolates were classified into 3 subgroups by PFGE (Figure). PFGE subgroups A and B comprised 7 and 6 isolates, respectively, whereas one isolate was unique. PFGE subgroup A consisted of five isolates, TUM10629 to TUM10633 (Table 2), carrying both <i>bla</i> _{0XA-66} and <i>bla</i> _{0XA-23} from one hospital in the Kanto region, TUM10641 carrying <i>bla</i> _{0XA-206} and <i>bla</i> _{0XA-23} , and TUM10642 from outside Kanto region. All isolates from Kanto region with only <i>bla</i> _{0XA-66} were classified into the PFGE subgroup B. The unique isolate, allocated

198 to subgroup C, was TUM10635, harboring *bla*OXA-64, *bla*OXA-58, and *bla*IMP-1.

199	The isolates of PFGE subgroup A and B were determined to belong to CC92
200	(i.e. ST208 and ST219). TUM10635, the A. baumannii isolate with IMP-1, had
201	novel sequences in <i>gdhB</i> and <i>gpi</i> and was assigned to ST276.
202	
203	Discussions
204	The prevalence of carbapenem-non-susceptibility among Acinecobacter
205	spp. in Japan (4.5%) was at lower level than reports in other regions: 26.9% in
206	Korea [21], 49% in Taiwan [22], 50-52.4% in China [23], and 22-26% in Europe
207	[24]. Moreover, as observed in Korea [25], carbapenem-non-susceptible A .
208	baumannii was more frequently resistant to ampicillin/sulbactam and
209	ciprofloxacin than for non- <i>baumannii</i> isolates.
210	Geographically, carbapenem-non-susceptible A. baumannii isolates were
211	recovered mainly from the Kanto region, while non-baumannii isolates were
212	distributed in various regions.
213	While ST92 has been the global epidemic clone among
214	carbapenem-non-susceptible <i>A. baumannii</i> ,[26] 13 out of 14
215	carbapenem-non-susceptible A. baumannii isolates belonged to ST208 or its
216	single variant ST219, the member of CC92 in our study. The fact that the isolates
217	carrying $bla_{\text{OXA-66}}$ belonged to CC92 is compatible with the finding that the
	19

isolates carrying bla_{0XA-66} often belonged to STs such as ST98 (formerly ST34) included in CC92 demonstrated in a recent report [27] (Table 2). CC92 has increasingly been documented as a globally disseminated linage included in European clone II, often with multidrug resistance [6, 9]. bla_{0XA-51} -like gene can confer carbapenem-non-susceptibility to the bacteria if ISAba1 providing promoter sequences for overexpression is located adjacent to bla_{0XA-51} -like[2].

PFGE subgroup A was characterized by the presence of *bla*_{0XA-23}, an 224important determinant for carbapenem-resistance. Five isolates of PFGE 225226subgroup A were recovered from a single hospital in Kanto region, suggesting possible clonal spread due to nosocomial transmission or local endemicity. 227Nevertheless, one isolate (TUM10642) of the same PFGE subgroup was recovered 228229 from Kyushu, a region very distant from Kanto. In contrast to PFGE subgroup A, *bla*_{OXA-23} was absent among isolates of PFGE subgroup B; these strains seemed to 230owe their carbapenem-low-susceptibility to bla_{OXA-66} with a promoter within 231ISAba1[2]. 232

In our results, PFGE revealed that ST208 contained at least two clones, PFGE subgroup A and B, and most of the isolates belonging to subgroup A harbored *bla*_{OXA-23}, while the isolates belonging to subgroup B harbored only *bla*_{OXA-51 like} gene. These result demonstrated that PFGE has a greater discriminatory power

240	One .	A. baum	<i>annii</i> , TUM	[10635,	showe	d several d	istinct	tive aspect	s: the
241	presence of b	oth the <i>l</i>	bla _{OXA-58} and	bla _{IMP}	1 gene,	a novel ST	276, t	the foundat	tion of
242	CC 276, and	a uniqu	ıe PFGE ba	nd pat	tern (F	igure). Inte	restin	gly, its int	rinsic
243	<i>bla</i> OXA-51-like	gene,	OXA-64,	was	also	reported	in	NDM-1	type
244	metallo-8-lac	tamase-1	producing A	. bauma	a <i>nnii</i> fr	om German	y [28]		

245In contrast to A. baumannii, almost all isolates of non-baumannii Acintetobacter isolates proved to produce MBLs (Table 2; 92% in non-baumannii 246vs 7.1% in *A. baumannii*, p<0.01). PCR and sequencing revealed *bla*_{IMP-1} in all but 247one MBL-producing isolates. Previous studies in East Asia have demonstrated a 248similar, but not identical, trend: in Korea, carbapenem-resistant A. nosocomialis 249and A. calcoaceticus, harbored the VIM-2 type MBL gene [25, 29]. In Taiwan, 250251MBL genes of *bla*_{IMP-1} and *bla*_{VIM-11} were detected in *A. pittii* and *A. nosocomialis* [22]. In these reports, MBLs were not detected in *A. baumannnii*. The difference 252of MBL gene might reflect the predominant MBL genes among other pathogens; 253in Japan, the IMP-1-type MBL is most prevalent among Pseudomonas aeruginosa 254255[30]. While previous study in Japan explained carbapenem-resistant "A.

256	baumannii" due mainly to production of MBLs [11], however their data did not
257	analyze species/ genomic species identification by ARDRA. It will be necessary to
258	identify more detailed species for the antibiotic susceptibility surveillance of
259	Acinetobacter species. Meanwhile, blaoXA-58 located 17-bp downstream of
260	ISAba3-like elements was detected mainly in isolates of A. pittii, similar to the
261	situation in Taiwan [22].
262	Our study revealed that most carbapenem-non-susceptible A. baumannii
263	belonged to CC 92 known as a worldwide disseminated clone, and consisted of at
264	least two lineages with or without bla_{OXA-23} gene. The MBL producing A.
265	$baumannii$ was rare; only one isolate belonging to CC276 and containing $bla_{ m OXA-64}$
266	and bla_{OXA-58} also harbored bla_{IMP-1} . This is the first report showing the
267	differences of 8-lactamases among carbapenem-non-susceptible Acinetobacter spp.
268	with genomic species level identification in Japan. These observations enhance
269	our understanding of the epidemiology of carbapenem-non-susceptible
270	Acinetobacter spp
071	

272 ACKNOWLEDGEMENTS

273 The authors thank the technical staff and directors in the 72 hospitals as 274 the Levofloxacin Surveillance Group. We would like to express our deep

275	appreciation to David M. Livermore, Yohei Doi and Tse Hsien Koh for their
276	critical comments and careful reviewing of the manuscript.
277	FUNDING
278	This study was supported by the Ministry of Health, Labor, and Welfare of
279	Japan (No. H21-Shinkou-Ippan-008 to KY), and by a grant-in-aid for Scientific
280	Research from the Ministry of Education, Culture, Sports, Science and
281	Technology of Japan (No. 22591113 to YI). This work was also supported by a
282	grant from Daiichi Sankyo Co., Ltd. to collect <i>Acinetobacter</i> spp. isolates (to KY).

REFERENCES

2010;16:35-40.

284	[1] Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a
285	successful pathogen. Clin Microbiol Rev. 2008;21:538-82.
286	[2] Turton JF, Ward ME, Woodford N, Kaufmann ME, Pike R, Livermore DM, et
287	al. The role of ISAba1 in expression of OXA carbapenemase genes in
288	Acinetobacter baumannii. FEMS Microbiol Lett. 2006;258:72-7.
289	[3] Poirel L, Nordmann P. Genetic structures at the origin of acquisition and
290	expression of the carbapenem-hydrolyzing oxacillinase gene $bla_{ m OXA-58}$ in
291	Acinetobacter baumannii. Antimicrob Agents Chemother. 2006;50:1442-8.
292	[4] Dijkshoorn L, Aucken H, Gerner-Smidt P, Janssen P, Kaufmann ME, Garaizar
293	J, et al. Comparison of outbreak and nonoutbreak Acinetobacter baumannii
294	strains by genotypic and phenotypic methods. J Clin Microbiol. 1996;34:1519-25.
295	[5] van Dessel H, Dijkshoorn L, van der Reijden T, Bakker N, Paauw A, van den
296	Broek P, et al. Identification of a new geographically widespread multiresistant
297	Acinetobacter baumannii clone from European hospitals. Res Microbiol.
298	2004;155:105-12.
299	[6] Mugnier PD, Poirel L, Naas T, Nordmann P. Worldwide dissemination of the
300	bla _{OXA-23} carbapenemase gene of Acinetobacter baumannii. Emerg Infect Dis.

302	[7] Fu Y, Zhou J, Zhou H, Yang Q, Wei Z, Yu Y, et al. Wide dissemination of
303	OXA-23-producing carbapenem-resistant Acinetobacter baumannii clonal
304	complex 22 in multiple cities of China. J Antimicrob Chemother. 2010;65:644-50.
305	[8] Park YK, Choi JY, Jung SI, Park KH, Lee H, Jung DS, et al. Two distinct
306	clones of carbapenem-resistant Acinetobacter baumannii isolates from Korean
307	hospitals. Diagn Microbiol Infect Dis. 2009;64:389-95.
308	[9] Runnegar N, Sidjabat H, Goh HM, Nimmo GR, Schembri MA, Paterson DL.
309	Molecular epidemiology of multidrug-resistant Acinetobacter baumannii in a
310	single institution over a 10-year period. J Clin Microbiol. 2010;48:4051-6.
311	[10] Ishii Y, Yamaguchi K. Evaluation of the susceptibility trends to meropenem
312	in a nationwide collection of clinical isolates in Japan: a longitudinal analysis
313	from 2002 to 2006. Diagn Microbiol Infect Dis. 2008;61:346-50.
314	[11] Takahashi A, Yomoda S, Kobayashi I, Okubo T, Tsunoda M, Iyobe S.
315	Detection of carbapenemase-producing Acinetobacter baumannii in a hospital. J
316	Clin Microbiol. 2000;38:526-9.
317	[12] Shibata N, Doi Y, Yamane K, Yagi T, Kurokawa H, Shibayama K, et al. PCR
318	typing of genetic determinants for metallo- β -lactamases and integrases carried by
319	gram-negative bacteria isolated in Japan, with focus on the class 3 integron. J
320	Clin Microbiol. 2003;41:5407-13.

321	[13] Yamaguchi K, Ohno A, Ishii Y, Tateda K, Iwata M, Kanda M, et al. [In vitro
322	susceptibilities to levofloxacin and various antibacterial agents of 12,919 clinical
323	isolates obtained from 72 centers in 2007]. Jpn J Antibiot. 2009;62:346-70.
324	[14] Vaneechoutte M, Dijkshoorn L, Tjernberg I, Elaichouni A, de Vos P, Claeys G,
325	et al. Identification of Acinetobacter genomic species by amplified ribosomal DNA
326	restriction analysis. J Clin Microbiol. 1995;33:11-5.
327	[15] Clinical and Laboratory Standards Institute. Methods for Dilution
328	Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically- Eighth
329	edition: Approved standard M107-A8. CLSI, Wayne, PA, USA, 2009.
330	[16] Arakawa Y, Shibata N, Shibayama K, Kurokawa H, Yagi T, Fujiwara H, et al.
331	Convenient test for screening metallo- β -lactamase-producing gram-negative
332	bacteria by using thiol compounds. J Clin Microbiol. 2000;38:40-3.
333	[17] Woodford N, Ellington MJ, Coelho JM, Turton JF, Ward ME, Brown S, et al.
334	Multiplex PCR for genes encoding prevalent OXA carbapenemases in
335	Acinetobacter spp. Int J Antimicrob Agents. 2006;27:351-3.
336	[18] Bartual SG, Seifert H, Hippler C, Luzon MA, Wisplinghoff H,
337	Rodriguez-Valera F. Development of a multilocus sequence typing scheme for
338	characterization of clinical isolates of Acinetobacter baumannii. J Clin Microbiol.
339	2005;43:4382-90.

340	[19] Martinovich A, Edelstein M, Kozlov R. Multilocus Sequence Typing of
341	Acinetobacter Strains from Russia and Belarus That Produce Acquired OXA
342	Carbapenemases. In: Abstracts of the Forty-ninth Interscience Conference on
343	Antimicrobial Agents and Chemotherapy, San Francisco, CA, 2009. Abstract
344	C2-626. American Society for Microbiology, Washington, DC, USA.
345	[20] Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG. eBURST: inferring
346	patterns of evolutionary descent among clusters of related bacterial genotypes
347	from multilocus sequence typing data. J Bacteriol. 2004;186:1518-30.
348	[21] Jeon BC, Jeong SH, Bae IK, Kwon SB, Lee K, Young D, et al. Investigation of
349	a nosocomial outbreak of imipenem-resistant Acinetobacter baumannii producing
350	the OXA-23 β-lactamase in korea. J Clin Microbiol. 2005;43:2241-5.
351	[22] Lin YC, Sheng WH, Chen YC, Chang SC, Hsia KC, Li SY. Differences in
352	carbapenem resistance genes among Acinetobacter baumannii, Acinetobacter
353	genospecies 3 and Acinetobacter genospecies 13TU in Taiwan. Int J Antimicrob
354	Agents. 2010;35:439-43.
355	[23] Xiao YH, Giske CG, Wei ZQ, Shen P, Heddini A, Li LJ. Epidemiology and
356	characteristics of antimicrobial resistance in China. Drug Resistance Updates :
357	2011;14:236-50.
358	[24] Turner PJ. MYSTIC Europe 2007: activity of meropenem and other

broad-spectrum agents against nosocomial isolates. Diagn Microbiol Infect Dis.
2009;63:217-22.

[25] Lee JH, Choi CH, Kang HY, Lee JY, Kim J, Lee YC, et al. Differences in
 phenotypic and genotypic traits against antimicrobial agents between
 Acinetobacter baumannii and *Acinetobacter* genomic species 13TU. J Antimicrob
 Chemother. 2007;59:633-9.

365 [26] Adams-Haduch JM, Onuoha EO, Bogdanovich T, Tian G, Marchall J, Urban

366 CM, Spellberg BJ et al. Molecular epidemiology of carbapenem-nonsusceptible

367 Acinetobacter baumannii in the United States. J Clin Microbiol. 2011;49:3849-54.

[27] Hamouda A, Evans BA, Towner KJ, Amyes SG. Characterization of 368 epidemiologically unrelated Acinetobacter baumannii isolates from 369 four continents by use of multilocus sequence typing, pulsed-field gel electrophoresis, 370sequence-based genes. Clin Microbiol. 371and typing of bla_{OXA-51-like} J 3722010;48:2476-83.

[28] Pfeifer Y, Wilharm G, Zander E, Wichelhaus TA, Gottig S, Hunfeld KP, et al.

374 Molecular characterization of bla_{NDM-1} in an *Acinetobacter baumannii* strain

isolated in Germany in 2007. J Antimicrob Chemother. 2011;66:1998-2001.

376 [29] Lee K, Kim MN, Choi TY, Cho SE, Lee S, Whang DH, et al. Wide

377 dissemination of OXA-type carbapenemases in clinical *Acinetobacter* spp. isolates

- from South Korea. Int J Antimicrob Agents. 2009;33:520-4.
- 379 [30] Kimura S, Alba J, Shiroto K, Sano R, Niki Y, Maesaki S, et al. Clonal
- 380 diversity of metallo-β-lactamase-possessing *Pseudomonas aeruginosa* in
- 381 geographically diverse regions of Japan. J Clin Microbiol. 2005;43:458-61.

384 **FIGURE LEGEND**

Figure. Pulsed-field gel electrophoresis (PFGE) of 14 carbapenem-non-susceptible

- 386 Acinetobacter baumannii isolates in Japan. A. baumannii comprised PFGE
- 387 subgroup A, B and C at a level 85% (indicated by the broken line). While PFGE
- 388 subgroup A and B belonged to CC92, PFGE subgroup C with unique band pattern
- belonged to CC 276 (Table 2).

Table 1. Primers used in this study

Primers	Sequence(5' to 3')	Aim	Ref				
OXA-51 like Fw	TAA TGC TTT GAT CGC CCT TG						
OXA-51 like Rv	TGG ATT GCA CTT CAT CTT GG						
OXA-23 like Fw	GAT CGG ATT GGA CCA GA						
OXA-23 like Rv	-23 like Rv ATT TCT GAC CGC ATT TCC AT						
OXA-24 like Fw	GGT TAG TTG GCC CCC TTA AA	\mathbf{PCR}	[1/]				
OXA-24 like Rv	AGT TGA GCG AAA AGG GGA TT						
OXA-58 like Fw	AAG TAT TGG GGC TTG TGC TG						
OXA-58 like Rv	CCC CTC TGC GCT CTA CAT AC						
ISAba-1Fw	CAC GAA TGC AGA AGT TG	TC AL	[2]				
IS <i>Aba</i> -1Rv	CGA CGA ATA CTA TGA CAC	15 <i>ADa</i> family	[2]				
IS <i>Aba</i> -3 like	AGC AAT ATC TCG TAT ACC GC	lanny	[3]				
OXA-23 W F	GGG CAT ATG AAT AAA TAT TTT ACT TGC TAT GTG G						
OXA-23 W R	GGG GGA TCC TTA AAT AAT ATT CAG CTG TTT TAA TGA TTT C						
OXA-51 W F	GGG GGC ATA TGA ACA TTA AAG CAC TCT TAC	simplex	This				
OXA-51 W R	CCC GGA TCC TGC TAT AAA ATA CCT AAT TG	PCR	study				
OXA-58 W F	GGG CCA TGG GTA TGA AAT TAT TAA AAA TAT TGA GTT TAG TT						
OXA-58 W R	CCG GAT CCT GTT ATA AAT AAT GAA AAA C						
OXA-51 likeS F	AAA GCT TCC GCT ATT CC	Securation	This				
OXA-51like S R	GGA GTA ATT TTT AGA GGA CC	Sequence	study				
IMP-1 F1	ACC GCA GCAGAG TCT TTG						
IMP-1 R1	ACAACC AGT TTT GCC TTA CC						
IMP-2 F2	GTT TTA TGT GTA TGC TTC C						
IMP-2 R2	AGC CTG TTC CCA TGT AC	MDI ~	[10]				
VIM-1 F3	AGT GGT GAG TAT CCG ACA G	MIDLS	[12]				
VIM-1 R3	ATG AAA GTG CGT GGA GAC						
VIM-2 F4	ATG TTC AAA CTT TTG AGT AAG						
VIM-2 R4	CTA CTC AAC GAC TGA GCG						

	Species		6-lac	tamase		Р	MI	ST		T G					MIC	C (mg/L)			
1solate No.		OXA -51	OXA -23	OXA -58	MBL	F G E	ST	Hp T CC		Location of hospitals	Sample	SAM	CAZ	FE P	IPM	MEM	GEN	MIN	CIP
10629	A.baumannii	66	23**			А	208	92	1	Kanto	Pus	32/16	>256	128	64	64	>512	8	64
10630	A.baumannii	66*	23**			А	208	92	1	Kanto	Sputum	128/64	256	256	64	128	8	16	128
10631	A.baumannii	66*	23**			А	208	92	1	Kanto	Blood	64/32	128	128	64	128	4	8	64
10632	A.baumannii	66*	23**			А	208	92	1	Kanto	Sputum	32/16	128	128	64	128	2	8	32
10633	A.baumannii	66*	23**			А	208	92	1	Kanto	Pus	64/32	128	128	64	128	4	8	32
10634	A.baumannii	66*				В	208	92	1	Kanto	Sputum	4/2	256	64	8	16	8	≤ 0.25	≤ 0.06
10635	A.baumannii	64		58^\dagger	IMP-1	С	276	276	1	Kanto	Sputum	4/2	128	16	2	8	128	4	64
10636	A.baumannii	66*				В	219	92	2	Kanto	Sputum	8/4	128	64	4	8	>512	2	128
10637	A.baumannii	66*				В	219	92	2	Kanto	Sputum	32/16	256	128	4	16	>512	2	>128
10638	A.baumannii	66*				В	219	92	2	Kanto	Sputum	32/16	256	128	4	16	>512	4	>128
10639	A.baumannii	66*				В	208	92	3	Kanto	Other	32/16	256	64	16	32	>512	2	32
10640	A.baumannii	66*				В	208	92	4	Kanto	Sputum	64/32	128	32	2	8	256	2	64
10641	A.baumannii	206*	23**			А	208	92	5	Kanto	Other	128/64	256	256	32	128	4	8	128
10642	A.baumannii	66*				А	208	92	6	Kyusyu	Urine	4/2	128	16	8	16	256	2	64
10643	A. pittii			58^\dagger	IMP-1				7	Hokkaido	Sputum	8/4	8	8	16	8	4	≤ 0.25	1
10644	A. pittii			58^\dagger					8	Kanto	Sputum	4/2	256	256	32	32	8	≤ 0.25	16
10645	A. pittii			58^\dagger	IMP-1				9	Kanto	Urine	4/2	256	128	64	64	1	≤ 0.25	64
10646	A.calcoaceticus				IMP-1				10	Tokai	Blood	2/1	>512	512	32	128	>512	≤ 0.25	2
10647	A.calcoaceticus				IMP-1				10	Tokai	Sputum	4/2	>512	256	32	64	4	≤ 0.25	0.13
10648	A.calcoaceticus				IMP-1				10	Tokai	Sputum	2/1	512	64	16	64	16	≤ 0.25	0.13
10649	A.calcoaceticus				IMP-1				10	Tokai	Sputum	4/2	>512	512	64	128	64	$\leq\!\!0.25$	0.25

Table 2. Characterization of carbapenem-non-susuceptible Acinetobacter species in Japan.

10650	A. nosocomialis		IMP-1	1	10	Tokai	Sputum	2/1	512	256	64	128	>512	≤ 0.25	32
10651	A. nosocomialis		IMP-2	1	11	Kyusyu	Sputum	4/2	512	256	16	32	>512	≤ 0.25	≤ 0.06
10652	A. nosocomialis		IMP-1	1	12	Kyusyu	Sputum	2/1	512	128	16	32	256	≤ 0.25	≤ 0.06
10653	A. nosocomialis		IMP-1	1	12	Kyusyu	Sputum	4/2	512	256	32	16	2	≤ 0.25	4
10654	A.lwoffii		IMP-1	1	10	Tokai	blood	4/2	512	256	32	64	0.5	≤ 0.25	0.125
10655	A.lwoffii	58	IMP-1]	13	Hokuriku	Other	1/0.5	256	32	8	16	1	≤ 0.25	≤ 0.06

SAM, ampicillin/sulbactam; CAZ, ceftazidime; FEP, cefepime; IPM, imipenem; MEM, meropenem; GEN, gentamicin; MIN, minocyclin; CIP,

ciprofloxacin; PFGE, pulsed-fielded gel electrophoresis; MLST, multilocus sequencing type; ST, sequence type; CC, clonal complex.

[‡] Hp means hospital number.

*Detection of ISAba1 at 34-bp upstream from *bla*OXA-51 like gene.

** Detection of IS*Aba1* at 8-bp upstream from *bla*OXA-23 gene.

[†]Detection of IS*Aba3* -like at 17-bp upstream from *bla*_{OXA-58} gene.

Dice (Opt:1.50%) (Tol 1.5%-1.5%) (H>0.0% S>0.0%) [0.0%-100.0%]